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Abstract

N Moment-closure approximations are an important tool inahalysis of the dynamics on both static and adaptive nesvdikre,
we provide a broad survey overfidirent approximation schemes by applying each of them todhptave voter model. While
- already the simplest schemes provide reasonable quaditasults, even very complex and sophisticated approiomsafail to
capture the dynamics quantitatively. We then perform ailéetanalysis that identifies the emergence of specific taiioms as the
= ‘reason for the failure of established approaches, befesepting a simple approximation scheme that works beseipdahameter
range where all other approaches fail. By combining a fotueeiew of published results with new analysis and illustrss, we
seek to build up an intuition regarding the situations whesteg approaches work, when they fail, and how new apgreacan
o be tailored to specific problems.

O Keywords: adaptive network, moment-closure approximation, adaptter model, fragmentation transition, state correfetio

<E_ 1. INTRODUCTION For instance Tomita et a|:LB9] showed that a very simple adap

tive network model can be used to produce a huge variety of

== Complex networks have been ubiquitously used to mode}jifrerent self-organizing structures including a self-regtlicg
C problems from various disciplines! [1-6]. Treating a comple Turing machine.

system as a network, a set of discrete nodes and links, leads t \ypile specific models can be studied by agent-based sim-

a conceptual simplification that often allows subsequealyén  jation, the numerical performance scales badly with tha-co
= ‘ical insight that provides a deep understanding. plexity of update rules in the model, which makes exploratio
O). Formany questions the networks of interest are not statigf 5 wider range of models fiicult. In particular those models
g entities but change in time due to the dynamiésandonthe  \yhere the update of the state or neighborhood of nodes depend
o

network. In the dynamicsf networks, the network itself is g, the states of multiple other neighboring nodes pose gtron
) regarded as a dynamical system. Prominent examples are n@ymerical demands. Additionally the general bad data focal
«— -work growth models leading to specific topologies such alesca jty of network simulations precludesfieient parallelization.
| free [7] and small-world networks![8]. The dynamigs net-  This defines a strong need for analytical approaches, ardgba
C\J \works concerns dynamical processes such as epidemic spreggh recent successes, highlights the exploration of dynastic
« ing [€] that occur on a given fixed network, where each nodeyorks with complex update rules as an area where analytical
* carries a state which evolves through interactions withéigh-  \york could outpace and guide numerical exploration.

= 'bors. _ _ A direct microscopic description of dynamical networks-gen

.. I the dynamics on and of networks occur simultaneouslyera|ly constitutes a very high-dimensional dynamical eyst

g ‘and interdependently then the network topology coevoli#s w \whjje in some cases exact analytical results were neveshel
the states of the nodes and an adaptive network is forméd [18ptained (e.gl[38, 60, B1]), there are presently no appesc
[11]. Adaptive networks have been used to modeﬁ)_roblems Ghat are generally applicable. Much of the theoretical peeg
opinion formation|[12-18], epidemic spreadi(% 2710€V  therefore relies on the derivation of reasonably low-digienal
lution of cooperation[[26-40], synchronizatidn [41-45gun  coarse-grained approximations to the full microscopic etod
ronal activity [46154], collective motion [55, 56], caiitition For networks in which the node can only assume states from
of markets|[57], and particle fiision [58] among others. a (small) discrete set of possibilities, approximationesobs

Network models in general and adaptive networks in particxre well established. These schemes are deeply rootedsitghy

ular provide a powerful framework to model, analyze, antheve znd can be traced back to early work on the Ising mddel [62,
tually understand a wide range of self-organization pheswan  [53]. |n the networks literature there is presently a veléaoo

of different approximation schemes that build on similar princi-
, ples but take dferent information into account. In the follow-
*Corresponding author . .
Email addressguvenepks .mpg.de (G. Demirel) ing we refer to these approachesw@sment-closure approxima-
ICurrent address: Instituto de Fisica de Liquidos y SisteBiatogicos  tions The common idea in all of these approaches is to derive
(CCT-CONICET-La Plata, UNLP), Calle 59 Nro 789, 1900 La Bl#rgentina  evolution equations for the abundance of certain subgraphs
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the network. One starts with writing an evolution equation f which yield high-dimensional equation systems, but ssrpri
small subgraphs, such as single nodes, before writing imipgat  ingly do not significantly improve the performance of the ap-
for larger motifs — a process that is reminiscent of classima ~ proximation. Finally, in Sed.]5 we introduce a slightlyftdi-
ment expansions. The system of equations that is thus @otain ent expansion that captures very similar information butkso
generally depends on the abundance of other, typicallyetarg exactly in those parameter ranges where other approxingatio
subgraphs that are not captured, and thus needs to be closkdl. A summary and discussion in S€¢. 6 concludes the paper.
by estimating the abundance of these subgraphs — the actual

moment-closure approximation. 2. ADAPTIVE VOTER MODEL
Despite their underlying similarity moment-closure appro

imations proposed in the recent literaturéeli widely by the The voter model considers the competition of equally at-
type and number of the subgraphs they capture. Generabikspetractive and mutually exclusive opinions (say A and B) in a
ing, capturing the dynamics of more subgraphs, leads temett population of interacting agents. The agents are repregent
approximations at the cost of having to deal with a larger sysby nodes that have an internal binary state variable, itidiga
tem of equations (Seala@ @—67]). In practice some rethe opinion held by the corresponding agents. The state-is up
cently proposed schemes are successfully applied whigh ondated dynamically in time due to social interactions, odogr
capture one or two subgraphs, while others capture thossan@etween linked agents.

or millions of subgraphs. In the original non-adaptive voter model [77] the undertyin

For the analysis of adaptive networks, but also certaindypeinteraction topology is static. At each time step, a pairades
of dynamics on static networks, moment-closure approximaconnected by a link is selected. If they share the same state,
tions are presently the most commonly applied theoretozdl t  nothing happens. Otherwise, one of the two adopts the sther’
In adaptive networks they were used for instance to study epktate. This model has been explored in many subsequent works
demics|[15-24, 26, 27, 58-72], collective motibnl [55, 56h-€  and in particular the dependence of the time needed to reach
lution of cooperatiorl [36, 78, 74], and social opinion fotima  consensus on the underlying topology and details of thetepda
[3,[15/75( 76]. rule is well understood [78-B6].

