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Abstract

Genomic rearrangements that give rise to oncogenic gene
fusions can offer actionable targets for cancer therapy. Here we
present a systematic analysis of oncogenic gene fusions among
a clinically well-characterized, prospectively collected set of 278
primary colon cancers spanning diverse tumor stages and
clinical outcomes. Gene fusions and somatic genetic variations
were identified in fresh frozen clinical specimens by Illumina
RNA-sequencing, the STAR fusion gene detection pipeline, and
GATK RNA-seq variant calling. We considered gene fusions to
be pathogenically relevant when recurrent, producing divergent
gene expression (outlier analysis), or as functionally important
(e.g., kinase fusions). Overall, 2.5% of all specimens were
defined as harboring a relevant gene fusion (kinase fusions
1.8%). Novel configurations of BRAF, NTRK3, and RET gene

fusions resulting from chromosomal translocations were iden-
tified. An R-spondin fusion was found in only one tumor
(0.35%), much less than an earlier reported frequency of
10% in colorectal cancers. We also found a novel fusion
involving USP9X-ERAS formed by chromothripsis and leading
to high expression of ERAS, a constitutively active RAS protein
normally expressed only in embryonic stem cells. This USP9X–
ERAS fusion appeared highly oncogenic on the basis of its
ability to activate AKT signaling. Oncogenic fusions were iden-
tified only in lymph node–negative tumors that lacked BRAF or
KRAS mutations. In summary, we identified several novel
oncogenic gene fusions in colorectal cancer that may drive
malignant development and offer new targets for personalized
therapy. Cancer Res; 77(14); 3814–22. �2017 AACR.

Introduction
Colorectal cancer is the third most commonmalignant disease

in men and second in women with an estimated yearly incidence
of 1.35 million new cases associated with 694,000 annual deaths

(1, 2). Within colorectal cancer, colon cancer and rectal cancer are
considered two separate disease entities that are treated differently
(3). This article focuses on primary nonmetastatic colon cancer
(stage I to III) to avoid the identificationof genetic aberrations that
are a result of neoadjuvant treatment (e.g., in case of rectal cancer).

The classical driver mutations of colon cancer have been
studied extensively and consist of constitutive activation of the
WNT pathway by mutations in the tumor suppressor APC,
inactivation of TP53 and activation of RAS/MAPK pathways
through mutation of RAS family members (4). These key
primary drivers are sufficient for the transformation of primary
colon stem cells into genomically instable adenocarcinomas
(5, 6). Besides these classical driver genes, large-scale genomic
screening has revealed hypermutated and nonhypermutated
colorectal cancer, which contain a different repertoire of mutat-
ed genes (7). Nonhypermutated colorectal cancers mostly carry
mutations in the classical driver genes APC, TP53, KRAS,
PIK3CA, and SMAD4 and form the majority of colorectal
tumors. Hypermutated colorectal cancers often harbor genetic
changes in DNAmismatch repair genes along with mutations in
BRAF, APC, TGFBR2, and ACVR2A (7).

Genomic instability is a frequent hallmark of colorectal cancer,
particularly of nonhypermutated tumors. Profiling of genomic
copy number aberrations has revealed numerous recurrent
changes, located at known fragile sites (FHIT, WWOX) or target-
ing tumor suppressors (APC, PTEN, SMAD4; ref. 7). Genomic
instability can lead to the formation of fusion genes (8–10).
Fusion genes have attracted significant attention because they
were identified as potential cancer-specific targets for treatment.
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Several fusion genes (e.g., BCR-ABL, EML4-ALK) are clinically
used to select patients for treatment (9).Oneof themost prevalent
fusion genes described in colorectal cancer involve the R-spondin
family members RSPO2 and RSPO3 (11). R-spondin fusions can
activateWNT signaling and aremutually exclusivewithmutations
in APC. Recent work showed that inhibition of RSPO3 fusions
impairs tumor growth (12). Other recurrent fusions in colorectal
cancer contain the TCF7L1 and TCF7L2 genes, encoding TCF3 and
TCF4 transcription factors, although their relevance for colorectal
cancer development is currently unknown (7, 13, 14). Finally, a
variety of kinase fusions have been observed in colorectal cancer,
such as those involving BRAF or receptor tyrosine kinases (10, 11,
15, 16). Despite the growing support for a role of gene fusions in
colorectal cancer development and their potential therapeutic
value, small sample sizes, differences in experimental approaches,
and the low frequency of fusions have resulted in conflicting
results regarding their prevalence and relevance.

