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ARTICLE

Taxonomic and functional turnover are decoupled
in European peat bogs
Bjorn J.M. Robroek 1,2, Vincent E.J. Jassey3, Richard J. Payne4,5, Magalí Martí6, Luca Bragazza7,8,9,

Albert Bleeker 10, Alexandre Buttler7,8, Simon J.M. Caporn4, Nancy B. Dise4,11, Jens Kattge 12,13,

Katarzyna Zając14, Bo H. Svensson6, Jasper van Ruijven15 & Jos T.A. Verhoeven1

In peatland ecosystems, plant communities mediate a globally significant carbon store. The

effects of global environmental change on plant assemblages are expected to be a factor in

determining how ecosystem functions such as carbon uptake will respond. Using vegetation

data from 56 Sphagnum-dominated peat bogs across Europe, we show that in these eco-

systems plant species aggregate into two major clusters that are each defined by shared

response to environmental conditions. Across environmental gradients, we find significant

taxonomic turnover in both clusters. However, functional identity and functional redundancy

of the community as a whole remain unchanged. This strongly suggests that in peat bogs,

species turnover across environmental gradients is restricted to functionally similar species.

Our results demonstrate that plant taxonomic and functional turnover are decoupled, which

may allow these peat bogs to maintain ecosystem functioning when subject to future

environmental change.
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P
lant community composition plays an important role in
regulating ecosystem processes1, 2 with mounting evidence
that high diversity safeguards ecosystem functioning in a

changing environment3. Anthropogenic drivers of environmental
change such as increased temperature, drought or nutrient
deposition can, however, erode diversity4–8 and alter the com-
position of plant communities9. Environmental change could
even lead to the emergence of novel assemblages10, 11. Changes in
species composition are often coupled to changes in functional
trait composition12. As functional trait composition is generally
assumed to be an important determinant of ecosystem services13,
shifts in plant community composition may impact ecosystem
service provision12, 14. The effects of environmental change on
diversity and community composition, however, largely depend
on the nature of biotic changes15, 16 and are ecosystem5

—and
scale—dependent17, and therefore difficult to generalise.

Environmental filtering has been mathematically demonstrated
to lead to species assemblages with groups of species that are
similar in traits, while traits between groups are divergent18, 19.
One possibility is that species composition and community—trait
composition could become uncoupled under rapid environmental
change20. A convergence in trait composition may lead to a
decline in functional diversity, which then is expected to nega-
tively affect ecosystem functioning21, 22. As such, studies which
aim to identify the effect of environmental change should not
only focus on plant taxonomic diversity, but should also consider

the functional composition of the plant communities23. This is
important as the magnitude of change in ecosystem functioning
may strongly depend on changes in the functional identity of
species in the community. If, for example, species share func-
tional traits (i.e., they are functionally redundant), the potential
consequences of species loss (or gain) for ecosystem processes are
likely to be minimal. If, on the other hand, species with unique
traits are lost from the community (or gained), important func-
tions of the ecosystem may be affected24, 25. As the ability of
ecosystems to maintain important functions depends on com-
munity characteristics such as species richness and functional
trait diversity, it is critical to improve our knowledge of how
environmental change relates to the taxonomic and trait com-
position of plant communities.

Northern peatlands are an important component of the global
carbon (C) cycle, as they represent a large but vulnerable pool of
soil carbon. Globally, peatlands contain over 500 billion tonnes of
C in just 3% of the Earth’s land surface26, which is 16% of all C in
terrestrial ecosystems27 and 67% of the carbon in the atmo-
sphere26. Peatland plant species composition is central to how
peatlands will respond to environmental change given the strong
links between plant community composition and ecosystem
processes such as C cycling28–31. While the composition of
peatland plant communities has long been described as remark-
ably stable32, 33, progressive changes in environmental conditions
may cause shifts in the relative abundance of species6. Combined
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Fig. 1 Geographic locations of the 56 European peat bogs. Distribution of the sampled peat bogs across Europe. Map image source: R package rworldmap

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01350-5

2 NATURE COMMUNICATIONS |8:  1161 |DOI: 10.1038/s41467-017-01350-5 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


with the direct effects of environmental change26, shifts in plant
community composition could amplify the effects of environ-
mental change on the peatland carbon balance34.