Despite the abundance of examples there is so far little i
tuition on when particular approximation schemes work an
when they fail. This is most notable when considering thgpada .
tive SIS model[19] and the adaptive voter modlel [13—15].rBot link update —p=02) | P
of these models are adaptive network models of similar cor —p=05 m
plexity, and, depending on personal taste, either can be ct o3l : ] W
sidered as the most simple non-trivial adaptive networkwHo g u
ever, for the adaptive SIS model, the dynamics can be fdlighfu
captured already by simple approximation schernéls [19h wi n

i reverse nogie

more sophisticated approaches leading expectedly to laefurt m update

improvement[23,_7d, 71]. By contrast, for the adaptive wote 1/3 n

i

model, simple approximation schemes only provide unsetisf o i

1

tory results 5] and, as we show here, more sophisticat

s

approaches can actually perform worse. I
In the present paper, we aim tdfer an in-depth analy- 0 i i

sis of the performance and the failure offdient approxima- 0 A 1

tion schemes. For the purpose of illustration we focus on the

adaptive voter model as it provides a mathematically simpleFigure 1: (Color online) Parabola of active states. Showrfiae representative

yet chaIIenging example system. To this system we apply th&ajectories for each of three parameter values and thfesrefit update rules.

. imati h dinth t literat The long-term behavior depends on the value of the rewiraig p. If this
major approximation schemes proposed in the recent iiat . oyceeds a threshofd then the system quickly approaches a fragmented

Thereby, we build up an intuition of the advantages and disadstate in which the number of active link&] vanishes, while the density of a
vantages of the respective schemes. given opinion (say, A]) remains almost constant. ff is below the threshold

A second goal of the present paper is to provide researchef@wiring rate then the model approaches a parabola of ntiéesactive states

. he field with * ked les” f h . on which it remains for a long time while undergoing a randoalkwin the

ente_rlng .t e field with “worked examples” for the m.alor ap- opinion density that eventually leads to consensus. Paeasadl = 10° and
proximation schemes. We present these examples in strongly = 4.
abbreviated form in the main text, while providing all cdécu
tions in full detail in the appendices. The adaptive variants of the model[12-15] additionally in-

The paper is structured as follows: We start in $éc. 2 bycorporates a phenomenon known as social segregationjthe te
introducing the adaptive voter model. In SEE. 3 we study thalency of humans to link preferentially to others holdingitm
so-called homogeneous approximations, which result iarel opinions and distance themselves from those holding ofgposi
tively low dimensional equation systems. For these we egplo opinions. Starting from a suitable initial condition, a paf
in particular the &ect of the order of approximation. Then, nodes connected by a link is selected at each time step. If the
in Sec[4 we discuss filerent heterogeneous approximations,link is inert, connecting nodes in the same state, then nothing
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happens. Otherwise, the link &tiveand either (with proba- With probability p one of the nodes rewires the link and con-
bility p) one of the nodes rewires the link by detaching it from nects to a random node of same state. Otherwise, that istveith t
the other node and attaching to a random node that shares itesmplementary probability  p, one of the nodes adopts the
opinion, or one of the nodes copies the other node’s state.  other’s state. The respective node that retains the linklopts

In the spirit of discrete event simulations, using the Gille the other’s opinion is selected randomly with equal probabi
spie algorithm, the probabilitp can be thought of as arifec-  ity. The model is simulated according to these rules urttilegi
tive parameter capturing the rate of rewiring events, néimed  fragmentation occurs or an active state is reached where the
by the total rate of update events happening in the netwoek. Wdensity of active links remains approximately constant @re
therefore calp the rewiring rate. intermediate time scale.

Previous investigations [12-15]87] have shown that there i
a critical rewiring rate p*, at which the behavior of the model
changes qualitatively. Ip > p* then the system quickly ap-

proaches a fragmented state in which the network splits into  Fo classifying the dferent approximation schemes that have
two disconnected components that hold opinion A and B, repeen proposed, it is useful to distinguish between homagene
spectively. Since no active links survive the dynamicsZese  anq heterogeneous approximations. While all approximatio
in this fragmented state. By contrast,df< p* then the sys-  attempt to capture the dynamics of certain subgraphs, tifey d
tem remains active for a long time before eventually reaghin  fer in the way in which subgraphs are identified: Homogeneous
complete consensus on one of the opinions, which is |ikeWiS%pproximationéﬂﬂﬂ@?]j&@ 68| 76,80, 95] classify-s
an absorbing state (see Hig. 1). graphs according to states of the nodes and the interndbigypo
We note many variants of the adaptive voter model usingy the subgraph, whereas heterogeneous approximatioms add
different update rules have been investigated in the literaturgynally take the degree of the nodes in the subgraph into ac-
[12-16,75/ 88-93]. Apart from models with more than two countémﬁlﬁﬁ@mom.
states[12, 18, 94] and models with directed link5[16], thastn Homogeneous moment-closure approximations have been
prominent diference is the precise procedure for selecting th,seq in the past two decades to explain dynamics on static net
link that is updated and the direction of the update (e.gctwhi \yqorks @Léﬁ@@ﬂ and have more recently been ap-
node adopts the others opinion) on this link. One distinwess pyjied to adaptive models of epidemic spread@ Eg 7.7
betweendirect node updatgeverse node updatandlink up- [b . opinion formationlﬂﬁﬂﬁal' cooperation games
daterules. In the two node update rules, one selects a rando@,fﬂ, ], and collective motiof [55,/56].
node (node X) then a random neighbor (node Y). Selecting the  The central idea of homogeneous approximations is to cap-
nodes in this way creates a slight bias in the selected nedes Iy re the dynamics of the network by writing balance equation
garding thedegreei.e. the number of neighbors of the respec-for the density or abundance of a certain set of labeled sub-
tive nodes. Essentially, a node of higher degree has a Propjraphs (motifs), which are callatetwork momentsThe sys-
tionally higher probability of being found by following ank,  tem of diferential equations of network moments constitutes

and conversely the nodes found in this way have a higher dgne moment expansion which is then closed by the so-called
gree. Therefore, the average degree of node Y is higher thaoment-closure approximation.

