446 research outputs found

    An initial intercomparison of atmospheric and oceanic climatology for the ICE-5G and ICE-4G models of LGM paleotopography

    Get PDF
    This paper investigates the impact of the new ICE-5G paleotopography dataset for Last Glacial Maximum (LGM) conditions on a coupled model simulation of the thermal and dynamical state of the glacial atmosphere and on both land surface and sea surface conditions. The study is based upon coupled climate simulations performed with the ocean–atmosphere–sea ice model of intermediate-complexity Climate de Bilt-coupled large-scale ice–ocean (ECBilt-Clio) model. Four simulations focusing on the Last Glacial Maximum [21 000 calendar years before present (BP)] have been analyzed: a first simulation (LGM-4G) that employed the original ICE-4G ice sheet topography and albedo, and a second simulation (LGM-5G) that employed the newly constructed ice sheet topography, denoted ICE-5G, and its respective albedo. Intercomparison of the results obtained in these experiments demonstrates that the LGM-5G simulation delivers significantly enhanced cooling over Canada compared to the LGM-4G simulation whereas positive temperature anomalies are simulated over southern North America and the northern Atlantic. Moreover, introduction of the ICE-5G topography is shown to lead to a deceleration of the subtropical westerlies and to the development of an intensified ridge over North America, which has a profound effect upon the hydrological cycle. Additionally, two flat ice sheet experiments were carried out to investigate the impact of the ice sheet albedo on global climate. By comparing these experiments with the full LGM simulations, it becomes evident that the climate anomalies between LGM-5G and LGM-4G are mainly driven by changes of the earth’s topography

    Influence of orbital forcing on the seasonality and regionality of the Asian Summer monsoon precipitation

    No full text
    International audienceThe response of Asian monsoon precipitation to contrasting orbital parameters is simulated using the MRI-CGCM climate model. Results show that for the 125 kya B. P. experiment, a large continental heating due to obliquity forcing is apparent and accounts for the strengthened cross equatorial flow, stronger monsoon westerly over the Arabian Sea, and an enhanced precipitation over the Indian subcontinent. For the 115 kya B. P. experiment, while the monsoon westerly becomes weaker in the Arabian Sea, the overall strength of the monsoon westerly becomes stronger in the Bay of Bengal. This eastward extension of the monsoon westerly converges with the equatorial trade wind to give rise to an increased precipitation over the maritime continent and Indochina peninsula. Such increase in precipitation is accompanied with an earlier onset of the Asian monsoon, and an earlier warming of the tropical SST due to precessional forcing. It is concluded that while the obliquity forcing creates the baseline land-sea contrast which maintains the Asian monsoon westerly, when such forcing is comparably weaker, the Indian monsoon is diminished and the precessional forcing becomes more dominating to create a distinct earlier warming of the tropical SST which leads to an earlier onset of the maritime monsoon over the western Pacific. This study implies that even under weaker insolation forcing, the precessional signal may act to enhance certain regional precipitation and onset timing of the Asian monsoon

    Evolution of Sex chromosomes and gynoecium suppression in plants

    Get PDF
    White campion (Silene latifolia, Caryophyllaceae) is a classical model species for studies of sex determination and sex chromosome evolution in dioecious plants. Deletion mapping in this species revealed the presence of two Y-linked sex determining genes—the stamen promoting factor (SPF) gene and a gynoecium suppressing factor (GSF), which inspired the development of the classic ‘two genes’ model for dioecy evolution. We recently identified a Y-linked GSFY gene that encodes a CLAVATA3 homolog and causes gynoecium suppression in S. latifolia via WUSCHEL-CLAVATA feedback loop. Interestingly, the WUSCHEL homolog in S. latifolia (SlWUS1) is also sex-linked and both GSFY and SlWUS1 are located in the oldest part of the sex chromosomes, suggesting that selection to prevent recombination between these genes may have contributed to the origination of sex chromosomes in this species. The WUS-CLV3 pathway is also involved in the sexual differentiation of gynoecium development in kiwifruits and melon, indicating that this pathway plays central role in gynoecium suppression in dioecious and monoecious plants