We report a comprehensive and unbiased screening for gene
fusions in a unique, clinically well-defined, and prospectively
collected cohort of 278 primary stage I to III colon cancers. We
found that 2.5% of colon cancers in our dataset contained an
oncogenic gene fusion and we identified novel fusions, including
an USP9X-ERAS fusion with strong oncogenic activity in vitro.

Materials and Methods
Sample collection

Patients were selected from the MATCH-study, a prospective
multicenter cohort study from 2007 onwards including adult
patients undergoing curative surgery in one of seven hospitals
in the Rotterdam region, the Netherlands (institutional review
board number MEC-2007-088). All patients gave written
informed consent for the storage and use of tissue samples for
research purposes, and the collection of clinical data. The study
has been conducted in accordance with the guidelines of the
Declaration of Helsinki.

Only samples with at least 40% invasive tumor cells were
included in the final analysis, with the number of samples per
RNA sequencing run depending upon this percentage.

DNA and RNA was isolated from 30-mm sections taken from
the frozen tumor tissue obtained at primary surgery.Only samples
with an RNA integrity value of at least 7.0 were included in the
final analysis.

RNA-sequencing
Total RNA (500 ng) from tumor samples was used as input for

the Illumina TruSeq stranded RNA-seq protocol. Libraries were
pooled and sequenced on IlluminaHiSeq2500 orNextSeq instru-
ments. We used the STAR fusion gene detection pipeline (version
STAR-2.4.1) for analysis of RNA-seq data (17).

A list of filtered junctions was annotated by adding fusion gene
counts, donor gene counts, acceptor gene counts, overlap with
protein domains and calculation of expression z-scores for the
donor and acceptor genes relative to samples without the fusion.

GATK RNA-seq variant calling best practices were used for
somatic variant calling in RNA-seq data.

Mate-pair sequencing and analysis
Mate-pair library preparation was done using the Illumina

NexteraMate Pair library kit. Librarieswere sequencedonNextSeq
using 2�75 bp configuration. Discordant read pairs were detected

from BAM files using a custom analysis pipeline as described
previously (18). FREEC was used to detect copy number varia-
tions (19).

Whole exome sequencing
DNA was sequenced by GATC Biotech using Illumina's HiSeq

protocol (paired-end 100 bp, captured regions according to
SureSelect v5).

Raw sequence data for both normal and tumor DNA were
mapped to the human reference genome GRCh37 using BWA (v
0.7.5a-r405; ref. 20). BAM files were used for variant calling using
GATK (v3.3.0) and Mutect (v1.1.6), followed by custom filtering
steps (21, 22).

Fusion gene expression and Western blotting
HEK293T cells or NIH-3T3-A14 cells were transfected with 2 mg

of pBABE constructs containing fusion genes by the calcium
phosphate method. NIH-3T3-A14 cells were obtained from Bur-
gering and colleagues in 2014 (23). HEK293T cells were obtained
fromATCC in the late 1980s. Both cell lines have only been tested
and authenticated on the basis of their morphologic appearance.
The cell lines were cultured for up to ten passages after thawing
before use in experiments. Mycoplasma testing was done every
three months using MycoAlert (Lonza). Cells were cotransfected
with constructs encoding either MYC-tagged ERK1 or GFP-tagged
AKT.Western blottingwas donewith rabbit polyclonal antibodies
directed against phospho-AKT (Ser473; D9E, Cell Signaling Tech-
nology), phospho-p44/42 MAPK (ERK1/2, Thr202/Tyr204, Cell
Signaling Technology), c-MYC (910E, SantaCruzBiotechnology),
and mouse monoclonal anti-a-Tubulin (CP06, Calbiochem).
Detection was done with fluorescently labeled secondary anti-
bodies (goat-anti-rabbit IgG (HþL) 800 CW and donkey-anti-
mouse (680 RD) from LI-COR Biosciences).

Data access
The sequencing data described in this study can be accessed

through theEuropeanGenomePhenomeArchiveunder accession
number EGAS00001002197.