the average degree of nodelX [2]. In models using direct node
update, X retains the linkin rewiring events and adopts ¥is 3 1. Moment Expansion

in vents, wher inm | ing reverse n . . .
update events, whereas odels using reverse nodeaupdat Writing the rate equation for a network moment necessitates

Y retains the link in rewiring events and copies X’s opinion . : T
. ; . calculating the rates of all possible processes that reseli
in update events. By contrast, in the link update rule one ran

domly selects a link, such that both selected nodes havstai-identher the fqrmaﬂon or destruction of the respect|_ve subigréjpr
e . . . the adaptive voter model, the moment expansion for smal sub
cal statistical properties. While the precise update rafettave

a significant impact on convergence times [14], the qualitat graphs (nodes and links) has already been developed in ¥azqu

: ) et al. [18] and independently for an identical model by Kimur
features of the models, described above remain unchanged (Sand HayakadeiS]:

3. HOMOGENEOUS APPROXIMATIONS

Fig.[D).
In the remainder of this paper we applhffdrent moment- d A - 0
closure approximations for capturing the dynamics of therno d_t[ ] =0
model. Specifically, we compare the ability of théfdient ap- d 1 1-p)
proaches to predict the density of active links in the stdienw d_t[AA] - E[AB] R (2[ABA - [AAB),
both opinions are equally abundant. d 1 (1-p)
The specific model that we consider throughout most of EI[BB] - E[AB] R (2[BAB - [ABH), (1)

the paper is as follows: We start with an Erdés-Renyi ran- . .
dompgrpaph withN nodes and. links, such that the mear}: de- where ] denotes the density of nodes with state X¥] de-

gree is¢ky = 2L/N. Initial opinions are assigned randomly notes the density of links between nodes of state X and Y, and

with equal probability. Therefore, the initial abundanoegy [)t(\:Zij_er;ﬁtes thte den(;sl_iy t?:ltrlplc_atﬁg:onstl]}u:e? k;(y a ggt?e _ct)f
Na = Ng = N/2. The network is then evolved byliak up- state vinthe centerandis wo neignbors ot state A an Wi

date rule: At each time step an active link is selected atoand X, Y, Z € {A,B}. The densities are normalized with respect to
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the number of nodebl, i.e. [Q] = No/N where we used2  considering the specific properties of the model. For irctan

as a placeholder for an arbitrary subgraph (e.g. A-node, ABsparse random graphs tend to be locally tree-like. If a model

link, AAB-triplet), such thatNg, is the total abundance of that does not have any particular update rules that activelyterea

subgraph in the network. small cycles, cyclic motifs are exceedingly rare and cas thu
The first equation in EqL{1) states that the density of nodegeneral be safely ignored.

of state A (and equivalently B) is conserved in the thermodv-

namic limit. This is peculiar to the voter model and is a « 1 ‘ = ,
rect consequence of symmetry in state adoption. In an up | ; agent—.base‘d simulation
step, the A-node adopts state B with probability-(p)/2 and  —2/3}f ® = & _ *numerical triplets 1
equivalently the B-node adopts state A with the same prébe ?,% link update
ity (1 — p)/2 leading to a vanishing net drift in the determinisi "~ 1/3} . 1
limit.

The second equation captures the change in the densi 0 ®
AA-links [AA]. If a B-node adopts state A on an AB-link (& 1
rate (1- p)[AB]/2) or an A-node rewires an AB-link and form i
a link to another A-node (at ratg{AB]/2), an AA-link is di- /32 5 & . ,
rectly created in the update. The total rate of this diregation M’ 05 5. reverse
of AA-Links is thus [AB] /2. Additionally, AA-links can be cre- <. 13 0 o node update |
ated indirectly. Consider a B-node that is connected to twc &
neighbors such that the three nodes form an ABA-triplet. vl ®
this B-node adopts state A, instead of one, two AA-links | 0
formed. While the rate of adoption events creating A-node 1
(1- p)[AB]/2the expected additional links created indirectly
such adoption events areABA/[AB]. Thus the total rate for gy 2/3[.j R 7o direct |
the indirect creation of AA-links is (£ p)[ABA]. Finally, AA- <, e D o node update
links can be destroyed indirectly if one of the A-nodes farqni 173} ¢ i
an AA-link adopts state B due to an interaction with another ?
node, which happens at rate{Jp)[AAB] /2. The rate equatior 00 0‘2 Oﬁ’f 0‘6 0‘8 1
for [BB] is obtained by interchanging and B in the second ' ' | '
equation.

The system of equationisl(1) is not closed as it contains theigure 2: (Color online) Validity of the moment expansion. heT quasi-
unknown) densities of larger subaraphs. Thisis a enetn@l stationary density AB] at [A] = [B] = 1/2 from agent-based simulations
(ert of mc))mem ex ansio?]s Fogr apS stem Wherge the updats% compared with AB] computed analytically from the moment expansion

y . p : . y p g. [@) for link and reverse node upddfe (Appendik D), arefAependix §
rules directly &ect subgraphs of diametdr(here, 1) the evo- for direct node update). In this plot, the moment-closurpragimation is
lution equation for a subgraph of diameteyenerally contains avoided and the analytical results use the triplet dess[#eAB] and [ABA
subgraphs of diameter up tb+ | due to indirect &ects measured in the numerical simulation. Parametdrs: 10°, (k) = 4.