Here we present an analysis of the relationships between plant
species composition, functional trait composition, and a number
of major environmental drivers, such as temperature, precipita-
tion and atmospheric deposition, using data on plant species
composition from 56 ombrotrophic Sphagnum-dominated peat
bogs across Europe (Fig. 1). We provide evidence for general

patterns in species turnover (i.e., change in species composition,
or species replacement) along environmental gradients: peat bog
plant species are divided into two clusters with convergent
within–cluster, but divergent between–cluster responses along the
main environmental gradients. We conclude that non-random
species replacement of functionally identical species between both
networks conserves functional redundancy at the ecosystem level,
which may sustain the robustness of peat bog ecosystems to
anthropogenic drivers of environmental change.
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Fig. 2 Taxonomic turnover along environmental gradients. a Relationship between observed plant community compositional dissimilarity between site pairs

(species turnover or β-diversity) and their predicted environmental dissimilarity. The line represents the linear predictor of the regression equation from

generalized dissimilarity modelling (GDM, Methods section). b Reduction in deviance explained between full model and model with the environmental

variable omitted, i.e., an indicator of the proportion of deviance attributed to that variable. Variables tested were geographical distance, mean annual

temperature (MAT), seasonality in temperature (TS), mean annual precipitations (MAP), seasonality in precipitation (PS), ratio of precipitation and

temperature of the warmest quarter (P:Twarm), sulphate (SOx), and reduced (NHx) and oxidised (NOx) nitrogen atmospheric depositions. c Partial

regression fits (Model-fitted-I-splines) for variables significantly associated with plant community species turnover. Note that we also included

geographical distance for reference. The maximum height (inset number) reached by each I-spline curve indicates the relative importance of that variable

in explaining beta diversity, keeping all other variables constant (i.e., the partial response curve value). The shape of each function provides an indication of

how the rate of compositional turnover varies along the environmental gradient
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Results
Diversity indices and species turnover. Peatland plant species
richness was highly variable across the studied sites and ranged
from 9 species in northwest France (Glujeau, Fig. 1) to 32 species
in southwest Norway (Håmyrane, Fig. 1). Stepwise multiple
regression analysis identified four variables that together
explained 38% of the variability in species richness (F5,50= 7.8,
P≤ 0.001; stepwise multiple regression), of which latitude was the
most important (Supplementary Table 1). Species richness
increased with moisture index (P:Twarm) and decreased with
mean annual temperature. Diversity (Simpson) showed similar
patterns (F7,48= 2.6, P= 0.024; stepwise multiple regression),
except that it was negatively related to seasonality in precipitation
(PS) and total oxidised nitrogen deposition (Supplementary
Table 1).

Patterns in plant species turnover (β-diversity) along the
environmental gradients were analysed using generalised dissim-
ilarity modelling (GDM, ref. 35). Plant species turnover (i.e.,
community compositional dissimilarity) increased with environ-
mental dissimilarity (Fig. 2a). Geographic distance (i.e., latitude,
longitude) contributed little to species turnover (Fig. 2b, c).
Species turnover was significantly related to three climatic factors
(mean annual temperature, mean annual precipitation and, to a
lesser extent, seasonality in temperature) and two atmospheric
deposition variables (SOx and NHx) (Fig. 2c). GDM results are
consistent with alternative community-level models for the
identification of environmental variables linked to species turn-
over (Supplementary Fig. 1).

Plant species group in distinct clusters. We identified two major
clusters of peatland species with shared within-cluster responses
(Fig. 3a, Supplementary Fig. 2), but opposite between-cluster
responses to environmental conditions (Fig. 3b). Both clusters
were composed of common peat bog species such as Andromeda
polifolia, Drosera rotundifolia, Sphagnum fallax and S. rubellum
in Cluster I, and Calluna vulgaris, Eriophorum angustifolium,
Sphagnum cuspidatum and S. papillosum in Cluster II. Cluster I
also included some species with a more northern distribution
(e.g., Betula nana, Empetrum nigrum, Rubus chamaemorus, S.

balticum). For a detailed view and list of cluster-associated spe-
cies, see Fig. 3 and Supplementary Table 2.