A detailed description of materials and methods can be found
in the Supplementary Materials and Methods.

Results
Transcriptome sequencing of 278 primary colon tumors

To identify rearranged transcripts we explored the transcrip-
tomic profile of colon cancers, making use of a large prospectively
collected cohort of primary tumor samples from patients with
stage I to III colon cancer (Rotterdam MATCH study). Primary
tumor samples were selected from our database, based on clinical
and technical criteria (Supplementary Fig. S1). The study cohort
included stage I (n¼ 66), stage II (n¼ 115) and stage III (n¼ 97)
pathologically confirmed adenocarcinomas (Table 1). Detailed
clinical description including follow-up time, adjuvant therapy,
disease outcome, tumor stage, lymphnode status, histologic data,
and patient details was collected (Supplementary Table S1).

Tumor samples with at least 40% invasive tumor cells (based
on histologic examination) were sectioned and tissue slices were
consecutively used for RNA and DNA isolation. Total RNA was
extracted from tissue slices and used for the preparation of
RNA-seq libraries subsequent to removal of abundant noncoding
mRNAs (ribominus). Libraries were sequenced at ameandepth of
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27M paired reads per library in either 2�100 bp or 2�75 bp
configuration (Supplementary Table S1). Next, the data were
mapped to the human reference genome (GRCh37) to identify
discordantly mapping reads indicating potential somatic fusion
genes using STAR software and a custom annotation pipeline
(17). The pipeline parameters were set to achieve maximal sen-
sitivity, leading to the prediction of 3million raw potential fusion
gene calls. These calls were subsequently filtered through a series
of rational filtering steps (Fig. 1), including read coverage, remov-
al of paralogous gene sets,filtering against control data, prediction
of in-frame fusion and recurrence among tumor samples (16).
Using these specific filtering criteria, we obtained a dataset of 75
fusion genes,whichwere subjected to experimental verificationby
RT-PCR (Supplementary Fig. S2; Supplementary Table S2). A total
of 22 out of 75 tested fusion genes were validated in the correct
tumor specimen and were absent in the corresponding control
tissue. We observed two cases where a TFG-GPR128 fusion was
present in both tumor and corresponding normal colon tissue.
This fusion has previously been described in renal cell cancer and
was later shown to be caused by a germline structural genomic
variation (24, 25). For a DLG1-BRAF fusion, we also observed a
weak RT-PCR product in the corresponding control tissue, which
is likely a result of contamination of the control tissue with tumor
cells. For 35 predicted fusion genes, we did not observe an RT-PCR
product, indicating that these are either false positive calls or that

Table 1. Patient and tumor characteristics

All patients Lymph node–negative tumors Lymph node–positive tumors No fusion gene Fusion gene
Characteristics N ¼ 278 (%) N ¼ 181 (%) N ¼ 97 (%) N ¼ 271 (%) N ¼ 7 (%)

Gender
Female 132 (47.5%) 92 (50.8%) 40 (41.2%) 127 (46.9%) 5 (71.4%)
Male 146 (52.5%) 89 (49.2%) 57 (58.8%) 144 (53.1%) 2 (28.6%)

Age
Median (IQR) 68.2 (62.4–75.2) 70.2 (63.2–76.9) 70.0 (61.4–70.8) 68.1 (62.4–75.2) 71.1 (67.4–76.1)
Tumor stage
Stage I 66 (23.7%) 66 (36.5%) — 65 (24.0%) 1 (14.3%)
Stage II 115 (41.4%) 115 (63.5%) — 109 (40.2%) 6 (85.7%)
Stage III 97 (34.9%) — 97 (100%) 97 (35.8%) 0 (0%)

T status
T2 79 (28.4%) 66 (36.5%) 13 (13.4%) 78 (28.8%) 1 (14.3%)
T3 194 (69.8%) 110 (60.8%) 84 (86.6%) 190 (70.1%) 4 (57.1%)
T4 5 (1.8%) 5 (2.8%) — 3 (1.1%) 2 (28.6%)