For a more precise discussion it is useful to defineotider

of a network moment as the number of links contained in tht?Or the adaptive voter model, we solve for the densA@[in
corresponding subgraph. For instance, the momefiq K Y] the same equation at the ste:ady state, which yields

and [XY Z have order zero, one and two respectively. Accord-

ingly, one can define the order of a network model as the larges [AB] = (1- p)(AAB - 2[ABA]). 3)

order of subgraphs used in definition of the network update pr

cess, e.g. the voter model has order one since it involvedka li To assess the validity of the expansion independently cfibe

at most in the definition. sequent closure approximation we compute the expected num-
Let us denote the model order @g, the set of node states ber of active links for the respective triplet densiti@s\B] and

asS (S = {A B} in the voter model), and the set of network [ABA] observed in an agent-based simulation. The resulting

In order to test the validity of the moment expansion Eb. (1)

moments of ordeo as [Q], e.9. 0] = {[X] : X € S}, [Q4] = diagram, Fig[R, shows an almost perfect match for the active
{{XY]: X, Y e S},and 2] = {[XYZ: X,Y,Z € S}. Then, link density [AB] with the numerical results for the model with
d link update. The match for node update rules is less good, in
d—t[a)o] = fuo ([Qal, [Q], -, [Qoroy]) s (2)  particular for low rewiring rates, but becomes better as pe a

proach the transition point where the active links vanisithe
where o] € [Qo] and f,, is aR-valued function that is mo- network fragments.
ment specific. Let us discuss the bad performance of the expansion for the
We note that there are variants of moment expansions thatode update rules in a little more detail. The moment exjpansi
differ in the definition of the se®,. One intuitive approach can only be exactly valid in the thermodynamic limit. Howeve
is to include all possible subgraphs that contaiinks. How-  the link update model shows that for the network sizes censid
ever, more appropriate basis of subgraphs can be constiugcte ered here finite sizeffects can be neglected. The only other

4



explanation is that the simulated system contains some-corr  Similarly,
lations that are not picked up by the moment expansion. Be-

. 2[BBJ[AB 2[BBJ?
cause the féect of long-ranged correlations should have been [ABB ~ KB% and BBB| ~ g [ 5 ] .5
captured. However, in the expansion we are implicitly assum [B] (Bl
ing that the triplets are statistically distributed wittihe net-
work, which is approximately true for the link update rule at 1 ‘ ——
.. . agent-based simulation

low rewiring rates. By contrast in the node update rules tas b * link update
can induce additional correlations. Thifext is counteracted ___homogeneous 1st order
by the rewiring as this mixes the network and thus improves th approximation

rediction _._ homogeneous 2nd order
p " . approximation- clos. alter. 1

As a side-note, let us remark that the beneficitééa of 2/3f 1

_ _homogeneous 2nd order
approximation— clos. alter. 2

rewiring is a general property. In a given static network edod

a specific topological feature, such as a node of particudgr h o
degree or a densely clustered region, might exist that ditee <
system constantly in a specific direction. In an adaptive/agt

such topological features may emerge for a limited time teefo 1/3f
being destroyed by topological dynamics. In the long run the

effect of unlikely local configurations often averages out. In

this sense adaptive networks are ensembles of themseldes ai

can thus often be very well approximated unless correlation

arise systematically that are not captured by the apprdioma 0
scheme used. 0

3.2. Moment-Closure Approximation _ _ _

In the previous section we have seen that moment expari9ure 3: (Color online) Performance of the first and secordér homoge-
. . . . neous moment-closure approximations. As a function of éwdring ratep,
sions lead to an infinite hierarchy of equations. So far WB-tru e density of active linksAB] from agent-based simulations is compared
cated this expansion after the first order and used numerstal  with results of the pair approximation, and twdfdrent triplet approximations
ues for the densities of larger subgraphs. Because we digneral(A) - BAA = 05[AAA[AAB/[AA] and [(A) - BAA = 05[AAB?/[AB]

develop the expansion to obtain an analytical solution, are ¢ (dashed, dash-dotted, respectively). Paramelés:10”, (k) = 4.

not rely on numerics, but must estimate the density of large The parametekg that appears in these equations is gen-
subgraphs using a suitable approximation, knowmasnent-  erally not known because the degree distribution is reghape
closure approximations by the rewiring process (although séel[16] for an exception)

For illustration let us approximate the second ordermomen(c;o\,eming,(B are two counteractingfiects, on the one hand
[ABA in terms of the zeroth order momerB][and the first e know that the degree of a node that is reached via a link
order momentAB] by the so-callecpair approximation An s on average greater than the mean degree and on the other
ABA-triplet comprises two adjacent AB-links sharing a com- hand we have to subtract 1 from this increased degree, becaus
mon B-node. Therefore we first note that the density of singleye are only interested in the number of additional links. On
AB-links is [AB]. Next, we compute the probability that an grdas-Renyi random graphs, thedteets cancel exactly such
additionalA-node is connected to the B-node in this link. thatkg = 1. Although the value ofg can be significantly higher

Since we reached the B-node by following a link, we canjn networks with broad degree distributions, assumigg: 1
expect it to have a higher-than-average degree. Spedffittedl  h3s yielded good results for models with a fairly wide degree
degree of the B-node in a randomly selected AB-link followsistribution [19].

the distributionQ? = kP?/([B](ke)), whereP? denotes the Substituting Eqs[{4.15) into Ed(1) and using the random-
probability that a randomly selected B-node has de§raed  graph approximatiorg = 1 yields

(kg) is the mean degree of a randomly selected B-node. The d

expected number afdditionallinks of a B-node in an AB-link a[A] = 0,

is thus(gs) = Y (k — 1)QE, which is also known as the mean

excess degreel[2] (of B-r%(odes). E[AA] - }[AB] + 1-p) ([AB]Z _ Z[AA][AB]),
A key assumption that we have to make at this point is that dt 2 2 [B] [A]

the AB-links are uncorrelated, except for theeet of the node E[BB] B }[AB] . 1-p) ([AB]Z ~ 2[BB][AB])

degree described above. Using this assumption, each of the ¢t - 2 2 [A] [B] )

additional links of the B-node is an AB-link with probabjlit (6)

[AB]/([AB] + 2[BB]). Using [AB] + 2[BB] = (kg)[B], we find o
In order to test the performance of approximation we solve

2[ABA = kg [?BB]]Z’ @ Eq. (8) for the stationary density of active links
KA-p) -1
wherexg = (qg)/(Kg). [AB] = (W) [Al(1-[A]), (7)



which nicely captures the parabola shape of the states,rsimow Let us first consider assumption a), which we call truncation
Fig.[D. Furthermore, considering the tip of the parabdlp+ assumption. Approximating any system by a lower-dimeradion

1/2, we find system is only possible if there is a time scale separatien be
[AB] = l-p -1 ®) tween slow low-order moments and fast higher-order moments
4(1-p) ’ [@]. The system then quickly converges to the slow mani-

