63 research outputs found

    A Methodology for Near-Field Tsunami Inundation Forecasting: Application to the 2011 Tohoku Tsunami

    Get PDF
    Existing tsunami early warning systems in the world can give either one or a combination of estimated tsunami arrival times, heights, or qualitative tsunami forecasts before the tsunami hits near-field coastlines. A future tsunami early warning system should be able to provide a reliable near-field tsunami inundation forecast on high-resolution topography within a short time period. Here we describe a new methodology for near-field tsunami inundation forecasting. In this method, a precomputed tsunami inundation and precomputed tsunami waveform database is required. After information about a tsunami source is estimated, tsunami waveforms at nearshore points can be simulated in real time. A scenario that gives the most similar tsunami waveforms is selected as the site-specific best scenario and the tsunami inundation from that scenario is selected as the tsunami inundation forecast. To test the algorithm, tsunami inundation along the Sanriku Coast is forecasted by using source models for the 2011 Tohoku earthquake estimated from GPS, W phase, or offshore tsunami waveform data. The forecasting algorithm is capable of providing a tsunami inundation forecast that is similar to that obtained by numerical forward modeling but with remarkably smaller CPU time. The time required to forecast tsunami inundation in coastal sites from the Sendai Plain to Miyako City is approximately 3 min after information about the tsunami source is obtained. We found that the tsunami inundation forecasts from the 5 min GPS, 5 min W phase, 10 min W phase fault models, and 35 min tsunami source model are all reliable for tsunami early warning purposes and quantitatively match the observations well, although the latter model gives tsunami forecasts with highest overall accuracy. The required times to obtain tsunami forecast from the above four models are 8 min, 9 min, 14 min, and 39 min after the earthquake, respectively, or in other words 3 min after receiving the source model. This method can be useful in developing future tsunami forecasting systems with a capability of providing tsunami inundation forecasts for locations near the tsunami source area

    Resveratrol Protects against 2-Bromopropane-Induced Apoptosis and Disruption of Embryonic Development in Blastocysts

    Get PDF
    2-Bromopropane (2-BP) is used as an alternative to ozone-depleting cleaning solvents. Previously, we reported that 2-BP has cytotoxic effects on mouse blastocysts and is associated with defects in subsequent development. In the present work, we show that 2-BP induces apoptosis in the inner cell mass of mouse blastocysts, and inhibits cell proliferation. Both effects are suppressed by resveratrol, a grape-derived phytoalexin with known antioxidant and anti-inflammatory properties. 2-BP-treated blastocysts displayed lower levels of implantation (compared to controls) when plated on culture dishes in vitro, and a reduced ability to proceed to later stages of embryonic development. Pretreatment with resveratrol prevented 2-BP-induced disruption of embryonic development, both in vitro and in vivo. Further investigation of these processes revealed that 2-BP directly promotes ROS generation, loss of mitochondrial membrane potential (MMP), and activation of caspase-3, whereas resveratrol effectively blocks 2-BP-induced ROS production and the accompanying apoptotic biochemical changes. Our results collectively imply that 2-BP triggers the mitochondrion-dependent apoptotic pathway via ROS generation, and the antioxidant activity of resveratrol prevents 2-BP-induced toxicity

    Moment-closure approximations for discrete adaptive networks

    Get PDF
    Moment-closure approximations are an important tool in the analysis of the dynamics on both static and adaptive networks. Here, we provide a broad survey over different approximation schemes by applying each of them to the adaptive voter model. While already the simplest schemes provide reasonable qualitative results, even very complex and sophisticated approximations fail to capture the dynamics quantitatively. We then perform a detailed analysis that identifies the emergence of specific correlations as the reason for the failure of established approaches, before presenting a simple approximation scheme that works best in the parameter range where all other approaches fail. By combining a focused review of published results with new analysis and illustrations, we seek to build up an intuition regarding the situations when existing approaches work, when they fail, and how new approaches can be tailored to specific problems. © 2013 Elsevier B.V. All rights reserved
    • …
    corecore