Nodal status
N0a 148 (53.2%) 148 (81.8%) — 143 (52.8%) 5 (71.4%)
N0b 33 (11.9%) 33 (18.2%) — 31 (11.4%) 0 (0%)
N1 64 (23.0%) — 63 (64.9%) 64 (23.6%) 0 (0%)
N2 33 (11.9%) — 34 (35.1%) 33 (12.2%) 2 (28.6%)
N0 181 (65.1%) 181 (100%) — 174 (64.2%) 7 (100%)
Nþ 97 (34.9%) — 97 (100%) 97 (35.8%) 0 (0%)

Tumor grade
Good 23 (8.3%) 16 (8.8%) 7 (7.2%) 23 (8.5%) 0 (0%)
Moderate 220 (79.1%) 152 (84.0%) 68 (70.1%) 213 (78.6%) 7 (100%)
Poor 24 (8.6%) 10 (5.5%) 14 (14.4%) 24 (8.9%) 0 (0%)
Unknown 11 (4.0%) 3 (1.7%) 8 (8.2%) 11 (4.1%) 0 (0%)

Adjuvant therapy
No 182 (65.5%) 182 (100%) 1 (1.0%) 175 (64.6%) 7 (100%)
Yes 96 (34.5%) — 95 (99.0%) 96 (35.4%) 0 (0%)

MSI status
MSS 217 (78.1%) 134 (74.0%) 83 (85.6%) 215 (79.3%) 2 (28.6%)
MSI 61 (21.9%) 45 (24.9%) 14 (14.4%) 56 (20.7%) 5 (71.4%)

Location
Left 133 (47.8%) 84 (46.4%) 49 (50.5%) 130 (48.0%) 3 (42.9%)
Right 145 (52.2%) 97 (53.6%) 48 (49.5%) 141 (52.0%) 4 (57.1%)

Abbreviation: MSI, microsatellite instability.
aTotal lymph node yield � 10.
bTotal lymph node yield < 10.

Junctions > 1 read

Junctions with >= 5 
reads

Protein coding

Exact junction 
present in less 
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912

not in mitochondrial 
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No 3′ UTR to 
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Figure 1.

Overview of fusion gene detection and filtering approach.
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the fusion gene RT-PCR detection assay was suboptimal. The
remainder of fusion genes was not specific for the tumor sample.
To assess whether our filtering strategy indeed enriched for true
positive fusion genes, we also subjected a series of 70 predicted
fusions that did not pass our filtering steps to experimental
verification by RT-PCR. Out of these 70 predicted fusions none
could be confirmed (data not shown).

BRAF fusions are recurrent and present at low frequency in
colon cancer

We next searched among the validated fusion transcripts for
those, which were recurrent and in-frame. We identified three
unique fusions (1.1% of 278 samples) involving the BRAF onco-
gene (AGAP3-BRAF, TRIM24-BRAF, DLG1-BRAF, Fig. 2A; Supple-
mentary Fig. S3). BRAF fusions have been described in a variety of
cancer types (10, 16). The structure of the TRIM24-BRAF fusion
was identical to those reported previously, with exon 3 of TRIM24
connected to exon 10 of BRAF (15). The AGAP3-BRAF fusion

contained a junction between exon 8 of AGAP3 and exon 9 of
BRAF, which is different from the exon 9-exon 9 configuration
previously described (15). The DLG1-BRAF fusion, containing a
junction between exon 5 of DLG1 and exon 9 of BRAF, is novel
and extends the broad spectrumof knownBRAF fusions in cancer.

We sequenced the genomes of the tumor samples with BRAF
fusion genes using large-insert mate-pair sequencing (insert size
2.5 kb) to detect somatic structural variations that could account
for BRAF fusion formation. In two cases (AGAP3-BRAF and
TRIM24-BRAF) the fusion was caused by an inversion event,
while the novel DLG1-BRAF fusion resulted from a reciprocal
translocation between chromosomes 3 and 7 (Fig. 2A).

All three fusion genes contained the entire C-terminal kinase
domainof BRAFby fusionof exon9or10 to their respectivedonor
genes. We hypothesized that disconnection of the BRAF kinase
domain from its N-terminal autoinhibitory domain leads to
constitutive activation (26). To assess whether our BRAF fusions
can activate signaling pathways, we cloned the DLG1-BRAF and
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Figure 2.