A comparison of the Eq[18) with numerical results is shownfold, characterized by the slow variables orlly [104]. There
in Fig.[@. The comparison shows that the approximation Calotore, dynam|c_s of moments higher than some order are erklave
tures qualitative features of the model. The highest densit 0 the dynamics of lower ones and they can be expressed as
active links is found fop = 0, then asp is increased the den- algebraic funf:tions of .Iow order slow moments. In our mo-
sity of active links declines and finally reaches zero at aefini Ment expansion the higher-order moments are dispropertion
rewiring ratep’. However, the quantitative correspondence be-&tely more likely to be fiected by updates. For instance a sin-
tween the analytical and numerical results is very bad. tn pa 9l€ rewiring event fiects one link, but approximately@(k))*
ticular the pair approximation significantly overestinsatbe triplets. While a more detailed investigation of this pairuld

rewiring rate at which fragmentation occurs. probably be fruitful, we conclude that assumption a) is prob
bly not the main source of error in the present approximation
0.3 L e B scheme.
—=—agent-based sim. 5
- - poissonian dist. p=0 — [ABA]
---[ABB]

i

pair

[XIX]

) . . o Figure 5: (Color online) Test of the pair approximation. ®hais the ratio
Figure 4: (Color online) Validity of the random-graph apgiration. Com- between the observed number of triplets in agent-basedations and the ex-
parison of the degree distribution of B-nod®§, in agent-based simulations pected number based on the observed number of nodes and Titles pair
with a Poisson distributio = e~ (k)*/ki. The comparison shows that the  approximation is approximately valid for ABB triplets, wisas the error in the
degree distribution of the adaptive network remains alrerattly Poissonian,  approximation of ABA triplets diverges as the system apghea the fragmen-
and hence the random-graph approximation is valid to vendgapproxima-  tation pointp*. The sketch in the inset explains this failure. Close torfrag-
tion. ParametersN = 10, (k) = 4. tation many active links are created by very few nodes thatirathe wrong

cluster. This induces a very high correlation between adiiks which is not
Let us investigate the reason of the bad performance of theapture by the pair approximation. Parametéts: 10°, (k) = 4.

approximation in more detail. We have already argued above
that the random-graph approximatian= 1 is probably harm- Accepting that the actual dynamical densities of higheieor
less. This can be confirmed by comparing the degree distribunoments can be replaced by their static expectation values,
tion observed in simulations to the Poissonian distriouttd  leaves us with the task of capturing the corresponding slow
a random graph (Fidl]4). The comparison shows that the dewanifolds in a suitable functional form. Above, we derived
gree distribution stays very close to the Poissonian 8igion.  such a functional form based on the assumption b), the absenc
For such a close match the random-graph approximation is abf longer-ranged correlations. We can test this assumiayon
most exact and cannot be the source of the major discrepancpmparing the numbers of triplets observed in simulati@ans t
observed in the results. the expected values for uncorrelated active links. Thispam
Accepting the validity of the moment expansion and rul-ison, shown in Fig.]5, indicates that the expectation for ABB
ing out the random-graph approximation as a source of erroriplets is almost correct, while the error in the estimatif
leaves us with only two further sources of errors: We have asABA-triplets diverges as the system approaches the fratamen
sumed that a) the actual density of large motifs can be reglac tion point.

with its expectation value and b) that correlations betwaen An intuitive explanation of the failure of the pair-apprmation
tive links can be neglected when computing this expectatioiis shown in the inset of Figl]5. The sketch shows a represen-
value. tation of a typical configuration close to fragmentation.eTh



1 ‘ T -|I0_|7] in statistical physics. When the density of cyides
non-negligible, i.e. when the network has high clusteriheg,
pair approximation is extended in order to account for thaicy
motifs, corresponding to Bethe-Kirkwood type approxiroas
[67,/108]. Approximations that make the closure at higher or
ders are analogous to high order Kikuchi approximation8§J.10
Increasing the order of the approximation is expected to
yield better resultsmﬂEbS], but convergence to the cor
rect solution is not guaranteed to be fast or uniform. More-
over, increasing the order of the expansion creates a nuofiber
technical problems. First, the number of subgraphs ineeas
very quickly with the order of the expansion. For instance, a
third-order approximation to the adaptive voter modeladre
N consists of 29 rate equations and 48 estimated fourth-arder
~® agent-based simulation ments. Second, uniquely enumerating the subgraphs and com-
~ ¢~ pair approximation puting the correct prefactors that arise from symmetrigsoin
1.0E-11 e — completely trivial. Third, and perhaps most interestintigre

0 m(A—neighbors) 10 are diferent mutually inconsistent possibilities for closing ex-

pansions beyond the pair level (§ee Append|x C). A criterion

Figure 6: (Color online) Emergence of ABA-correlations sgoto fragmen- on which closure should be used is an important open mathe-

tation. Shown isTp,, the fraction of B-nodes withm A-neighbors. Av matical problem.

erages from agent-based simulations are compared withxjhecttion of . .
an Erd6s-Renyi random graph without any second neighboeletions (see In the context of the adaptive voter model a higher order

[Appendix ). Close to the fragmentation transition, the edghbor distribu-  closure has been used by Kimura and Hayakawa [15], and for
tion of ABA-triplets deviate from the pair approximationaf@metersN = 10°, the specific model studied here twdidient higher order clo-
0 =4. sures are derived [n Appendix| B and Appendik C.