Similar to species turnover (Fig. 2), cluster-specific species
responses were mainly related to mean annual temperature
(MAT), temperature seasonality (TS), and mean annual pre-
cipitation (MAP). Cluster I species decreased with higher
temperature and precipitation, but increased with greater
seasonality in temperature. Opposite responses were found for
cluster II species. Increasing atmospheric SOx and NHx deposi-
tion negatively affected cluster I species, but did not, or only
weakly, affect the probability of occurrence of cluster II species
(Supplementary Fig. 2). We did not observe significant residual
correlations between species (Supplementary Fig. 3), suggesting
that biotic interactions between species were of little importance
for species occurrence along the gradients.

Principal component analyses showed that the two clusters
overlapped in their functional composition for both the vascular
plant and bryophyte communities (Fig. 4a). However, some
differences were apparent between the two clusters (Supplemen-
tary Fig. 4). Cluster I vascular plant species were smaller,
produced less seeds and had higher specific leaf area than cluster
II species. Cluster I bryophytes were taller, with smaller spores,
narrower stem leaves, lower tissue N and higher tissue P than
cluster II bryophytes (Supplementary Fig. 4).

Functional turnover and redundancy. Functional turnover (i.e.,
the change in functional composition of the community) in the
vascular plant and bryophyte communities was weakly related to
taxonomic turnover (vascular plant: F1,3078= 0.71, r2= 0.01,
P= 0.41; bryophytes: F1,3078= 1.1, r2= 0.02, P= 0.29; Generalized
Linear Model; Fig. 4b). Indeed, in contrast to taxonomic com-
position (Fig. 1b), functional turnover in both communities was
low, and not affected by changing environmental conditions (i.e.,
environmental dissimilarity; Fig. 4c). Functional redundancy (FR,
i.e., the ability of the community to maintain its function, inferred
from multiple traits) of the vascular plant and bryophyte com-
munities remained stable over climatic and atmospheric deposi-
tion gradients (Fig. 5). In contrast, functional redundancy of the
two clusters changed along the environmental gradients (Fig. 5,
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Table 1). These patterns were similar for vascular plants and
bryophytes, except for mean annual precipitation (MAP), which
was only positively correlated with FR of vascular plants in cluster
II. Atmospheric deposition was not significantly related to FR
(Fig. 5, Table 1).

Impact of changed species assembly on functional redundancy.
Reshuffling the species (NULL1) or the relative abundance of co-
occurring species (NULL2) did not affect functional redundancy
(FR) of the vascular plant and bryophyte communities (SES≈ 0,
Fig. 6). Random assembly of species reduced FR of both vascular
plants and mosses (RANDOM). A similar reduction of FR was
observed with species loss from cluster I (LOSS1). The strongest
reduction in FR occurred when species from cluster II (LOSS2)
were lost. Reductions in FR were also observed when species of
one of the clusters were replaced by randomly selected species
from the other cluster (TURNOVER1 and TURNOVER2), and
was highest when cluster II species were replaced by random
species of cluster I (Fig. 6).

Discussion
Our results show clear patterns of species turnover in European
peat bog ecosystems across environmental gradients, in particular
those associated with climate. Our analyses demonstrate that the
plant species can be grouped into two clusters which show a high
degree of similarity in functional structure. Species within a
cluster are very similar in their response to environmental vari-
ables, whilst species from different clusters respond oppositely to
environmental variables. Despite significant species turnover, the
functional composition (i.e., cluster-weighted mean traits) of the
communities as a whole remained largely unaffected by changes
in environmental conditions. Taken together, our results
demonstrate that environmental filtering acts primarily on the
taxonomic composition of the peat bog vegetation. These findings
suggest that species turnover is associated with deterministic
replacement of functionally similar species. Such apparent
decoupling of taxonomic and functional turnover may be an
important mechanism underlying the capability of peat bog
ecosystems to maintain functioning under environmental change.

Responses of plants to environmental changes are often con-
sidered to be species-specific, yet we provide evidence for com-
mon patterns in species turnover along environmental gradients.

The effects of environmental factors on species richness were
minor, which is consistent with a recent comparison of a variety
of ecosystems where environment-species richness relationships
were least pronounced in peat bogs5. We did, however, observe
clear effects of environmental change on peat bog species com-
position. Temperature, precipitation and atmospheric deposition
(nitrogen and sulphate) were particularly important in explaining
patterns in species turnover. These patterns seem to result from
cluster-specific species responses to environmental conditions.
Moreover, peat bog plants aggregate into two co-occurrence
clusters with opposite responses to environmental factors, whilst
species from different clusters are subject to contrasting envir-
onmental filters, conforming with the theory of community
‘response rules’36. The existence of groups of species with distinct
responses along environmental gradients echoes theory that
natural communities tend to self-organise into groups of similar
species along niche axes18.