Structure and characterization of fusion genes. A, Exon and protein structure of the TRIM24-BRAF, AGAP3-BRAF, DLG1-BRAF, and EML4-NTRK3 fusions.
On topof the exonic structures, weplotted arcs indicating breakpoint junction sequence reads detected bymate-pair sequencing of tumor genomicDNA. Coloring of
the arcs indicates orientation of the breakpoint junction as indicated by the respectivemate-pair reads: red, head-to-head inverted; yellow, tail-to-tail inverted; blue,
tail-to-head; green, head-to-tail. Below the exonic structures, chimeric RNA-seq reads are plotted (black arcs) indicating which exon–exon connections were
observed from the sequence data. KD, kinase domain; L27, L27 protein interaction module; PH, pleckstrin homology; RING, zinc finger domain ring type; BBOX1,
B-box-type zinc finger domain; PTK, protein tyrosine kinase domain; CC, coiled-coil domain. B, Western blot results depicting the effects of fusion genes
overexpression in HEK293 cells on ERK1 phosphorylation. C, Western blot results displaying the effects of fusion gene overexpression on AKT phosphorylation
in NIH-3T3-A14 cells.
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AGAP3-BRAF fusion genes and expressed them in HEK293 cells.
Subsequent analysis for activation of ERK/MAPK signaling was
performed by coexpression of ERK1. Protein analysis revealed a
strong effect of BRAF fusion proteins on ERK1 phosphorylation,
underscoring their role as oncogenes in colon cancer (Fig. 2B).
Although the effect of BRAF fusions on ERK1 phosphorylation
appeared stronger than for the native BRAF protein, the effect was
less strong than for BRAF carrying the activating V600Emutation.

Identification of NTRK3 and RET kinase fusion genes
To further evaluate the relevance of the remaining fusion genes

thatwere verified by RT-PCR,we reasoned that fusions that lead to
upregulation of the acceptor genemaybe of particular importance
(27). Therefore, we analyzed the expression of our entire set of
fusions and compared the expression of the donor and acceptor
genes to all other tumor samples without such a fusion (outlier
analysis, Supplementary Table S2).

An EML4-NTRK3 fusion was among the top hits that resulted
from this analysis with an expression Z score of 17.96 for the
NTRK3 gene. This fusion was formed through a reciprocal trans-
location that joined the 50 part of EML4 (endingwith exon 2)with
the 30 exons of NTRK3 (starting with exon 14) in a lymph node
negative adenocarcinoma (Fig. 2A; Supplementary Fig. S4A). An
additional NTRK3 fusion (ETV6-NTRK3) has been reported pre-
viously in colon cancer and an EML4-NTRK3 fusion has been
observed in glioma (11, 28). By examining the expression of the
individual exons across ETV6-NTRK3, we noticed that the fusion
also leads to an increased expression of the exons encoding the
tyrosine kinase domain, which is retained in the fusion transcript
(Supplementary Fig. S4B). On the basis of these results, we
analyzed the exonic expression in 732 RNA-sequencing datasets
of colorectal cancer samples from The Cancer Genome Atlas
(TCGA) and observed a similar increase in expression of the
kinase encoding exons in two datasets derived from colon ade-
nocarcinomas, suggesting the presence of NTRK3 fusion genes
(Supplementary Fig. S4C; ref. 7).

Neurotrophin tyrosine kinase (NTRK) 1 and 3 are receptor
kinases that are frequently activated by gene fusion in a variety of
cancers (10). The tyrosine kinase domain is always maintained in
the chimeric proteins and fused to an oligomerization domain
provided by the N-terminal fusion partner. To assess the molec-
ular effects of the EML4-NTRK3 fusion gene reported here, we
expressed it in HEK293 cells together with ERK1 and found that
the EML4-NTRK3 fusion activates MAPK/ERK signaling by phos-
phorylation of ERK1 (Fig. 2B). A truncated version of the fusion
gene was not active, suggesting that the EML4 coiled-coil domain
(CCD) is supposed to promote receptor activation by dimeriza-
tion, similar as for EML4-ALK fusions found in lung cancer (29).
We also tested the same fusion construct in the context of A14 cells
cotransfected with AKT. Following serum starvation, we observed
phosphorylation of AKT exceeding the levels of AKT phosphor-
ylation by KRAS V12A under the same conditions (Fig. 2C).
Altogether, we conclude that the EML4-NTRK3 fusion affects
oncogenic signaling pathways and that NTRK3 fusion genes are
recurrent but low-frequent in colorectal cancer.

