51 research outputs found
Quantized Lattice Dynamic Effects on the Spin-Peierls Transition
The density matrix renormalization group method is used to investigate the
spin-Peierls transition for Heisenberg spins coupled to quantized phonons. We
use a phonon spectrum that interpolates between a gapped, dispersionless
(Einstein) limit to a gapless, dispersive (Debye) limit. A variety of
theoretical probes are used to determine the quantum phase transition,
including energy gap crossing, a finite size scaling analysis, bond order
auto-correlation functions, and bipartite quantum entanglement. All these
probes indicate that in the antiadiabatic phonon limit a quantum phase
transition of the Berezinskii-Kosterlitz-Thouless type is observed at a
non-zero spin-phonon coupling, . An extrapolation from the
Einstein limit to the Debye limit is accompanied by an increase in for a fixed optical () phonon gap. We therefore conclude that the
dimerized ground state is more unstable with respect to Debye phonons, with the
introduction of phonon dispersion renormalizing the effective spin-lattice
coupling for the Peierls-active mode. We also show that the staggered spin-spin
and phonon displacement order parameters are unreliable means of determining
the transition.Comment: To be published in Phys. Rev.
A High Flux Source of Cold Rubidium
We report the production of a continuous, slow, and cold beam of 87-Rb atoms
with an unprecedented flux of 3.2 x 10^12 atoms/s and a temperature of a few
milliKelvin. Hot atoms are emitted from a Rb candlestick atomic beam source and
transversely cooled and collimated by a 20 cm long atomic collimator section,
augmenting overall beam flux by a factor of 50. The atomic beam is then
decelerated and longitudinally cooled by Zeeman slowing
Adsorbate-Induced Segregation of Cobalt from PtCo Nanoparticles: Modeling Au Doping and Core AuCo Alloying for the Improvement of Fuel Cell Cathode Catalysts
Platinum, when used as a cathode material for the oxygen reduction reaction, suffers from high overpotential and possible dissolution, in addition to the scarcity of the metal and resulting cost. Although the introduction of cobalt has been reported to improve reaction kinetics and decrease the precious metal loading, surface segregation or complete leakage of Co atoms causes degradation of the membrane electrode assembly, and either of these scenarios of structural rearrangement eventually decreases catalytic power. Ternary PtCo alloys with noble metals could possibly maintain activity with a higher dissolution potential. First-principles-based theoretical methods are utilized to identify the critical factors affecting segregation in Pt–Co binary and Pt–Co–Au ternary nanoparticles in the presence of oxidizing species. With a decreasing share of Pt, surface segregation of Co atoms was already found to become thermodynamically viable in the PtCo systems at low oxygen concentrations, which is assigned to high charge transfer between species. While the introduction of gold as a dopant caused structural changes that favor segregation of Co, creation of CoAu alloy core is calculated to significantly suppress Co leakage through modification of the electronic properties. The theoretical framework of geometrically different ternary systems provides a new route for the rational design of oxygen reduction catalysts
Evaluation of the Influenza A Replicon for Transient Expression of Recombinant Proteins in Mammalian Cells
Recombinant protein expression in mammalian cells has become a very important technique over the last twenty years. It is mainly used for production of complex proteins for biopharmaceutical applications. Transient recombinant protein expression is a possible strategy to produce high quality material for preclinical trials within days. Viral replicon based expression systems have been established over the years and are ideal for transient protein expression. In this study we describe the evaluation of an influenza A replicon for the expression of recombinant proteins. We investigated transfection and expression levels in HEK-293 cells with EGFP and firefly luciferase as reporter proteins. Furthermore, we studied the influence of different influenza non-coding regions and temperature optima for protein expression as well. Additionally, we exploited the viral replication machinery for the expression of an antiviral protein, the human monoclonal anti-HIV-gp41 antibody 3D6. Finally we could demonstrate that the expression of a single secreted protein, an antibody light chain, by the influenza replicon, resulted in fivefold higher expression levels compared to the usually used CMV promoter based expression. We emphasize that the influenza A replicon system is feasible for high level expression of complex proteins in mammalian cells
Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors
Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe
Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders
Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe
Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020
Ice losses from the Greenland and Antarctic ice sheets have accelerated since the 1990s, accounting for a significant increase in the global mean sea level. Here, we present a new 29-year record of ice sheet mass balance from 1992 to 2020 from the Ice Sheet Mass Balance Inter-comparison Exercise (IMBIE). We compare and combine 50 independent estimates of ice sheet mass balance derived from satellite observations of temporal changes in ice sheet flow, in ice sheet volume, and in Earth's gravity field. Between 1992 and 2020, the ice sheets contributed 21.0±1.9g€¯mm to global mean sea level, with the rate of mass loss rising from 105g€¯Gtg€¯yr-1 between 1992 and 1996 to 372g€¯Gtg€¯yr-1 between 2016 and 2020. In Greenland, the rate of mass loss is 169±9g€¯Gtg€¯yr-1 between 1992 and 2020, but there are large inter-annual variations in mass balance, with mass loss ranging from 86g€¯Gtg€¯yr-1 in 2017 to 444g€¯Gtg€¯yr-1 in 2019 due to large variability in surface mass balance. In Antarctica, ice losses continue to be dominated by mass loss from West Antarctica (82±9g€¯Gtg€¯yr-1) and, to a lesser extent, from the Antarctic Peninsula (13±5g€¯Gtg€¯yr-1). East Antarctica remains close to a state of balance, with a small gain of 3±15g€¯Gtg€¯yr-1, but is the most uncertain component of Antarctica's mass balance. The dataset is publicly available at 10.5285/77B64C55-7166-4A06-9DEF-2E400398E452 (IMBIE Team, 2021)
Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes
Schizophrenia and bipolar disorder are two distinct diagnoses that share symptomology. Understanding the genetic factors contributing to the shared and disorder-specific symptoms will be crucial for improving diagnosis and treatment. In genetic data consisting of 53,555 cases (20,129 bipolar disorder [BD], 33,426 schizophrenia [SCZ]) and 54,065 controls, we identified 114 genome-wide significant loci implicating synaptic and neuronal pathways shared between disorders. Comparing SCZ to BD (23,585 SCZ, 15,270 BD) identified four genomic regions including one with disorder-independent causal variants and potassium ion response genes as contributing to differences in biology between the disorders. Polygenic risk score (PRS) analyses identified several significant correlations within case-only phenotypes including SCZ PRS with psychotic features and age of onset in BD. For the first time, we discover specific loci that distinguish between BD and SCZ and identify polygenic components underlying multiple symptom dimensions. These results point to the utility of genetics to inform symptomology and potential treatment
Development of Organ-Preserving Radiation Therapy in Gastric Marginal Zone Lymphoma
Gastric marginal zone lymphoma (gMZL) of mucosa-associated lymphoid tissue (MALT) may persist even after H. pylori eradication, or it can be primarily Helicobacter pylori (H. pylori) independent. For patients without the successful eradication of lymphoma, or with progressive disease, treatment options have historically included partial or total gastrectomy. Presently, in these instances, curative radiation therapy (RT) is the current standard of care. This review emphasizes the historically changing role of radiation therapy in gMZL, progressing from large-volume RT without surgery, to localized RT, on its own, as a curative organ-preserving treatment. This overview shows the substantial progress in radiation therapy during the recent two to three decades, from high-dose, large-field techniques to low-dose, localized target volumes based on advanced imaging, three-dimensional treatment planning, and advanced treatment delivery techniques. RT has evolved from very large extended field techniques (EF) with prophylactic treatment of the whole abdomen and the supradiaphragmatic lymph nodes, applying doses between 30 and 50 Gy, to involved-field RT (IF), to the current internationally recommended involved site radiation therapy (ISRT) with a radiation dose of 24–30 Gy in gMZL. Stage-adapted RT is a highly effective and safe treatment with excellent overall survival rates and very rare acute or late treatment-related toxicities, as shown not only in retrospective studies, but also in large prospective multicenter studies, such as those conducted by the German Study Group on Gastrointestinal Lymphoma (DSGL). Further de-escalation of the radiation treatments with low-dose 20 Gy, as well as ultra-low-dose 4 Gy radiation therapy, is under investigation within ongoing prospective clinical trials of the International Lymphoma Radiation Oncology Group (ILROG) and of the German Lymphoma Alliance (GLA)
- …