158 research outputs found
Genome-wide analysis of signaling networks regulating fatty acidâinduced gene expression and organelle biogenesis
Reversible phosphorylation is the most common posttranslational modification used in the regulation of cellular processes. This study of phosphatases and kinases required for peroxisome biogenesis is the first genome-wide analysis of phosphorylation events controlling organelle biogenesis. We evaluate signaling molecule deletion strains of the yeast Saccharomyces cerevisiae for presence of a green fluorescent protein chimera of peroxisomal thiolase, formation of peroxisomes, and peroxisome functionality. We find that distinct signaling networks involving glucose-mediated gene repression, derepression, oleate-mediated induction, and peroxisome formation promote stages of the biogenesis pathway. Additionally, separate classes of signaling proteins are responsible for the regulation of peroxisome number and size. These signaling networks specify the requirements of early and late events of peroxisome biogenesis. Among the numerous signaling proteins involved, Pho85p is exceptional, with functional involvements in both gene expression and peroxisome formation. Our study represents the first global study of signaling networks regulating the biogenesis of an organelle
The dynamics of Early Celtic consumption practices: a case study of the pottery from the Heuneburg
The Early Celtic site of the Heuneburg (Baden-Wuerttemberg, Germany) has long been understood as a hallmark of early urbanization in Central Europe. The rich collection of Mediterranean imports recovered from the settlement, the elite burials in its surroundings and the Mediterranean-inspired mudbrick fortification wall further point to the importance of intercultural connections with the Mediterranean as a crucial factor in the transformation of Early Iron Age societies. We describe a new facet of this process by studying the transformation of consumption practices, especially drinking habits, brought about by intercultural encounters from the late 7th to the 5th century BC through the analysis of organic remains in 133 ceramic vessels found at the Heuneburg using Organic Residue Analysis (ORA). During the Ha D1 phase, fermented beverages, including Mediterranean grape wine, were identified in and appear to have been consumed from local handmade ceramics. The latter were recovered from different status-related contexts within the Heuneburg, suggesting an early and well-established trade/exchange system of this Mediterranean product. This contrasts with the results obtained for the drinking and serving vessels from the Ha D3 phase that were studied. The consumption of fermented beverages (wine and especially bacteriofermented products) appears to have been concentrated on the plateau. The ORA analyses presented here seem to indicate that during this time, grape wine was consumed primarily from imported vessels, and more rarely from local prestigious fine wheel-made vessels. In addition to imported wine, we demonstrate the consumption of a wide variety of foodstuffs, such as animal fats (especially dairy products), millet, plant oils and waxy plants, fruit and beehive products as well as one or several other fermented beverage(s) that were probably locally produced. Through this diachronic study of vessel function from different intra-site contexts, we inform on changing and status-related practices of food processing and consumption
Essential versus accessory aspects of cell death: recommendations of the NCCD 2015
Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as âaccidental cell deathâ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. âRegulated cell deathâ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death
Myosin-driven peroxisome partitioning in S. cerevisiae
In Saccharomyces cerevisiae, the class V myosin motor Myo2p propels the movement of most organelles. We recently identified Inp2p as the peroxisome-specific receptor for Myo2p. In this study, we delineate the region of Myo2p devoted to binding peroxisomes. Using mutants of Myo2p specifically impaired in peroxisome binding, we dissect cell cycleâdependent and peroxisome partitioningâdependent mechanisms of Inp2p regulation. We find that although total Inp2p levels oscillate with the cell cycle, Inp2p levels on individual peroxisomes are controlled by peroxisome inheritance, as Inp2p aberrantly accumulates and decorates all peroxisomes in mother cells when peroxisome partitioning is abolished. We also find that Inp2p is a phosphoprotein whose level of phosphorylation is coupled to the cell cycle irrespective of peroxisome positioning in the cell. Our findings demonstrate that both organelle positioning and cell cycle progression control the levels of organelle-specific receptors for molecular motors to ultimately achieve an equidistribution of compartments between mother and daughter cells
The making of a mammalian peroxisome, version 2.0: mitochondria get into the mix
This is the author accepted manuscript. The final version is available from Nature Publishing Group via the DOI in this record.A recent report from the laboratory of Heidi McBride (McGill University) presents a role for mitochondria in the de novo biogenesis of peroxisomes in mammalian cells (1). Peroxisomes are essential organelles responsible for a wide variety of biochemical functions, from the generation of bile, to plasmalogen synthesis, reduction of peroxides, and the oxidation of very long chain fatty acids (2). Like mitochondria, peroxisomes proliferate primarily through growth and division of pre-existing peroxisomes (3-6). However, unlike mitochondria, peroxisomes do not fuse (5,7); further, and perhaps most
importantly, they can also be born de novo, a process thought to occur through the generation of pre-peroxisomal vesicles that originate from the endoplasmic reticulum (reviewed in (8,9). De novo peroxisome biogenesis has been extensively studies in yeast, with a major focus on the role of the ER in this process. Comprehensive studies in mammalian cells are, however, scarce (5,10-12). By exploiting patient cells lacking mature peroxisomes, Sugiura et al. (1) now assign a role to ER and mitochondria in de novo mammalian peroxisome biogenesis by showing that the formation of immature preperoxisomes occurs through the fusion of Pex3- / Pex14-containing mitochondriaderived vesicles with Pex16-containing ER-derived vesicles