    Progress in paleoclimate modeling

    Get PDF
    International audienceThis paper briefly surveys areas of paleoclimate modeling notable for recent progress. New ideas, including hypotheses giving a pivotal role to sea ice, have revitalized the low-order models used to simulate the time evolution of glacial cycles through the Pleistocene, a prohibitive length of time for comprehensive general circulation models (GCMs). In a recent breakthrough, however, GCMs have succeeded in simulating the onset of glaciations. This occurs at times (most recently, 115 kyr B.P.) when high northern latitudes are cold enough to maintain a snow cover and tropical latitudes are warm, enhancing the moisture source. More generally, the improvement in models has allowed simulations of key periods such as the Last Glacial Maximum and the mid-Holocene that compare more favorably and in more detail with paleoproxy data. These models now simulate ENSO cycles, and some of them have been shown to reproduce the reduction of ENSO activity observed in the early to middle Holocene. Modeling studies have demonstrated that the reduction is a response to the altered orbital configuration at that time. An urgent challenge for paleoclimate modeling is to explain and to simulate the abrupt changes observed during glacial epochs (i.e., Dansgaard-Oescher cycles, Heinrich events, and the Younger Dryas). Efforts have begun to simulate the last millennium. Over this time the forcing due to orbital variations is less important than the radiance changes due to volcanic eruptions and variations in solar output. Simulations of these natural variations test the models relied on for future climate change projections. They provide better estimates of the internal and naturally forced variability at centennial time scales, elucidating how unusual the recent global temperature trends are

    Monsoons climate change assessment

    Get PDF
    Monsoon rainfall has profound economic and societal impacts for more than two-thirds of the global population. Here we provide a review on past monsoon changes and their primary drivers, the projected future changes, and key physical processes, and discuss challenges of the present and future modeling and outlooks. Continued global warming and urbanization over the past century has already caused a significant rise in the intensity and frequency of extreme rainfall events in all monsoon regions (high confidence). Observed changes in the mean monsoon rainfall vary by region with significant decadal variations. Northern Hemisphere land monsoon rainfall as a whole declined from 1950 to 1980 and rebounded after the 1980s, due to the competing influences of internal climate variability and radiative forcing from greenhouse gases and aerosol forcing (high confidence); however, it remains a challenge to quantify their relative contributions. The CMIP6 models simulate better global monsoon intensity and precipitation over CMIP5 models, but common biases and large intermodal spreads persist. Nevertheless, there is high confidence that the frequency and intensity of monsoon extreme rainfall events will increase, alongside an increasing risk of drought over some regions. Also, land monsoon rainfall will increase in South Asia and East Asia (high confidence) and northern Africa (medium confidence), decrease in North America, and be unchanged in the Southern Hemisphere. Over the Asian–Australian monsoon region, the rainfall variability is projected to increase on daily to decadal scales. The rainy season will likely be lengthened in the Northern Hemisphere due to late retreat (especially over East Asia), but shortened in the Southern Hemisphere due to delayed onset

    Seawater isotope constraints on tropical hydrology during the Holocene

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 34 (2007): L13701, doi:10.1029/2007GL030017.Paleoceanographic data from the low latitude Pacific Ocean provides evidence of changes in the freshwater budget and redistribution of freshwater within the basin during the Holocene. Reconstructed Holocene seawater δ 18O changes compare favorably to differences predicted between climate simulations for the middle Holocene (MH) and for the pre-Industrial late Holocene (LH). The model simulations demonstrate that changes in the tropical hydrologic cycle affect the relationship between δ 18Osw and surface salinity, and allow, for the first time, quantitative estimates of western Pacific salinity change during the Holocene. The simulations suggest that during the MH, the mean salinity of the Pacific was higher because less water vapor was transported from the Atlantic Ocean and more was transported to the Indian Ocean. The salinity of the western Pacific was enhanced further due both to the greater advection of salt to the region by ocean currents and to an increase in continental precipitation at the expense of maritime precipitation, the latter a consequence of the stronger Asian summer monsoon.This work was supported by NSF grants ATM-0501241, ATM-0501351, and WHOI’s Ocean and Climate Change Institute
    corecore