148 research outputs found
Clinicopathologic features and histochemical analyses of proliferative activity and angiogenesis in small cell carcinoma of the esophagus
The original publication is available at www.springerlink.com.ArticleJOURNAL OF GASTROENTEROLOGY. 42(1-12): 932-938 (2007)journal articl
A new study of the and shell gap for Ti and V by the first high-precision MRTOF mass measurements at BigRIPS-SLOWRI
The atomic masses of Sc, Ti, and V have been
determined using the high-precision multi-reflection time-of-flight technique.
The radioisotopes have been produced at RIKEN's RIBF facility and delivered to
the novel designed gas cell and multi-reflection system (ZD MRTOF), which has
been recently commissioned downstream of the ZeroDegree spectrometer following
the BigRIPS separator. For Ti and V the mass uncertainties
have been reduced down to the order of , shedding new light
on the shell effect in Ti and V isotopes by the first high-precision
mass measurements of the critical species Ti and V. With the new
precision achieved, we reveal the non-existence of the empirical
two-neutron shell gaps for Ti and V, and the enhanced energy gap above the
occupied orbit is identified as a feature unique to Ca. We
perform new Monte Carlo shell model calculations including the
and orbits and compare the results with conventional shell model
calculations, which exclude the and the orbits. The
comparison indicates that the shell gap reduction in Ti is related to a partial
occupation of the higher orbitals for the outer two valence neutrons at
Shell evolution of N = 40 isotones towards 60Ca: First spectroscopy of 62Ti
Excited states in the N=40 isotone 62Ti were populated via the 63V(p,2p)62Ti reaction at ∼200 MeV/nucleon at the Radioactive Isotope Beam Factory and studied using γ-ray spectroscopy. The energies of the 21+→0gs+ and 41+→21+ transitions, observed here for the first time, indicate a deformed 62Ti ground state. These energies are increased compared to the neighboring 64Cr and 66Fe isotones, suggesting a small decrease of quadrupole collectivity. The present measurement is well reproduced by large-scale shell-model calculations based on effective interactions, while ab initio and beyond mean-field calculations do not yet reproduce our findings. The shell-model calculations for 62Ti show a dominant configuration with four neutrons excited across the N=40 gap. Likewise, they indicate that the N=40 island of inversion extends down to Z=20, disfavoring a possible doubly magic character of the elusive 60Ca
Mirror energy differences above the 0f7/2 shell: First γ-ray spectroscopy of the Tz = −2 nucleus 56Zn
Excited states in 56Zn were populated following one-neutron removal from a 57Zn beam impinging on a Be target at intermediate energies in an experiment conducted at the Radioactive Isotope Beam Factory at RIKEN. Three γ rays were observed and tentatively assigned to the 6+→4+→2+→0+ yrast sequence. This turns 56Zn into the heaviest Tz=−2 nucleus in which excited states are known. The excitation-energy differences between these levels and the isobaric analogue states in the Tz=+2 mirror partner, 56Fe, are compared with large-scale shell-model calculations considering the full pf valence space and various isospin-breaking contributions. This comparison, together with an analysis of the mirror energy differences in the A=58, Tz=±1 pair 58Zn and 58Ni, provides valuable information with respect to the size of the monopole radial and the isovector multipole isospin-breaking terms in the region above doubly-magic 56Ni
Spectroscopy of by two-nucleon removal from
International audienceLow-lying states of Cd98 have been populated by the two-nucleon removal reaction (In100,Cd98+γ) and studied using in-beam γ-ray spectroscopy at the Radioactive Isotope Beam Factory at RIKEN. Two new γ transitions were identified and assigned as decays from a previously unknown state. This state is suggested to be based on a π1g9/2−12p1/2−1 configuration with Jπ=5−. The present observation extends the systematics of the excitation energies of the first 5− state in N=50 isotones toward Sn100. The determined energy of the 5− state in Cd98 continues a smooth trend along the N=50 isotones. The systematics are compared with shell-model calculations in different model spaces. Good agreement is achieved when considering a model space consisting of the π(1f5/2, 2p3/2, 2p1/2, 1g9/2) orbitals. The calculations with a smaller model space omitting the orbitals below the Z=38 subshell could not reproduce the experimental energy difference between the ground and first 5− states in N=50 isotones, because proton excitations across Z=38 subshell yield a large amount of correlation energy that lowers the ground states
Diversity in the Architecture of ATLs, a Family of Plant Ubiquitin-Ligases, Leads to Recognition and Targeting of Substrates in Different Cellular Environments