ACBD5 and VAPB mediate membrane associations between peroxisomes and the ER
This is the final version of the article. Available from the publisher via the DOI in this record.Peroxisomes (POs) and the endoplasmic reticulum (ER) cooperate in cellular lipid metabolism and form tight structural
associations, which were first observed in ultrastructural studies decades ago. POâER associations have been suggested
to impact on a diverse number of physiological processes, including lipid metabolism, phospholipid exchange, metabolite
transport, signaling, and PO biogenesis. Despite their fundamental importance to cell metabolism, the mechanisms
by which regions of the ER become tethered to POs are unknown, in particular in mammalian cells. Here, we identify
the PO membrane protein acyl-coenzyme Aâbinding domain protein 5 (ACBD5) as a binding partner for the resident
ER protein vesicle-associated membrane protein-associated protein B (VAPB). We show that ACBD5âVAPB interaction
regulates POâER associations. Moreover, we demonstrate that loss of POâER association perturbs PO membrane expansion
and increases PO movement. Our findings reveal the first molecular mechanism for establishing POâER associations
in mammalian cells and report a new function for ACBD5 in POâER tethering.This work was supported by grants from the Biotechnology and Biological
Sciences Research Council (BB/K006231/1 and BB/
N01541X/1 to M. Schrader). J. Metz and M. Schrader are supported
by a Wellcome Trust Institutional Strategic Support Award
(WT097835MF and WT105618MA) and L.F. Godinho by a fellowship
from Fundação para a CiĂȘncia e a Tecnologia, Portugal (SFRH/
BPD/90084/2012). M. Schrader and A.S. Azadi are supported by
Marie Curie Initial Training Network action PerFuMe (316723).
M. Islinger is supported by MEAMEDMA Anschubförderung, Medical
Faculty Mannheim, University of Heidelberg
Neutrophil depletion reduces edema formation and tissue loss following traumatic brain injury in mice
Background: Brain edema as a result of secondary injury following traumatic brain injury (TBI) is a major clinical concern. Neutrophils are known to cause increased vascular permeability leading to edema formation in peripheral tissue, but their role in the pathology following TBI remains unclear. Methods: In this study we used controlled cortical impact (CCI) as a model for TBI and investigated the role of neutrophils in the response to injury. The outcome of mice that were depleted of neutrophils using an anti-Gr-1 antibody was compared to that in mice with intact neutrophil count. The effect of neutrophil depletion on blood-brain barrier function was assessed by Evan's blue dye extravasation, and analysis of brain water content was used as a measurement of brain edema formation (24 and 48 hours after CCI). Lesion volume was measured 7 and 14 days after CCI. Immunohistochemistry was used to assess cell death, using a marker for cleaved caspase-3 at 24 hours after injury, and microglial/macrophage activation 7 days after CCI. Data were analyzed using Mann-Whitney test for non-parametric data. Results: Neutrophil depletion did not significantly affect Evan's blue extravasation at any time-point after CCI. However, neutrophil-depleted mice exhibited a decreased water content both at 24 and 48 hours after CCI indicating reduced edema formation. Furthermore, brain tissue loss was attenuated in neutropenic mice at 7 and 14 days after injury. Additionally, these mice had a significantly reduced number of activated microglia/macrophages 7 days after CCI, and of cleaved caspase-3 positive cells 24 h after injury. Conclusion: Our results suggest that neutrophils are involved in the edema formation, but not the extravasation of large proteins, as well as contributing to cell death and tissue loss following TBI in mice
TNF-dependent regulation and activation of innate immune cells are essential for host protection against cerebral tuberculosis
BACKGROUND: Tuberculosis (TB) affects one third of the global population, and TB of the central nervous system (CNS-TB) is the most severe form of tuberculosis which often associates with high mortality. The pro-inflammatory cytokine tumour necrosis factor (TNF) plays a critical role in the initial and long-term host immune protection against Mycobacterium tuberculosis (M. tuberculosis) which involves the activation of innate immune cells and structure maintenance of granulomas. However, the contribution of TNF, in particular neuron-derived TNF, in the control of cerebral M. tuberculosis infection and its protective immune responses in the CNS were not clear. METHODS: We generated neuron-specific TNF-deficient (NsTNF / ) mice and compared outcomes of disease against TNF f/f control and global TNF / mice. Mycobacterial burden in brains, lungs and spleens were compared, and cerebral pathology and cellular contributions analysed by microscopy and flow cytometry after M. tuberculosis infection. Activation of innate immune cells was measured by flow cytometry and cell function assessed by cytokine and chemokine quantification using enzyme-linked immunosorbent assay (ELISA). RESULTS: Intracerebral M. tuberculosis infection of TNF / mice rendered animals highly susceptible, accompanied by uncontrolled bacilli replication and eventual mortality. In contrast, NsTNF / mice were resistant to infection and presented with a phenotype similar to that in TNF f/f control mice. Impaired immunity in TNF / mice was associated with altered cytokine and chemokine synthesis in the brain and characterised by a reduced number of activated innate immune cells. Brain pathology reflected enhanced inflammation dominated by neutrophil influx. CONCLUSION: Our data show that neuron-derived TNF has a limited role in immune responses, but overall TNF production is necessary for protective immunity against CNS-TB
- âŠ