95 research outputs found

    Hedgehog signaling via a calcitonin receptor-like receptor can induce arterial differentiation independently of VEGF signaling in zebrafish

    Get PDF
    Multiple signaling pathways control the specification of endothelial cells (ECs) to become arteries or veins during vertebrate embryogenesis. Current models propose that a cascade of Hedgehog (Hh), vascular endothelial growth factor (VEGF), and Notch signaling acts instructively on ECs to control the choice between arterial or venous fate. Differences in the phenotypes induced by Hh, VEGF, or Notch inhibition suggest that not all of the effects of Hh on arteriovenous specification are mediated by VEGF. We establish that full derepression of the Hh pathway in ptc1;ptc2 mutants converts the posterior cardinal vein into a second arterial vessel that manifests intact arterial gene expression, intersegmental vessel sprouting, and HSC gene expression. Importantly, although VEGF was thought to be absolutely essential for arterial fates, we find that normal and ectopic arterial differentiation can occur without VEGF signaling in ptc1;ptc2 mutants. Furthermore, Hh is able to bypass VEGF to induce arterial differentiation in ECs via the calcitonin receptor-like receptor, thus revealing a surprising complexity in the interplay between Hh and VEGF signaling during arteriovenous specification. Finally, our experiments establish a dual function of Hh during induction of runx1+ HSCs

    Progression-free survival and overall survival after BRCA1/2-associated epithelial ovarian cancer:A matched cohort study

    Get PDF
    INTRODUCTION: Germline BRCA1/2-associated epithelial ovarian cancer has been associated with better progression-free survival and overall survival than sporadic epithelial ovarian cancer, but conclusive data are lacking. METHODS: We matched 389 BRCA1-associated and 123 BRCA2-associated epithelial ovarian cancer patients 1:1 to sporadic epithelial ovarian cancer patients on year of birth, year of diagnosis, and FIGO stage ( = IIB). Germline DNA test was performed before or after epithelial ovarian cancer diagnosis. All patients received chemotherapy. We used Cox proportional hazards models to estimate the associations between mutation status (BRCA1 or BRCA2 versus sporadic) and progression-free survival and overall survival. To investigate whether DNA testing after epithelial ovarian cancer diagnosis resulted in survival bias, we performed additional analyses limited to BRCA1/2-associated epithelial ovarian cancer patients with a DNA test result before cancer diagnosis (n = 73 BRCA1; n = 9 BRCA2) and their matched sporadic controls. RESULTS: The median follow-up was 4.4 years (range 0.1-30.1). During the first three years after epithelial ovarian cancer diagnosis, progression-free survival was better for BRCA1 (HR 0.88, 95% CI 0.74-1.04) and BRCA2 (HR 0.58, 95% CI 0.41-0.81) patients than for sporadic patients. Overall survival was better during the first six years after epithelial ovarian cancer for BRCA1 (HR 0.7, 95% CI 0.58-0.84) and BRCA2 (HR 0.41, 95% CI 0.29-0.59) patients. After surviving these years, survival benefits disappeared or were in favor of the sporadic patients. CONCLUSION: For epithelial ovarian cancer patients who received chemotherapy, we confirmed survival benefit for BRCA1 and BRCA2 germline pathogenic variant carriers. This may indicate higher sensitivity to chemotherapy, both in first line treatment and in the recurrent setting. The observed benefit appears to be limited to a relatively short period after epithelial ovarian cancer diagnosis

    Chromothripsis is a common mechanism driving genomic rearrangements in primary and metastatic colorectal cancer

    Get PDF
    ABSTRACT: BACKGROUND: Structural rearrangements form a major class of somatic variation in cancer genomes. Local chromosome shattering, termed chromothripsis, is a mechanism proposed to be the cause of clustered chromosomal rearrangements and was recently described to occur in a small percentage of tumors. The significance of these clusters for tumor development or metastatic spread is largely unclear. RESULTS: We used genome-wide long mate-pair sequencing and SNP array profiling to reveal that chromothripsis is a widespread phenomenon in primary colorectal cancer and metastases. We find large and small chromothripsis events in nearly every colorectal tumor sample and show that several breakpoints of chromothripsis clusters and isolated rearrangements affect cancer genes, including NOTCH2, EXO1 and MLL3. We complemented the structural variation studies by sequencing the coding regions of a cancer exome in all colorectal tumor samples and found somatic mutations in 24 genes, including APC, KRAS, SMAD4 and PIK3CA. A pairwise comparison of somatic variations in primary and metastatic samples indicated that many chromothripsis clusters, isolated rearrangements and point mutations are exclusively present in either the primary tumor or the metastasis and may affect cancer genes in a lesion-specific manner. CONCLUSIONS: We conclude that chromothripsis is a prevalent mechanism driving structural rearrangements in colorectal cancer and show that a complex interplay between point mutations, simple copy number changes and chromothripsis events drive colorectal tumor development and metastasis.