The performance of higher level-closures is shown in[Hig. 3.

nodes have sorted into two large clusters, connected by a fefWthough the triplet-level closures perform better thae ffair-
remaining links. On those links occasionally opinion admpt level closure, the prediction is still very bad close to tlferd
events take place which introduce some “wrong” nodes irgo thcation point. We can explain this result by considering Bg.
clusters and thus create many active links. The majoritycof a @gain. In the triplet-level closure we have to estimate te-d
tive links is thus located on few nodes. This creates botlsa di Sity of four-node subgraphs. In this estimation we use the as
proportionately large number of ABA-triplets and condgs ~ sumption that the four node subgraphs are uncorrelated - How
a strong three-node correlation that is not captured by #ire p €ver, from the numerical results we know that many activslin
approximation. connect to nodes that have ten or more such links, which im-
The intuitive explanation above can be quantified by a nuPlies also a high correlation at the four-node-level.
merical test shown in Fig]6. The results confirm that close  The reasoning above suggests that the order of the approx-
to fragmentation most ABA-triplets occur on B-nodes havingimation will have to raised beyond the mean degree of the sys-

ABA

many A-neighbors. tem to achieve a faithful result. Because of the technidét di
culties described above this is clearly infeasible. Howavete
3.3. Better homogeneous approximations that by raising the expansion to this point we would be captur

i%g much information that is clearly notimportant. Considg

that the number of subgraphs rises combinatorially withothe

der of the expansion, say tenth-order expansion would dreclu
an enormous number of subgraphs including exceedingly rare
ones, which clearly cannot be of importance. Consider &urth
Jnore that the tenth-order closure would also comprise deno
chains, and thus captures correlations that are longerth®gn
diameter of networks in reasonable simulations. This ssigge
that much a better performance is achieved more cheaply if a
tailored motif-basis is used that does not cover whole arder
1qu)ut selectively contains only those subgraphs that arewibe

The reasoning presented above identifies the actual closu
approximation, essentially assuming the absence of lerageyed
correlations as the reason for the failure of the pair approx
mation close to the fragmentation transition. Let us thaeef
discuss ways in which the approximation can be improved.

In principle every moment expansion should converge t
the correct result if the order of the approximation is iraced.
Clearly despite its shortcoming the pair approximationigm
better than the zeroth-ordeode approximatiorthat ignores
all, even link level, correlations anddg_—stsumes that the odw
is well-mixed in terms of node states [14]. This is analogou . . ; )
to the molecular field approximation of th]e Ising mo@lg()S] ard to estl_mate -an |dga to which we return in Séc. 5
The first-ordeproximation we used above is callecptiie A promising alternative approach is to use a relatively low

approximatio ,,ﬁ@O], which accounts for prder moment expansion, buF use a more intelligent clostoe.
nearest-neighbor correlations but neglects higher ordes.o instance, Gross and Kevrek|di§_[68] implements the apjiroac

This is analogous to the Bethe-Peierls approxima{EHEZ 6 of equation-free modelian] to extract a proper closerm
"~ for an epidemic model automatically from very short burdts o
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simulation runs. This enabled a semi-analytical invesitga ~—— n=6 activelinks ) =A n=3

where continuation software was used to explore the dyrsmic N 3 e k=3 O=58 =1
of the system. /
Another approach proposed in a recent pa@ [111]is to \é@% 83@//

generate closures from a maximum entropy principle. This ap
proach thus solves at least the problem of non-uniqueness of
higher-order closures. However, in many cases the approach
provides only implicit equations for the closure that dosem

to have a closed-form solution. This can be seen as an indi- NAB]=-3
cation that explicit fully-consistent closure approxiias for 3AgB3—= 3By B3 ? N
moment-expansions beyond the pair level might not exidt.at a a A Ay—> By A NA.B]= %

4. HETEROGENEOUS APPROXIMATIONS

Presently it is widely believed that quite universally bett
results can be obtained by heterogeneous approximatians th
capture information on the degree of the nodes. Indeed, such i (E
approaches have yielded an improvement in several example | 4 /R (
systems([17, 23,9 0. k AgBs= AgA o 5

In this section, we investigate two prominent heterogeseou b 29 E“: /;9 :3 AlAsB] =
moment-closure approximations. In theterogeneous pair ap- 83 ° 3
proximation[@], links are grouped according to the state and
the degree of the nodes at their ends. Irdtiive neighborhood
approximatio,|_9_9,2], nodes are placed in compart-
ments according to their state, degree and number of neighbo ) , Np N
in a given state. P /\? REWRING 2 9@

Although the heterogeneous approaches can capfiect® %‘y S (51 —’p,3 ﬁ S (5
resulting from the heterogeneity of the degree distribytibey /R W /R W
AlA,B] = —EN

Wi *

AgBs—= AgAj,
AgB,— A,B,
AgBs—> ApB;

do not specifically address the complications identifiedvabo
Here, we test the performance of these approaches for tbe vot C
model, which reveals that they do not perform better than the
homogeneous approximations, in this context.

Figure 7: (Color online) lllustration of three update eweint the direct voter
) ) ) dynamics that lead to a change in the density of active liAls8§] connecting
4.1. Heterogeneous Pair Approximation nodes of degrek = 9 andk’ = 3, when a node of degreek = 9 and state A

- . . . ... js chosen. Initially (left), the number of neighbors of dsgk’ = 3 is N3 = 4,
The heterogeneous palr_approxmatlon |s_based On Wr_ltmgom whichnz = 3 are in the opposite state B, and the total number of active
a set of coupled rate equations for the density of activeslink inks isn = 6. After the update (right), some links change its type. At th
+ petween a node of degré&eand a node Ol aegree. ottom of each panel are indicated the transitions in li at involve an
ABJx bet de of degré&eand de of degreé bottom of each I are indicated the transitions in ligetghat invol
In networks with narrow degree distribution we expect these9Ba-link, and the associated changes in the den#igBj]. (a) With proba-
d ities to be ind dentloandk’. wh th . t bility n(1 — p)/k nodei copies the state of a randomly chosen B-neighbor, thus
ensiies to be in e_pen en nak’, W_ er_eas’_ €Same IS NOL i,s attached ta change from active to inert and vice-versa. (b) With proba-
true for networks with broad degree dIStI’IbUtIm[QS]- Ham®  pility nyp/k an active link connected to one of the neighbors of degre@de(n
follow an approach which is an extension of the one developedis this example) is chosen and rewired to a ned# class @, 8). (c) With
in [@,@] for the case of adaptive networks. We consider thé)robablllty nz p/k an active link of typeAgBs is c_hosen at random a_nd rewired
di d d | . he derivati . ierim th to a nodea of class A,9). We note that this figure is an illustration of only
Cg:eCt node update rule, since the derivation Is easier g t some of the terms in EGJ(9).
We start by writing the active link density ag\Blxx =
[AcBk] + [BkAx], where, for instance Ax By ] denotes the den- B
sity of links connecting a node of state A and degre@ith a  g[AB,] “IAL < !
node of state B and degré& Assuming a node with state A — g |, = Z /N Z Z Z Z
i i i A T UNGS i o
(node i) is chosen in an update event, then 1 k=0 M K