The key question is what are the consequences of the rela-
tionships between environmental factors and species turnover for
the functioning of the ecosystem37. In our study, taxonomic
turnover did not strongly relate to a turnover in the functional
composition inferred from the multiple traits used in this ana-
lysis. This finding may have been determined by our choice of
plant functional traits38, 39. Yet, random trait removal indicates
that trait identity and number of traits did not affect the values of
functional diversity and redundancy (Supplementary Fig. 5). The
use of averaged trait values derived from trait data bases may not
always accurately reflect trait values directly measured on-site40,
but has been shown to be effective for addressing questions of
trait-environment relationships41. Although we generalise from a
limited set of traits available for all the species in our commu-
nities, our findings suggest that whilst changing environmental
conditions alter the species composition of European Sphagnum-
dominated peat bogs, their functional composition remains rather
unaffected. Our data provide empirical evidence that, within the
studied environmental constraints in which peatland plants can
exist, peatland plant community taxonomic and functional
composition are decoupled.

Based on the traits used in our analysis, which are common
and widely used for vascular plants and for Sphagnummosses, net
community functional redundancy along the environmental
gradients remained remarkably unaffected. These results suggest
that species replacement along environmental gradients are non-
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random, and likely the result of a deterministic replacement of
species with similar traits. Results from our community re-
assembly simulations demonstrate that non-random species
replacement underlies the apparent robustness of functional
redundancy. Whilst it has been suggested that extreme environ-
mental conditions, as present in peatlands, may select for a set of
optimal trait values42, these simulations highlight that apparent
functional convergence of peatland species cannot merely explain
our findings. Cluster–specific species loss resulted in a decrease in

functional redundancy, suggesting that in this situation peat bogs
would be less resilient and resistant to climate change43. The
substitution of cluster-specific species by a random species from
the other cluster also led to an erosion in functional redundancy
at the community level. The results from our simulations are in
contrast with the observations in our data set, where functional
redundancy in European bogs along environmental gradients was
conserved, suggesting a non-random compensatory species
replacement in response to environmental change44. A corollary
of our findings is that the functional roles of species lost are taken
up by functionally identical species (‘look-a-likes’, ref. 18). The
fact that taxonomic and functional turnover in bog plant com-
munities are decoupled suggests strong trait-based community
assembly. Such decoupling may underlie the stability of func-
tional redundancy; a mechanism that may strengthen the ability
of peatlands to withstand environmental change.

Our analysis demonstrates the highly dynamic response of
European peat bog plant species composition to changes in
environmental conditions, with temperature and precipitation
being the most important drivers, followed by atmospheric N and
S deposition. We identified two plant species clusters, which were
remarkably similar in functional composition, but showed dis-
tinct and opposite responses to environmental change. Despite
relatively high taxonomic turnover, community level functional
redundancy was maintained along the environmental gradients
by opposing cluster-specific effects. Together these results suggest
that taxonomic and functional turnover of peat bog plant com-
munities along environmental gradients are decoupled. Impor-
tantly, a between-cluster replacement of functionally similar
species seems to underlie such decoupling, and may moderate the
effects of climate change on peat bog functioning. Our results
have important implications for peatland conservation. Given
environmental change is expected to continue or even intensify45,
European peat bog plant communities will change as species
migrate to areas where environmental conditions are suitable.
Our data suggest that peat bog functioning across the entire range
in environmental conditions can be maintained if species
migration is compensated by the arrival of functionally identical
species. To facilitate this functional replacement, the conservation
of the full European peat bog species pool, and investing in
improving the connectivity of European peat bogs, should have
highest priority.