    Ovarian cancer cell line panel (OCCP): Clinical importance of in vitro morphological subtypes

    Get PDF
    Epithelial ovarian cancer is a highly heterogeneous disease and remains the most lethal gynaecological malignancy in the Western world. Therapeutic approaches need to account for inter-patient and intra-tumoural heterogeneity and detailed characterization of in vitro models representing the different histological a

    JAK2 aberrations in childhood B-cell precursor acute lymphoblastic leukemia

    Get PDF
    JAK2 abnormalities may serve as target for precision medicines in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In the current study we performed a screening for JAK2 mutations and translocations, analyzed the clinical outcome and studied the efficacy of two JAK inhibitors in primary BCP-ALL cells. Importantly, we identify a number of limitations of JAK inhibitor therapy. JAK2 mutations mainly occurred in the poor prognostic subtypes BCR-ABL1-like and non- BCR-ABL1-like B-other (negative for sentinel cytogenetic lesions). JAK2 translocations were restricted to BCR-ABL1-like cases. Momelotinib and ruxolitinib were cytotoxic in both JAK2 translocated and JAK2 mutated cells, although efficacy in JAK2 mutated cells highly depended on cytokine receptor activation by TSLP. However, our data also suggest that the effect of JAK inhibition may be compromised by mutations in alternative survival pathways and microenvironment-induced resistance. Furthermore, inhibitors induced accumulation of phosphorylated JAK2Y1007, which resulted in a profound re-activation of JAK2 signaling upon release of the inhibitors. This preclinical evidence implies that further optimization and evaluation of JAK inhibitor treatment is necessary prior to its clinical integration in pediatric BCP-ALL

    Targeted next generation sequencing as a reliable diagnostic assay for the detection of somatic mutations in tumours using minimal DNA amounts from formalin fixed paraffin embedded material

    Get PDF
    Background Targeted Next Generation Sequencing (NGS) offers a way to implement testing of multiple genetic aberrations in diagnostic pathology practice, which is necessary for personalized cancer treatment. However, no standards regarding input material have been defined. This study therefore aimed to determine the effect of the type of input material (e.g. formalin fixed paraffin embedded (FFPE) versus fresh frozen (FF) tissue) on NGS derived results. Moreover, this study aimed to explore a standardized analysis pipeline to support consistent clinical decision-making. Method We used the Ion Torrent PGM sequencing platform in combination with the Ion AmpliSeq Cancer Hotspot Panel v2 to sequence frequently mutated regions in 50 cancer related genes, and validated the NGS detected variants in 250 FFPE samples using standard diagnostic assays. Next, 386 tumour samples were sequenced to explore the effect of input material on variant detection variables. For variant calling, Ion Torrent analysis software was supplemented with additional variant annotation and filtering. Results Both FFPE and FF tissue could be sequenced reliably with a sensitivity of 99.1%. Validation showed a 98.5%concordance between NGS and conventional sequencing techniques, where NGS provided both the advantage of low input DNA concentration and the detectio

    A systematic analysis of oncogenic gene fusions in primary colon cancer

    Get PDF
    Genomic rearrangements that give rise to oncogenic gene fusions can offer actionable targets for cancer therapy. Here we present a systematic analysis of oncogenic gene fusions among a clinically well-characterized, prospectively collected set of 278 primary colon cancers spanning diverse tumor stages and clinical outcomes. Gene fusions and somatic genetic variations were identified in fresh frozen clinical specimens by Illumina RNA-sequencing, the STAR fusion gene detection pipeline, and GATK RNA-seq variant calling. We considered gene fusions to be pathogenically relevant when recurrent, producing divergent gene expression (outlier analysis), or as functionally important (e.g., kinase fusions). Overall, 2.5% of all specimens were defined as harboring a relevant gene fusion (kinase fusions 1.8%). Novel configurations of BRAF, NTRK3, and RET gene fusions resulting from chromosomal translocations were identified. An R-spondin fusion was found in only one tumor (0.35%), much less than an earlier reported frequency of 10% in colorectal cancers. We also found a novel fusion involving USP9X-ERAS formed by chromothripsis and leading to high expression of ERAS, a constitutively active RAS protein normally expressed only in embryonic stem cells. This USP9X–ERAS fusion appeared highly oncogenic on the basis of its ability to activate AKT signaling. Oncogenic fusions were identified only in lymph node–negative tumors that lacked BRAF or KRAS mutations. In summary, we identified several novel oncogenic gene fusions in colorectal cancer that may drive malignant development and offer new targets for personalized therapy

    Mechanism of KMT5B haploinsufficiency in neurodevelopment in humans and mice.