k
X M(Nl,..,NE;l) HB(nm; Nm)
m=1

n N
X {l—(l - P) [(NMc = )b — Nedik] — l—kp5l,k

+ l—p [N+ N(AIBie+1A) — Nie N(ABIeA)]

n [[A]k—lN(Bk’|Ak—l) B [A]kN(Bk’|Ak)]}l

P A [A N’
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With probability [A], node i belongs to classA(l). The

productM(N, ..., Ni; 1) Hﬁqzl B(nm; Nm) expresses the proba- d[AB]k K1 K—1
bility that the configuration around node i consists\gf links at — = (1-p) (Qk/ " [ABJk + Qk % [AB]k,)
to neighbors of the degree clasgm = 1, .., k, with k the maxi-
mum degree) and,, of these neighbors have the opposite state B { (1-p) (k —1[ABlc k-1 [AB]k/)
B (nm = 0, .., Nm). Here B(nm; Nm) stands for the probability 20[AIIB]\ k  Q« k Qu
thatny, of the Ny, links to neighbors of clas® are active. 1 1
We distinguish again betweatirect andindirect changes +E + E}[AB]k,k/
in [AxBy]. A direct change takes place when node i is in either ,
classA, or Ay, giving the first two terms inside the brackets + p {k [ABJkk+1{AB}i+1
of Eq. (), respectively. Node i adopts state B when it copies AK[AI[B] Qu+1
the state of a randomly chosen B-neighbor, which happeins wit K[AB]k+1.0{AB}ks1
probability (1- p)n/k, wheren = Zﬁtl Ny, is the number of " Qk+1
active links. In these events, the corresponding changtein (K = 1){AB} (k- 1)}{AB}
density PBy] are A[AB] = (M« — n)/N and A[AB] = —[ O T ][AB]k,k’
—ni /N respectively (see Fi@l 7-a).
An indirect change occurs due to an update on a neighbor- +2(k) ([ABlk_1.x + [ABlkk-1 — 2[ABlkk) {AB}},
ing node. The third term inside the brackets of Edg. (9) corre-
sponds to the rewiring of an active link connected to a nesghb (10)
j of class B, k') (with probability pny /k), that results in the loss , o
of anABy link. wr_1erer = kPy/(k) is the excess degree dlstr|b_ut|QAkB} =

Other indirect changes take place when node i is in a generiz. i1 [ABI/I, {ABlk = {AB} + {AB, [ABlk = i ([AB] +
classA;, and one of its links to a neighbor j is rewirediexting  [B(A]), and{AB} = 3K, {AB).
the class of the links to the node j, and the class of a—b links,

where ais the node that receives the rewired link and noda b is 1 ‘ —
neighbor of node a (see Fif$. 7-b and c). In Elg. 7-b we describ . 3322&%@?35&’;‘;‘3"0”
the situation in which node j is in clasB,k  + 1) (with prob- _homogeneous

ability ny,1/K). Given that node j loses one link, it changes to pair approximation
class B, k'), thus there is a gain dfi(A¢|Bw+1Ax) links, repre- __heterogeneous

sented in the fourth term of EdJ(9). The fifth term (see Hig) 7- 2/3 palr approximation 1
corresponds to a loss in a similar update, when node j is §scla

(B,K).

Finally, the last gain and loss terms belong to the case whert %

any of the active links of node i is rewired (with probability

pn/Kk) to a node a in classA(k — 1) (see Figll7-b), or in class 1/3

(A K) (see Figl[l7-c) respectively. Given that the link is rewired

to an A-node chosen at random, the probabilities for thesetev

are [Aw-1]/[A] and [Ac]/[A], respectively. In the former event,

the N(Byw|Ax-1) links of typeAx_1 By attached to noda change

to type AcBy, while in the latter event th&l(By|Ay) links of

type AcBy attached to noda change to typ@\,1By. 0
Given that p«By] may also change when a B-node is cho-

sen, the evolution of4«By] is given by

d[ABw] _ d[ABx] d[A«By]
= +
dt dt  a dt
The second term on the right hand side can be obtained from Equation[[ID) together with the consistency conditigkB] =
Eq.[9, by interchanging A andby B andk', respectively. By sk [aB], | and{AB} = 3¥ ,[AB]y,/I form a closed system of
carrying out the summations, we arrive at the rate equaon f ¢oypled ordinary dierential equations. Since the system is too
the evolution of AB] (seq Appendix_§ for the derivation)  complex to solve directly, we obtain the stationary solutiy
numerical integration starting from equiprobabd = [B]o =
1/2 initial states in a random graph wilty = e (k) /k!.
In Fig.[8 we plot the global stationary density of active Bnk
[AB] = % thl[AB]k as a function of rewiring ratp, and com-
pare it with results from agent-based simulations. Therbete
geneous pair approximation is in good agreement with simula

Figure 8: (Color online) Performance of heterogeneous aggiroximation in
comparison to homogeneous pair approximation and ageeibsimulations
for the direct node update rule. Parametéis: 10°, (k) = 4.
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tions for low p, but discrepancies become very largepaig-  with the zeroth-order moments
creases. The overall performance is surprisingly even avors
than the homogeneous pair approximation. This might be due A= Z Acn and B= Z Bin, (12)
to the accruing of discrepancies in individual termisB]. kn kn
While the heterogeneous approximation certainly provides firsi-order moments
more accurate description of networks with wide degree dis-
tribution, it does not suitably capture the correlatiorisiag in Ap = Z(k -NAn, A= Z NAcn,
k,n

the fragmentation transition. kn
Bg= ) (k—n)Acn and Ba = NnByp, (13)
4.2. Active Neighborhood Approach %“ " %“ "