Table 1 Relationships between functional redundancy and environment

Vascular plants Bryophytes

F-value P-value r F-value P-value r

MAT Plant community 1.3 0.26 −0.07 1.5 0.23 −0.09

Cluster I 19.3 ≤0.001 −0.51 10.9 ≤0.01 −0.41

Cluster II 11.4 ≤0.001 0.41 3.7 0.06 0.22

TS Plant community 0.0 0.83 0.13 6.2 ≤0.01 0.29

Cluster I 29.0 ≤0.001 0.59 34.6 ≤0.001 0.63

Cluster II 39.6 ≤0.001 −0.66 4.1 0.04 −0.24

MAP Plant community 0.2 0.68 0.12 1.8 0.18 −0.12

Cluster I 5.1 ≤0.05 −0.27 11.0 ≤0.001 −0.40

Cluster II 7.2 ≤0.01 0.33 0.1 0.74 0.14

SOx Plant community 0.7 0.39 −0.06 0.2 0.64 −0.12

Cluster I 2.2 0.14 −0.15 0.8 0.86 −0.13

Cluster II 0.2 0.63 −0.12 0.2 0.68 −0.13

NHx Plant community 0.3 0.59 −0.11 1.9 0.18 −0.13

Cluster I 2.6 0.11 −0.17 1.7 0.19 −0.12

Cluster II 0.7 0.39 −0.07 1.9 0.17 0.13

Summary of generalised linear models testing the relationships between functional redundancy of vascular plants and bryophytes, and bioclimatic variables: MAT mean annual temperature,

TS seasonality in temperature, MAP mean annual precipitations, SOx sulphate, and NHx nitrogen atmospheric depositions. Linear regressions were made for overall community, Cluster I species and

Cluster II species. Significant correlations are in bold

0 2 4

Null 1

Null 2

Random

Loss 1

Loss 2

Turnover 1

Turnover 2

Vascular plants

Bryophytes

Response of functional

redundancy (SES)

Fig. 6 Effects of modelled species assembly scenarios on functional

redundancy. The response of plant functional redundancy to seven different

assembly scenarios (see text for a description) as compared to the

observed functional redundancy, expressed as the deviation of the

standardized effect sizes (SES) from zero

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01350-5

6 NATURE COMMUNICATIONS |8:  1161 |DOI: 10.1038/s41467-017-01350-5 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


Methods
Plant community composition. In two consecutive summers (2010 and 2011), we
collected abundance data for all vascular plant and bryophyte species from five
randomly chosen hummocks and lawns (0.25 m2 quadrats; 10 in total) across 56
European Sphagnum-dominated peatlands (Fig. 1; map source: ref. 46). Vascular
plants and Sphagnum mosses were identified to the species level. Non-Sphagnum
bryophytes were identified to the family level. Lichens were recorded as one group.
Identification to these taxonomic levels allowed us to include a larger number of
sites in a more constrained time period. Following this taxonomic grouping, 59
taxa were included in the final data set (Supplementary Table 3). Species data were
averaged for each peatland, resulting in site-level mean abundance values. To
minimise the influence of rare species on further analyses, species occurring in less
than five peatlands were not included in the final data set (Supplementary Table 3).
Rarefaction curves (Supplementary Fig. 6a) indicated that our sampling adequately
captured the species richness of European Sphagnum-dominated peatlands.

Bioclimatic and atmospheric deposition data. Four bioclimatic variables were
extracted from the WorldClim database47: mean annual temperature, temperature
seasonality, mean annual precipitation, and precipitation seasonality, and averaged
over a 10 year (2000–2009) period. Moisture index was calculated as the ratio
between mean precipitation and mean temperature in the warmest quarter (P:
Twarm)

48. Atmospheric deposition data were produced using the EMEP (European
Monitoring and Evaluation Programme)-based IDEM (Integrated Deposition
Model) model49 and consisted of grid cell averages of total reduced (NHx) and
oxidised (NOy) nitrogen and sulphur (SOx) deposition. See Supplementary Table 1
for a full list and range values. Along the environmental gradients, spatial
dependency (spatial autocorrelation) of the plant communities was tested using
multiscale ordination analyses50. Species-environment relationships were not
spatially structured, except for sites in close proximity (Supplementary Fig. 6b).

Plant functional traits and community functional indices. To calculate func-
tional indices for the plant communities, we used trait data that were available for
all the species across European peatlands. For the vascular plant species, we used
data for a range of commonly measured and widely available traits from LEDA51:
specific leaf area, canopy height, leaf dry matter content, seed mass and seed
number. These data were complemented with data on life form and ecological
strategy from BiolFlor52 and Mycorrhizal association from MycoFlor53. For the
bryophyte communities, we compiled trait data that considered their role in
peatland function, as well as their capacity to compete. These traits included plant
length54, spore diameter and capsule diameter55, productivity56, tissue carbon,
nitrogen and phosphorus content, stem width, length and width of hyaline cells,
and length width of stem leaves57 (Supplementary Table 4).