Another top candidate with a high expression Z-score involved
an in-frame fusion with exon 1–9 of the integral endoplasmic
reticulum membrane protein Ribosome-binding protein 1
(RRBP1) fused to exons 12–20 of the RET gene, harboring the
complete N-terminal kinase domain (Supplementary Fig. S5A;
Supplementary Fig. S5B). The N-terminal part of RRBP1 contains

the ribosome receptor lysine/proline domain as well as a coiled-
coil domain (CCD). Previously reported fusions of RET to CCDs
of 50 partners have been shown to initiate ligand-independent
activation of the kinase domain, suggesting a similar mechanism
in this fusion (30, 31). The RET gene is a known target for gene
fusions in hereditary and sporadic papillary thyroid cancers and
lung adenocarcinoma, and RET fusions have recently also been
described in advanced colorectal cancer (32–34).

In addition, we observed a fusion involving the kinase gene
PSKH2, which is highly expressed in the sample with the fusion,
but not at all in other tumor samples (Supplementary Table S2).
However, this fusion was not pursued further because we
observed several different splice variants with only partial open
reading frames.

ERAS activation through gene fusion in colon cancer
One particularly interesting novel fusion gene that resulted

from our outlier expression analysis contained the ERAS gene
(Fig. 3A and B). ERAS is a single-exon RAS-family member that is
expressed only in embryonic stem cells (35). The ERAS protein is
constitutively active and leads to enhanced PI3K signaling and
cellular transformation. Elevated ERAS expression has been
described in some gastric cancer samples and a role in tumori-
genesis has been implied (36).We observed that ERASwas highly
expressed in one tumor sample in our dataset and no detectable
expressionwas observed in the other tumor samples (Fig. 3B). The
high expression was driven by the fusion of ERAS with USP9X, a
highly expressed housekeeping gene (Fig. 3A; Supplementary Fig.
S6A). As opposed to canonical fusion genes, which often involve
formation of a novel chimeric protein sequence, theUSP9X-ERAS
fusion was formed by fusion of 50UTR sequences, which leads to
an exchange of the ERAS promoter with theUSP9X promoter and
not the formation of a novel chimeric protein sequence.

To gain insight in the formation of theUSP9X-ERAS fusion, we
analyzed structural variations using mate-pair sequencing. This
revealed that the fusion gene was caused at the genomic level by a
highly local chromothripsis event on chromosome X spanning
solely the region covered by USP9X and ERAS (Fig. 3C). The
chromothripsis involved at least 18 genomic breakpoint junctions
and led tomultiple copy number changes. We cloned theUSP9X-
ERAS fusion gene and expressed it in NIH-3T3 A14 cells. Analysis
of phosphorylated AKT showed that the USPX9-ERAS fusion can
activate AKT signaling (Fig. 2C). To get further support for a
potential role of ERAS expression in cancer development, we
assessed 521 RNA-seq datasets from colon cancer from the TCGA
consortium (Supplementary Table S3). This revealed several
colon cancer datasets showing detectablemRNA expression levels
ofERAS (Supplementary Fig. S6B), albeit not as high as the sample
with the USP9X-ERAS fusion described here. We also assessed
stomach cancer RNA-seq datasets from TCGA and observed one
sample with high expression of ERAS (Supplementary Fig. S6C).
Altogether, our data suggest that induction of ERAS expression
could be an alternative mode of promoting oncogenesis through
the AKT pathway in colon cancer.

Low frequency of known R-spondin fusions
Previous work reported a number of different fusion genes in

