274 research outputs found

    Does subclinical inflammation contribute to impairment of function of knee joints in aged individuals? High prevalence of ultrasound inflammatory findings

    Get PDF
    Objectives. To investigate the prevalence of knee US findings of inflammation and structural damage in aged individuals (≥60 years) of a long-term population-based cohort and to correlate these findings with demographic, clinical and laboratory parameters. Methods. Cross-sectional clinical and US investigation of both knee joints during the 2010 follow-up of the prospective population-based Bruneck Study. Demographic variables, physical activity, comorbidities, medications, pain, and functional scales related to the knee joints were recorded. US-assessed parameters were synovial hypertrophy, power Doppler signal, joint effusion, cartilage abnormalities, osteophytes, enthesopathy and bursitis. Statistics included univariate and multivariate regression analysis. Results. A total of 488 subjects (mean age 72.5 years; 53.5% females, 46.5% males) were examined by clinical assessment, and 433 of these underwent US examination of both knees. Both inflammatory and structural abnormalities were found in 296 (68.8%) subjects. Inflammatory abnormalities were significantly associated with age in years, male gender, diabetes and the presence of knee joint symptoms. In the multivariate analysis, age, male gender and knee swelling emerged as independent predictors of inflammation [odds ratio (OR) (95% CI) = 1.06 (1.03, 1.09), 2.55 (1.55, 4.21) and 5.92 (1.99, 17.58), respectively]. Conclusion. The present study showed a high prevalence of US inflammatory abnormalities in the knee joints of a normal aged population. These data suggest a substantial contribution of inflammation in progressive impairment of joint function with age

    Diabetes is an independent predictor for severe osteoarthritis: Results from a longitudinal cohort study

    Get PDF
    OBJECTIVE-To evaluate if type 2 diabetes is an independent risk predictor for severe oste-oarthritis (OA). RESEARCH DESIGN AND METHODS-Population-based cohort study with an age-and sex-stratified random sample of 927 men and women aged 40-80 years and followed over 20 years (1990-2010). RESULTS-Rates of arthroplasty (95% CI) were 17.7 (9.4-30.2) per 1,000 person-years in patients with type 2 diabetes and 5.3 (4.1-6.6) per 1,000 person-years in those without (P < 0.001). Type 2 diabetes emerged as an independent risk predictor for arthroplasty: hazard ratios (95% CI), 3.8 (2.1-6.8) (P < 0.001) in an unadjusted analysis and 2.1 (1.1-3.8) (P = 0.023) after adjustment for age, BMI, and other risk factors for OA. The probability of arthroplasty increased with disease duration of type 2 diabetes and applied to men and women, as well as subgroups according to age and BMI. Our findings were corroborated in cross-sectional evaluation by more severe clinical symptoms of OA and structural joint changes in subjects with type 2 diabetes compared with those without type 2 diabetes. CONCLUSIONS-Type 2 diabetes predicts the development of severe OA independent of age and BMI. Our findings strengthen the concept of a strong metabolic component in the pathogenesis of OA.\ua9 2013 by the American Diabetes Association

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Marine fish traits follow fast-slow continuum across oceans

    Get PDF
    A fundamental challenge in ecology is to understand why species are found where they are and predict where they are likely to occur in the future. Trait-based approaches may provide such understanding, because it is the traits and adaptations of species that determine which environments they can inhabit. It is therefore important to identify key traits that determine species distributions and investigate how these traits relate to the environment. Based on scientific bottom-trawl surveys of marine fish abundances and traits of >1,200 species, we investigate trait-environment relationships and project the trait composition of marine fish communities across the continental shelf seas of the Northern hemisphere. We show that traits related to growth, maturation and lifespan respond most strongly to the environment. This is reflected by a pronounced “fast-slow continuum” of fish life-histories, revealing that traits vary with temperature at large spatial scales, but also with depth and seasonality at more local scales. Our findings provide insight into the structure of marine fish communities and suggest that global warming will favour an expansion of fast-living species. Knowledge of the global and local drivers of trait distributions can thus be used to predict future responses of fish communities to environmental change.Postprint2,92