For each peatland, we calculated the functional identity, i.e., community-
weighted mean (CWM) trait values, of the vascular plant and bryophyte
communities, by multiplying the relative abundance of each species (pi) by its trait
value (ti), then summing across the species present in the plant communities:
CWM=∑ pi × tij, for species i and trait j. Further, based on joint species
distribution modelling (see below) we calculated co-response cluster-specific
CWMs.

As a proxy for the resilience and resistance of peatland functions to
environmental change, we calculated functional redundancy (FR). FR is based on
the observation that some species perform similar roles in communities and
ecosystems, and may therefore be substituted with little impact on ecosystem
processes58. FR was defined as the difference between Simpson’s species diversity
(D) and functional diversity59 (FD): FR=D-FD, and was calculated for the
vascular plant and bryophyte communities separately. Functional diversity was
based on the degree of functional dissimilarity between plant communities, taking
differences in species abundance into account (Rao’s quadratic entropy: RaoQ). FD
was calculated using the ‘FD’ R package60. FR ranges from 0 to 1, where FR= 0 and
FR= 1 indicate complete divergence or convergence, respectively, in traits between
species. Functional turnover (functional β-diversity) between peatlands was then
calculated as the change in Rao’s quadratic entropy index, using the ‘betaQmult’
package in R61. To test the robustness of the values of our functional indices, and to
test whether these values are affected by the number and identity of traits used in
the calculations, we performed a random trait removal analysis. We compared
observed numbers of functional diversity and redundancy with those of a set of
scenarios where up to four (vascular plants) and eight (Sphagnum mosses) traits
were removed randomly from the trait data set (always leaving four traits)62.
Results from this analysis indicate that while variability increases with increased
numbers of traits removed the overall effect of such removal is negligible
(Supplementary Fig. 5).

Data analyses. As a first step in our data analysis, we used stepwise multiple
regressions to identify the main bioclimatic and atmospheric deposition variables
associated with patterns in species richness and diversity (Simpson’s). We also
analysed patterns in plant species turnover (β-diversity) along the environmental
gradients, using generalised dissimilarity modelling35 (GDM). GDM is widely used
to identify the main environmental drivers for species turnover, and to test the
independent significance of these drivers (using permutation tests). GDM is an

extension of Mantel correlation analysis using nonlinear regression35. The pre-
dictor matrix included the (non-correlated) bioclimatic and atmospheric deposi-
tion data, alongside the geographical distance (i.e., spatial distance; latitude,
longitude) between peat bogs. These geographical indices provide insight into the
amount of variation explained by the GDM that is attributable purely to geo-
graphical distance (i.e., space). For all variables the difference in deviance explained
by the full model and a reduced model with the variable omitted from the model
was calculated. If the difference exceeded 0.5%, we tested the significance of the
variable using Monte Carlo permutation35, 63. Permutation testing overcomes the
issue of data-dependence when using unfolded distance/dissimilarities, and thus,
reduces the inferential uncertainty of GDM outcomes. Only significant variables
were retained. From these significant variables, GDM calculates environmental
dissimilarity (i.e., the scaled combination of inter-site distances based on all geo-
graphical and environmental variables) and plant compositional dissimilarity
across sites, and returns I-spline coefficients highlighting the importance of each
individual variable for species turnover. Additionally, we determined the influence
of environmental dissimilarity on the functional dissimilarity between peatlands.
To test the robustness and repeatability of the GDM outcomes, we compared four
community-level models to GDM, covering a wide range of model-class types: (i)
constrained additive ordination (CAO), (ii) constrained quadratic ordination
(CQO), (iii) multiresponse multivariate adaptive regression splines (MMARS) and
(iv) multiresponse multivariate artificial neural network (MMANN)64. All models
were fitted with the same ten environmental variables used in GDM (i.e., we did
not perform a priori variable selection). We first used 30% of the data (randomly
selected) to tune parameter values, after which the best model was the used with
the full data64. From each model, we extracted the importance of each environ-
mental variable in explaining species composition. Then, model outcomes were
tested against GDM outputs using paired t-tests, and t-values converted into
standardized effect sizes (SES) to express the difference between GDM and com-
paring model outcomes65. We defined the level of significant differences of SES by
generating 1000 random model outputs (i.e., null importance of environmental
variables) and compared them to GDM outputs using a similar procedure as
before. All models were and analyses were run in R v.3.3.2, using codes and R
packages described in ref. 64.