colon cancer most prominently those that involve genes that
interact with the WNT signaling pathway (11, 13). Fusions
involving the R-spondin genes RSPO2 and RSPO3 have been
reported in up to 10% of microsatellite stable (MSS) colorectal
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cancers in one study and appear mutually exclusive with muta-
tions in APC (11). To achieve maximal sensitivity for picking up
gene fusions, we evaluated our raw fusion gene calls for the
presence of both types of RSPO fusion genes, but could only
detect one EIF3E-RSPO2 fusion in an MSS sample (Supplemen-
tary Fig. S7A). To verify the sensitivity of our pipeline for picking
up RSPO2 and RSPO3 fusion genes, we reanalyzed the raw RNA-
seq FASTQ files as published recently using our STAR-based
pipeline (11). Our bioinformatics pipeline could detect all seven
published fusions. In addition, we measured normalized read
depth across the RSPO2 and RSPO3 genes, revealing a strong
upregulation of expression for samples with the corresponding R-
spondin fusion in the published tumor samples (Supplementary
Fig. S7B). We only observed elevated RSPO2 expression for the
one tumor sample in our cohort that showed the presence of an
EIF3E-RSPO2 fusion (Supplementary Fig. S7C), further support-
ing the low frequency of RSPO fusion genes in our dataset. We
conclude that R-spondin fusionsmay not be as frequently present
as previously indicated or that sampling bias, selection bias or
treatment regime may explain the observed discrepancies.

Oncogenic fusions are mutually exclusive with activating
mutations in KRAS, BRAF, and NRAS and restricted to
stage I and II tumors.

We used the GATK-RNAseq mutation calling pipeline to detect
indels and single-nucleotide changes in the RNA-seq data from all
278 tumor samples (stage I–III). The analysis was focused on

cancer genes that are of major relevance for colon cancer devel-
opment, including BRAF, KRAS, HRAS, NRAS, SMAD4, TP53,
APC, and PTEN. Passed variant calls in BRAF, KRAS, HRAS, and
NRAS were overlapped with known hotspot mutations from the
COSMIC database (37). For mutations in tumor suppressor
genes, we filtered the variants against existing databases of germ-
line variants to enrich for somatic variants. To estimate the
reliability of the RNA-based variant calls, we compared them
against paired tumor–normal exome sequencing data that were
generated for a subset of 44 samples. For BRAF, KRAS, HRAS, and
NRAS, all variants identified in the RNA-seq data were also found
in the exome data and false negatives were not observed. On the
basis of the RNA-seq variant calls, we identified 27 BRAF V600E
mutations in the entire cohort of 278 tumors, which is in linewith
the estimated frequency (10%) of thismutation type in colorectal
cancer (7). Our analysis of fusion genes showed that activation of
BRAFmay additionally be caused by fusion gene formation in an
additional 1.1% of colon cancers (Fig. 4).

Besides mutations in BRAF, we also found 103 tumors with a
hotspotmutation inKRAS (n¼99, 36%) andNRAS (n¼4, 1.4%).
In line with previous observations in other cancer types, we
observed that thepresence ofMAPK/ERK andPI3K/AKT activating
hotspot mutations in BRAF, KRAS, and NRAS are mutually
exclusive with the presence of oncogenic fusion genes in colon
cancer (P ¼ 0.018; refs. 15, 16). Finally, we noted that all
oncogenic fusions (including EIF3E-RSPO2) were found in sam-
ples with lymph node–negative stage I and II tumors (P¼ 0.047)
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and none of the samples showed a relapse in subsequent years
(median follow up 50.9 months). However, the latter results
should be interpreted with caution due to the small numbers.

Discussion
Our comprehensive analysis of RNA sequencing data from 278

well-characterized stage I to III colon cancers yielded a number of
known and novel fusion genes, which may have clinical implica-
tions. In the era of personalizedmedicine, tumors are increasingly
molecularly profiled, leading to better identification of patients
for specific treatments (38). For colorectal cancer, small gene
panels including BRAF, KRAS, and NRAS are most often used
since mutations in these genes are of clinical relevance (39). Our
analyses show that beyond these single gene tests, fusion genes
may also be important.

Three of the fusion genes identified in our cohort involve the
BRAF oncogene, which has previously been found in 4 (0.2%)
colon cancer samples out of 2,154 colorectal cancer samples
(15). Here we show that BRAF fusions occur in 1.1% of stage
I–III colon cancers. Two of the BRAF fusions (AGAP3-BRAF and
TRIM24-BRAF) consist of know fusion configurations, while
the DLG1-BRAF fusion is novel (15). The BRAF fusions activate
oncogenic signaling pathways in cells lines, indicating that they
form genuine oncogenes in colon cancer, in addition to known
oncogenic mutations in BRAF and KRAS. Although BRAF
fusions are relatively rare, they may be highly relevant drug
targets for the individual patient, similar as mutations in BRAF
(40–42).

