82 research outputs found

    Leptin immunoexpression and innervation in rat interscapular brown adipose tissue of cold-acclimated rats: the effects of L-arginine and L-NAME.

    Get PDF
    The aim of the present study was to explore the effect of nitric oxide on leptin immunoexpression and innervation in interscapular brown adipose tissue (IBAT) of room- and cold- acclimated rats. Animals acclimated both to room-temperature (22 +/- 1 degrees C) and cold (4 +/- 1 degrees C) were treated with L-arginine, a substrate for nitric oxide synthases (NOSs), or N?-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NOSs, for 45 days. Leptin expression and localization in brown adipocytes was studied by immunohistochemistry, and innervation stained by the Bodian method. Strong leptin immunopositivity was observed in brown adipocytes cytoplasm of all room-acclimated groups, but nuclear leptin positivity was found only in L-NAME treated rats. In cold-acclimated control and L-NAME treated rats leptin immunopositivity was absent, while L-arginine treatment reversed the cold-induced suppression of leptin expression. Comparing to control, L-arginine, and even more L-NAME, at 22 +/- 1 degrees C induced greater innervation. In conclusion, L-arginine treatment changes leptin expression pattern on cold in rat IBAT

    Targeting the superoxide/nitric oxide ratio by L-arginine and SOD mimic in diabetic rat skin

    Get PDF
    AbstractSetting the correct ratio of superoxide anion (O2•-) and nitric oxide (•NO) radicals seems to be crucial in restoring disrupted redox signaling in diabetic skin and improvement of •NO physiological action for prevention and treatment of skin injuries in diabetes. In this study we examined the effects of L-arginine and manganese(II)-pentaazamacrocyclic superoxide dismutase (SOD) mimic – M40403 in diabetic rat skin. Following induction of diabetes by alloxan (blood glucose level ≥12 mMol l −1) non-diabetic and diabetic male Mill Hill hybrid hooded rats were divided into three subgroups: (i) control, and receiving: (ii) L-arginine, (iii) M40403. Treatment of diabetic animals started after diabetes induction and lasted for 7 days. Compared to control, lower cutaneous immuno-expression of endothelial NO synthase (eNOS), heme oxygenase 1 (HO1), manganese SOD (MnSOD) and glutathione peroxidase (GSH-Px), in parallel with increased NFE2-related factor 2 (Nrf2) and nitrotyrosine levels characterized diabeti..

    European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS).

    Get PDF
    The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed.The EU-ROS consortium (COST Action BM1203) was supported by the European Cooperation in Science and Technology (COST). The present overview represents the final Action dissemination summarizing the major achievements of COST Action BM1203 (EU-ROS) as well as research news and personal views of its members. Some authors were also supported by COST Actions BM1005 (ENOG) and BM1307 (PROTEOSTASIS), as well as funding from the European Commission FP7 and H2020 programmes, and several national funding agencies

    Heterogeneous Immunolocalisation of Zinc Transporters ZIP6, ZIP10 and ZIP14 in Human Normo- and Asthenozoospermic Spermatozoa

    No full text
    Zinc (in the form of Zn2+) is necessary for male fertility. Both Zn2+ quantity and its localisation have been detected in seminal plasma and ejaculated spermatozoa, suggesting its active uptake via zinc import transporters (ZIPs). Immunofluorescence was used to characterise the expression and localisation of three distinct types of ZIP transporters in ejaculated spermatozoa of normo- and asthenozoospermic sperm samples. ZIP6, ZIP10 and ZIP14 showed heterogeneous sperm cell expression and different compartmental distribution. In both types of sperm samples, ZIP6 and ZIP14 were predominantly localised in the sperm head, while ZIP10 was found along the sperm tail. Compartmental localisation of ZIPs in asthenozoospermia was not changed. However, regarding sub-compartmental localisation in sperm head regions, for ZIP6 asthenozoospermia only decreased its acorn/crescent-like pattern. In contrast, ZIP14 immunostaining was altered in favour of crescent-like, as opposed to acorn-like and acorn/crescent-like patterns. The specific ZIPs localisation may reflect their different roles in sperm cell integrity and motility and may change over time. This is the first report of their specific compartmental and sub-compartmental localisation in ejaculated human sperm cells. Further research will lead to a greater understanding of the roles of ZIPs in sperm cell biology, which could positively influence procedures for human infertility therapy