The main environmental variables returned from GDM were then used in joint
species distribution modelling66, 67 (JSDM) to identify patterns in the response of
species. JSDM takes a hierarchical approach that combines species abundance and
similarities in species responses to environmental variables. As such it can be used
to assess species co-response to environmental variable. The model starts with a
species joint distribution analysis (i.e., species co-occurrence) and builds on inverse
prediction that quantifies how environmental variables affect a combined
multivariate output, e.g., the distribution of co-occurring species66, 67. The resulting
species correlations can then be decomposed into (i) correlations due to similar
environmental responses and (ii) residual correlations (correlations between
species that are not due to the environmental factors). JSDM was performed with
the Markov Chain Monte Carlo Bayesian modelling software JAGS, using the
R2jags package. We ran five chains of 106 iterations, with the first 15,000 discarded
as burn-in. The remaining samples were thinned by a factor 1000, meaning that we
retained 985 samples per chain for post-processing. We then built cluster diagrams
representing either species co-occurrences due to shared environmental responses
or residual species co-occurrences using the R package ‘network’68. We considered
species co-response to be robust when the correlation coefficient between species
due to shared environmental response (or residual correlation) exceeded 0.6.

The next steps of our analyses aimed at understanding the relationships
between species turnover and functional turnover. These analyses were performed
for the vascular plant and bryophyte communities separately, as the key functional
traits differ between these groups. To calculate species turnover we used Bray
−Curtis resemblance coefficients69, for comparability with GDM results. Functional
turnover was calculated using a decomposition of the Rao quadratic entropy (Rao
Q)61. The relationship between species composition and functional composition of
vascular plant and bryophytes was tested using generalized linear models. We also
tested the relationship between functional dissimilarity and environmental
dissimilarity and how the main environmental variables affected functional
redundancy (FR) of the vascular plant and bryophyte communities. The latter
analysis was performed for the whole community, as well as for the co-response
clusters separately.

Finally, the effects of directed and non-directed (i.e., random) species assembly,
cluster-specific species loss, and between-cluster species replacement on FR were
then tested using a series of simulations. We first used two null-models (ref. 70) to
compare FR-values obtained from 1000 null assemblages with FR from the original
species assemblages. The first null model (‘NULL1’—occurrence re-assembly)
comprises a random reshuffle of species occurrence whilst keeping the total site
and species abundances intact. The second null model (‘NULL2’—abundance re-
assembly) randomly assigns a new abundance value to only non-zero cells. NULL2
allows species abundance in each cell to change but preserves species occurrence
and total site and species abundance in the matrix. Next, we tested the effect of
species turnover on vascular plant and bryophyte community FR. First, we
re-assembled plant communities by random selection of species from the original
data set (RANDOM), calculated FR based on 1000 iterations, and compared FR
with observed FR for the vascular plant and bryophyte communities. The number
of species selected to build the RANDOM community equalled the average number
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of species in these communities across all peatland sites; seven for vascular plants,
five for bryophytes. Consequently, the RANDOM model did not preserve species
occurrences nor total site and species abundances. As a second scenario we tested
the effect of loss of species from either one of the previously described co-response
clusters (LOSS1, cluster I loss; LOSS2, cluster II loss). Finally, we assessed the effect
of between–cluster species replacement on the FR of the vascular plant and
bryophyte communities. In the first scenario (TURNOVER1, I for II replacement),
three species from cluster I were randomly replaced by the same number of species
from cluster II. In the second scenario (TURNOVER2, II for I replacement), three
species from cluster II were randomly replaced by the same number of species from
cluster I. Again, observed FR for the vascular plant and bryophyte communities
was compared with those obtained from 1000 matrices randomly re-assembled
matrices. Standardized effect size (SES: (FRobserved—FRsimulated)/SD_FRsimulated) was
then calculated and tested for departure from ‘zero’. We used base, vegan and codes
adapted from the FD and EcosimR R packages to perform these analyses.

Data availability. Plant community composition data, bioclimatic and atmo-
spheric deposition data, and plant trait data can be accessed through the Dryad
Digital Repository doi:10.5061/dryad.g1pk3. Plant trait data can further be accessed
through the data repositories described in the paper. All codes used for statistical
analyses are publically available through the R statistical environment. Specific
codes can be obtained from the authors.
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