An expression outlier analysis involving samples with and
without fusion genes, revealed EML4-NTRK3, RRBP1-RET, and
USPX9-ERAS fusion genes. The EML4-NTRK3 fusion gene has not
been described in colon cancer, butwas reported in a single case of
glioma (28).However separately, both theEML4 andNTRK3 gene
have been described as part of gene fusions in various types of
cancers (10). EML4 has mainly been described in conjunction

with the ALK kinase gene in non–small cell lung cancer occurring
in five different variants (43). All of these contain a CCD, which is
responsible for the dimerization and constitutive activation of its
acceptor gene product. This is consistent with our findings that the
EML4-NTRK3 fusion induces ERK1 and AKT phosphorylation,
while expression of a truncated version of NTRK3 or the entire
NTRK3 gene did not reveal such activity.

RET fusions have been described in up to one-third of papillary
thyroid cancers, in 2% of lung adenocarcinoma and recently in
0.2% of 3,117 advanced colorectal tumors (32–34). Tumors
carrying a RET fusion in that colorectal cancer cohort were pan-
negative for known driver mutations such as KRAS, BRAF,
PIK3CA, and EGFR, which was also true for the tumor carrying
the RRBP1-RET fusion in our cohort. RET kinase inhibitors might
form a promising treatment for colorectal cancers containing
oncogenic RET fusions (34).

An entirely novel fusion gene described in this work, comprises
the USP9X and ERAS genes. Although this fusion has only been
found in a single colon cancer sample in our study, its high
expression and in vitro activity demonstrate that expression of
ERAS has strong oncogenic capacity. We observed ERAS expres-
sion in colon cancer RNA-seq datasets fromTCGA, suggesting that
ERAS expression could be a recurrent oncogenic mechanism in
colon cancer, similarly as has been proposed for stomach cancer
(36).

R-spondin fusions were described as a recurrent genomic
aberration in colon cancer patients by Seshagiri and colleagues,
whom identified seven R-spondin fusions in a cohort of 74 colon
cancer patients (9.5%; ref. 11). In their cohort, tumors with an
R-spondin fusion did not contain a loss of function mutation in
APC or copy loss, except for one tumor, which contained a single
APC allele. Five out of seven R-spondin fusions occurred in a
tumorwith aKRASmutation (13.5%of allKRAS-mutant tumors)
and two in a tumor carrying a BRAF-mutation (40% of all BRAF-
mutant tumors). In our cohort of 278 patients we observed only
one R-spondin fusion, which was present in a tumor sample
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carrying a BRAF mutation (3.7% of all BRAF-mutated tumors).
However, the percentage of KRAS-mutated tumors differed sub-
stantially between the cohort of Seshagiri and our cohort (KRAS
50% vs. 35.6% P ¼ 0.024 and BRAF 6.8% vs. 9.7% P ¼ 0.43,
respectively). The presence of R-spondin fusions in a subset of
colorectal adenomas (traditional serrated adenoma) with fre-
quent KRASmutations has been recently shown (44). These data
suggest that differences between tumor cohorts may explain the
differences in the total number of identified R-spondin fusions.

Our findings are in line with new insights that broader and
systematic use of genetic profiling including DNA and RNA
sequencing is needed to maximize identification of patients that
could potentially benefit from targeted treatment (45). Sharing of
datasets including clinical characteristics and treatment outcome,
such as our dataset, may help to overcome sample size limitations
of individual studies and improve insight into the clinicalmerit of
specific infrequent genetic aberrations and fusion genes (46). We
found that oncogenic fusion genes were present in lymph node–
negative tumors, although this finding needs to be substantiated
in larger studies. Most of the previous studies reporting fusion
genes in colorectal cancer did not include clinical or histopath-
ologic characteristics, especially not stage.

In conclusion, we have created a large and comprehensive
catalog of fusion genes in a unique clinically well-defined pro-
spectively collected cohort of stage I to III primary colorectal
cancers and identified several known and novel fusion genes with
biological activity and possible prognostic value. We anticipate
that incorporating in vitro platforms such as (tumor)organoids
may facilitate testing of fusion genes for functional relevance,
differences in oncogenic capacity and response to antitumor
drugs (5).
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