    Habitat properties are key drivers of Borrelia burgdorferi (s.l.) prevalence in Ixodes ricinus populations of deciduous forest fragments

    Get PDF
    Background: The tick Ixodes ricinus has considerable impact on the health of humans and other terrestrial animals because it transmits several tick-borne pathogens (TBPs) such as B. burgdorferi (sensu lato), which causes Lyme borreliosis (LB). Small forest patches of agricultural landscapes provide many ecosystem services and also the disservice of LB risk. Biotic interactions and environmental filtering shape tick host communities distinctively between specific regions of Europe, which makes evaluating the dilution effect hypothesis and its influence across various scales challenging. Latitude, macroclimate, landscape and habitat properties drive both hosts and ticks and are comparable metrics across Europe. Therefore, we instead assess these environmental drivers as indicators and determine their respective roles for the prevalence of B. burgdorferi in I. ricinus. Methods: We sampled I. ricinus and measured environmental properties of macroclimate, landscape and habitat quality of forest patches in agricultural landscapes along a European macroclimatic gradient. We used linear mixed models to determine significant drivers and their relative importance for nymphal and adult B. burgdorferi prevalence. We suggest a new prevalence index, which is pool-size independent. Results: During summer months, our prevalence index varied between 0 and 0.4 per forest patch, indicating a low to moderate disservice. Habitat properties exerted a fourfold larger influence on B. burgdorferi prevalence than macroclimate and landscape properties combined. Increasingly available ecotone habitat of focal forest patches diluted and edge density at landscape scale amplified B. burgdorferi prevalence. Indicators of habitat attractiveness for tick hosts (food resources and shelter) were the most important predictors within habitat patches. More diverse and abundant macro- and microhabitat had a diluting effect, as it presumably diversifies the niches for tick-hosts and decreases the probability of contact between ticks and their hosts and hence the transmission likelihood.[br/] Conclusions: Diluting effects of more diverse habitat patches would pose another reason to maintain or restore high biodiversity in forest patches of rural landscapes. We suggest classifying habitat patches by their regulating services as dilution and amplification habitat, which predominantly either decrease or increase B. burgdorferi prevalence at local and landscape scale and hence LB risk. Particular emphasis on promoting LB-diluting properties should be put on the management of those habitats that are frequently used by humans. In the light of these findings, climate change may be of little concern for LB risk at local scales, but this should be evaluated further

    Taxonomic and functional turnover are decoupled in European peat bogs

    Get PDF
    In peatland ecosystems, plant communities mediate a globally significant carbon store. The effects of global environmental change on plant assemblages are expected to be a factor in determining how ecosystem functions such as carbon uptake will respond. Using vegetation data from 56 Sphagnum-dominated peat bogs across Europe, we show that in these ecosystems plant species aggregate into two major clusters that are each defined by shared response to environmental conditions. Across environmental gradients, we find significant taxonomic turnover in both clusters. However, functional identity and functional redundancy of the community as a whole remain unchanged. This strongly suggests that in peat bogs, species turnover across environmental gradients is restricted to functionally similar species. Our results demonstrate that plant taxonomic and functional turnover are decoupled, which may allow these peat bogs to maintain ecosystem functioning when subject to future environmental change

    Global plant trait relationships extend to the climatic extremes of the tundra biome

    Get PDF
    The majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific relationships are confounded by trait variation within species. We test whether trait relationships extend to the cold extremes of life on Earth using the largest database of tundra plant traits yet compiled. We show that tundra plants demonstrate remarkably similar resource economic traits, but not size traits, compared to global distributions, and exhibit the same two dimensions of trait variation. Three quarters of trait variation occurs among species, mirroring global estimates of interspecific trait variation. Plant trait relationships are thus generalizable to the edge of global trait-space, informing prediction of plant community change in a warming world.Peer reviewe
    corecore