    Insulin Modulates the Bioenergetic and Thermogenic Capacity of Rat Brown Adipocytes In Vivo by Modulating Mitochondrial Mosaicism

    No full text
    The effects of insulin on the bioenergetic and thermogenic capacity of brown adipocyte mitochondria were investigated by focusing on key mitochondrial proteins. Two-month-old male Wistar rats were treated acutely or chronically with a low or high dose of insulin. Acute low insulin dose increased expression of all electron transport chain complexes and complex IV activity, whereas high dose increased complex II expression. Chronic low insulin dose decreased complex I and cyt c expression while increasing complex II and IV expression and complex IV activity. Chronic high insulin dose decreased complex II, III, cyt c, and increased complex IV expression. Uncoupling protein (UCP) 1 expression was decreased after acute high insulin but increased following chronic insulin treatment. ATP synthase expression was increased after acute and decreased after chronic insulin treatment. Only a high dose of insulin increased ATP synthase activity in acute and decreased it in chronic treatment. ATPase inhibitory factor protein expression was increased in all treated groups. Confocal microscopy showed that key mitochondrial proteins colocalize differently in different mitochondria within a single brown adipocyte, indicating mitochondrial mosaicism. These results suggest that insulin modulates the bioenergetic and thermogenic capacity of rat brown adipocytes in vivo by modulating mitochondrial mosaicism

    L-Arginine in Nutrition: Multiple Beneficial Effects in the Etiopathology of Diabetes

    Get PDF
    L-arginine is a nutritionally important amino acid that controls a wide spectrum of cellular functions and physiological processes, acting by itself or through its various metabolites. There are several factors that determine overall L-arginine homeostasis: dietary supplementation, endogenous de novo synthesis, whole-body protein turnover and its extensive metabolism. The destiny of L-arginine is determined by the complex network of enzymes and pathways differentially expressed according to health and disease status. Diabetes is characterized by reduced concentrations of L-arginine in plasma and many tissues, and failure of its metabolic effects. Emerging data suggest that oral supplementation of L-arginine exerts multiple beneficial effects on the complex etiological and pathophysiological basis of diabetes including: i) β-cell function and mass and ii) obesity and peripheral insulin resistance. This review emphasizes important aspects of L-arginine action which classifies this amino acid as a promising therapeutic approach in the treatment of diabetes

    Lactate Metabolism in Breast Cancer Microenvironment: Contribution Focused on Associated Adipose Tissue and Obesity

    No full text
    Metabolic reprogramming that favors high glycolytic flux with lactate production in normoxia is among cancer hallmarks. Lactate is an essential oncometabolite regulating cellular redox homeostasis, energy substrate partitioning, and intracellular signaling. Moreover, malignant phenotype’s chief characteristics are dependent on the interaction between cancer cells and their microenvironment. In breast cancer, mammary adipocytes represent an essential cellular component of the tumor milieu. We analyzed lactate concentration, lactate dehydrogenase (LDH) activity, and isozyme pattern, and LDHA/LDHB protein expression and tissue localization in paired biopsies of breast cancer tissue and cancer-associated adipose tissue in normal-weight and overweight/obese premenopausal women, compared to benign breast tumor tissue and adipose tissue in normal-weight and overweight/obese premenopausal women. We show that higher lactate concentration in cancer tissue is concomitant with a shift in isozyme pattern towards the “muscle-type” LDH and corresponding LDHA and LDHB protein expression changes. In contrast, significantly higher LDH activity in cancer-associated adipose tissue seems to be directed towards lactate oxidation. Moreover, localization patterns of LDH isoforms varied substantially across different areas of breast cancer tissue. Invasive front of the tumor showed cell-specific protein localization of LDHA in breast cancer cells and LDHB in cancer-associated adipocytes. The results suggest a specific, lactate-centric relationship between cancer tissue and cancer-associated adipose tissue and indicate how cancer-adipose tissue cross-talk may be influenced by obesity in premenopausal women
    corecore