Ubiquitin-ligases or E3s are components of the ubiquitin proteasome system (UPS) that coordinate the transfer of ubiquitin to the target protein. A major class of ubiquitin-ligases consists of RING-finger domain proteins that include the substrate recognition sequences in the same polypeptide; these are known as single-subunit RING finger E3s. We are studying a particular family of RING finger E3s, named ATL, that contain a transmembrane domain and the RING-H2 finger domain; none of the member of the family contains any other previously described domain. Although the study of a few members in A. thaliana and O. sativa has been reported, the role of this family in the life cycle of a plant is still vague. To provide tools to advance on the functional analysis of this family we have undertaken a phylogenetic analysis of ATLs in twenty-four plant genomes. ATLs were found in all the 24 plant species analyzed, in numbers ranging from 20–28 in two basal species to 162 in soybean. Analysis of ATLs arrayed in tandem indicates that sets of genes are expanding in a species-specific manner. To get insights into the domain architecture of ATLs we generated 75 pHMM LOGOs from 1815 ATLs, and unraveled potential protein-protein interaction regions by means of yeast two-hybrid assays. Several ATLs were found to interact with DSK2a/ubiquilin through a region at the amino-terminal end, suggesting that this is a widespread interaction that may assist in the mode of action of ATLs; the region was traced to a distinct sequence LOGO. Our analysis provides significant observations on the evolution and expansion of the ATL family in addition to information on the domain structure of this class of ubiquitin-ligases that may be involved in plant adaptation to environmental stress
Gamma-ray spectroscopy of exotic neutron-rich nuclei in the doubly magic 132Sn region
An experiment with the aim to obtain information on the excited states of neutron-rich nuclei with N∼82 was performed at RIBF/RIKEN as part of the HiCARI campaign. The method to identify nuclei on ion-by-ion basis, including charge-state identification, is presented. The Doppler correction technique was validated using the test case of 131In, based on the prompt πp3/2 → πp1/2 transition at 988 keV. Preliminary analysis of the 130Cd spectrum is also presented
Recommended from our members
Degradation aspects of water formation and transport in Proton Exchange Membrane Fuel Cell: A review
This review paper summarises the key aspects of Proton Exchange Membrane Fuel Cell (PEMFC) degradation that are associated with water formation, retention, accumulation, and transport mechanisms within the cell. Issues related to loss of active surface area of the catalyst, ionomer dissolution, membrane swelling, ice formation, corrosion, and contamination are also addressed and discussed. The impact of each of these water mechanisms on cell performance and durability was found to be different and to vary according to the design of the cell and its operating conditions. For example, the presence of liquid water within Membrane Electrode Assembly (MEA), as a result of water accumulation, can be detrimental if the operating temperature of the cell drops to sub-freezing. The volume expansion of liquid water due to ice formation can damage the morphology of different parts of the cell and may shorten its life-time. This can be more serious, for example, during the water transport mechanism where migration of Pt particles from the catalyst may take place after detachment from the carbon support. Furthermore, the effect of transport mechanism could be augmented if humid reactant gases containing impurities poison the membrane, leading to the same outcome as water retention or accumulation.
Overall, the impact of water mechanisms can be classified as aging or catastrophic. Aging has a long-term impact over the duration of the PEMFC life-time whereas in the catastrophic mechanism the impact is immediate. The conversion of cell residual water into ice at sub-freezing temperatures by the water retention/ accumulation mechanism and the access of poisoning contaminants through the water transport mechanism are considered to fall into the catastrophic category. The effect of water mechanisms on PEMFC degradation can be reduced or even eliminated by (a) using advanced materials for improving the electrical, chemical and mechanical stability of the cell components against deterioration, and (b) implementing effective strategies for water management in the cell
Spectroscopy of neutron-rich scandium isotopes
Within the SEASTAR III campaign at the Radioactive Isotope Beam Factory, at the RIKEN Nishina Center, neutron-rich isotopes in the vicinity of ⁵³K were produced from the fragmentation of the primary ⁷⁰Zn beam on a ⁹Be target. After nucleon knockout reactions on the secondary liquid hydrogen MINOS target the known γ rays of the neutron-rich ⁵⁵Sc isotope were observed (shown in this proceedings) and γ rays from ⁵⁷,⁵⁹Sc isotopes have been identified for the first time. The evolution of the occupied nucleon orbitals of these nuclei in the ground and excited state is investigated under the prism of the tensor force
- …