    Get PDF
    Pathogenic variants in KMT5B, a lysine methyltransferase, are associated with global developmental delay, macrocephaly, autism, and congenital anomalies (OMIM# 617788). Given the relatively recent discovery of this disorder, it has not been fully characterized. Deep phenotyping of the largest (n = 43) patient cohort to date identified that hypotonia and congenital heart defects are prominent features that were previously not associated with this syndrome. Both missense variants and putative loss-of-function variants resulted in slow growth in patient-derived cell lines. KMT5B homozygous knockout mice were smaller in size than their wild-type littermates but did not have significantly smaller brains, suggesting relative macrocephaly, also noted as a prominent clinical feature. RNA sequencing of patient lymphoblasts and Kmt5b haploinsufficient mouse brains identified differentially expressed pathways associated with nervous system development and function including axon guidance signaling. Overall, we identified additional pathogenic variants and clinical features in KMT5B-related neurodevelopmental disorder and provide insights into the molecular mechanisms of the disorder using multiple model systems

    Copy number variants as modifiers of breast cancer risk for BRCA1/BRCA2 pathogenic variant carriers

    Get PDF
    The risk of germline copy number variants (CNVs) in BRCA1 and BRCA2 pathogenic variant carriers in breast cancer is assessed, with CNVs overlapping SULT1A1 decreasing breast cancer risk in BRCA1 carriers.The contribution of germline copy number variants (CNVs) to risk of developing cancer in individuals with pathogenic BRCA1 or BRCA2 variants remains relatively unknown. We conducted the largest genome-wide analysis of CNVs in 15,342 BRCA1 and 10,740 BRCA2 pathogenic variant carriers. We used these results to prioritise a candidate breast cancer risk-modifier gene for laboratory analysis and biological validation. Notably, the HR for deletions in BRCA1 suggested an elevated breast cancer risk estimate (hazard ratio (HR) = 1.21), 95% confidence interval (95% CI = 1.09-1.35) compared with non-CNV pathogenic variants. In contrast, deletions overlapping SULT1A1 suggested a decreased breast cancer risk (HR = 0.73, 95% CI 0.59-0.91) in BRCA1 pathogenic variant carriers. Functional analyses of SULT1A1 showed that reduced mRNA expression in pathogenic BRCA1 variant cells was associated with reduced cellular proliferation and reduced DNA damage after treatment with DNA damaging agents. These data provide evidence that deleterious variants in BRCA1 plus SULT1A1 deletions contribute to variable breast cancer risk in BRCA1 carriers.Peer reviewe

    Polygenic risk scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and BRCA2 pathogenic variants

    Get PDF
    Purpose We assessed the associations between population-based polygenic risk scores (PRS) for breast (BC) or epithelial ovarian cancer (EOC) with cancer risks forBRCA1andBRCA2pathogenic variant carriers. Methods Retrospective cohort data on 18,935BRCA1and 12,339BRCA2female pathogenic variant carriers of European ancestry were available. Three versions of a 313 single-nucleotide polymorphism (SNP) BC PRS were evaluated based on whether they predict overall, estrogen receptor (ER)-negative, or ER-positive BC, and two PRS for overall or high-grade serous EOC. Associations were validated in a prospective cohort. Results The ER-negative PRS showed the strongest association with BC risk forBRCA1carriers (hazard ratio [HR] per standard deviation = 1.29 [95% CI 1.25-1.33],P = 3x10(-72)). ForBRCA2, the strongest association was with overall BC PRS (HR = 1.31 [95% CI 1.27-1.36],P = 7x10(-50)). HR estimates decreased significantly with age and there was evidence for differences in associations by predicted variant effects on protein expression. The HR estimates were smaller than general population estimates. The high-grade serous PRS yielded the strongest associations with EOC risk forBRCA1(HR = 1.32 [95% CI 1.25-1.40],P = 3x10(-22)) andBRCA2(HR = 1.44 [95% CI 1.30-1.60],P = 4x10(-12)) carriers. The associations in the prospective cohort were similar. Conclusion Population-based PRS are strongly associated with BC and EOC risks forBRCA1/2carriers and predict substantial absolute risk differences for women at PRS distribution extremes.Peer reviewe
    corecore