Recently, an alternative heterogeneous moment-closure ap, 4 second-order moments
proximation, the active neighborhood approﬂ E:k 99s wa
proposed to study the dynamics of the SIS model on adaptive Apg = Z Nk —n)Axn and Baa = Z n?Byn
k.n

networks ]. Here, nodes are grouped by their compartment k.n
defined according to their state, total degree and the number g, = N nk—n)B,, and Ags= > n?A.,,. 14
of active links. Therefore, not only the heterogeneity af th oA %: ( )Bin o8 %: " 14

network is taken into account, but also the state correiatie-
tween nearest neighbors and associated heterogenaitigss |
formalism, there is no need of estimating the neighborhdad o 2Y A = [Al, Aa = 2[AA], Ag = [AB], Aag = [AAB] and Agp =
node, because this information is already contained irlaissc [AB] +2[BAB].
_ The_active neighborhoodﬁﬁroach has been applied to othe§ A g TRANSMISSION LINK REWIRING
epidemics systemmom 13], Glauber dynanl@ [100],
and a voter-like model where the rewiring is state indepande
[17]. The approximation was found to reproduce the time evo-
lution of both the states and the structure of the network wit
remarkable accuracy. A moment-generating function aptroa
has been applied to mitigate the computational cost of the nu

merical integratior@ﬂl]. \ \ \ \
We now follow the active neighborhood approach for the
adaptive voter model. We place nodes with state A (B), degree
k, andn (n = 0,..,K) neighbors in the opposite state B (A), (b) (©) /C<

into the compartment labeled a& k, n] ([ B, k, n]). For reasons Axn — Akntl Axn — > Axsin

of simplicity, we assume that the time is continuous, thad th
(©) W W (f)

opinion adoption and rewiring processes take place in lghral
kn —  Akn-l Agn — Axinn

These moments are related to the moments we defined iflSec. 3

=
=
=
=

Axn — Bikn Agn —> Agnr

Every node in the network transmits its state to its neighlaor
ratep, and rewires the connection from each neighbor in the op-
posite state to a random node with the same state af rdteat

is, in a small time intervadt all links are updated with the same

prot_)ablllty 6 + V)Tjt' This “link hom_oge_neou,s d,ynamlcs IS Figure 9: Schematic representation of the possible updetg®in node states
equivalent to the link update dynamics, in which links arech  (a) () and (c) and links (d), (e) and (f), for the active htigrhood approach
sen and updated with probabilityll, whereL is the number of  to the voter dynamics. Open and filled circles represent siodstate A and B,
links in the network. Therefore, stationary states obthinem  respectively.

numerical simulations of both dynamics are similar, as show

e

in Fig[10. In Fig.[@, we illustrate the six possible transitions of nede
The evolution ofA,, is governed by the rate equation, from compartment/ﬁ,_ k,n] to other compartments (\_/ve de_note
the reference node in compartmeAt k, n] as node i), which
dAcw K — _ correspond to the six loss terms in brackets of EQ. (11). The fi
= B[(k=n)Bxk-n—NAn] : o .
dt of these describes the transition of node i from compartment
Ang [A, k, n] to compartmentB, k, k — n] at raten, when it adopts
+ B—[(k-n+1)An-1—-(k=-n ’ > '
B An | Wen-1=( Al state B from an active neighbor (see Fib. 9-a). The secorsd los

term describes the change of one of kthe n A-neighbors of

Baa
+ ’BB_A [(n+ 1)Acni1 — NAn] node i to B that happens at rg@@ag/Aa, WhereAng/An is the

+ y[(n+ 1)Acni1 — NAn] estimated number of the B-neighbors (see[Hig. 9-b). Thigyie
As the transition of to [A, k, n+ 1]. The third term is analogous to

+ Y5 [Acin = Al the second term, but with the charBe~ A of one of then B-

+ YN+ 1Ak inet — NAl, (11) neighbors of node i at rafgBaa/Ba (see Fig[®-c), that brings

i to compartmentA, k,n — 1]. The fourth term represents the
10



replacement of a B-neighbor of node i by an A-node at rewiringnent between the analytical approach and simulations ig goo
rateyn (see Fig[(P-d), thus node i moves t, k,n — 1]. Node for small values ofp, but discrepancy increases with increas-
i gains a link coming from an A-node due to a rewiring eventing p, such that also the active neighborhood approach fails to
which occurs at ratgAg/A (see Fig[P-e). Node i switches ac- capture the fragmentation transition faithfully.
cordingly to [A, k + 1, n], represented by the fifth term. Finally,
node i switches to the compartmeAt k—1, n— 1] when it loses 5 ACTIVE MOTIE APPROACH
a link due to the disconnection of one of its B-neighbors & ra
vn (see Fig[D-f). The gain terms can be explained analogously. In conventional moment expansions of previous sections,
’ moments are taken as densities of regular subgraphs, where
“““ agent_based simulation subgra_lphs were characterized by a given number of links and
link update prescribed node states, and degrees in case of heterogeneou
agent-based simulation moments. While such basis provide reasonable general pur-
parallel update pose approaches, they do not take into account the specific dy
____active neighborhood . . . .
M~ approximation namics of the system. The considerations presented il 5ec. 3
2/31 and the failure of the heterogeneous approximations in[&ec.

’ convey a clear message: To capture the fragmentation transi
tion faithfully it is essential to capture the very heterngeus
distribution of active links that appears close to the fragm
tation transition. Even the very complex and sophisticated
tive neighborhood approximation is in essence only a figéor
approximation and thus fails to pick up the correlationshia t
active links.

We can conclude that capturing the fragmentation tramsitio
faithfully requires tracking subgraphs of an order rougiyto
‘ the mean degree of the network. While the task of tracking all
0.8 1 such subgraphs would be of enormousidilty, it is greatly
simplified, by tailoring the subgraph basis to the problem by
using only those subgraphs that capture much information on
Figure 10: (Color online) Performance of active neighborhand agent-based (o specific system. Our analysis above has shown that prop-
simulations with the link update and parallel update rulde. make agent- . . . .
based simulations compatible with the parallel update meed earlier, we e!’tle_s SL_]Ch as the density of ABB't”p_Iet_S and even t_he @egre
used the following algorithm: In a time intervet = 0.01, every node and link ~ distribution conforms very well to statistical expectaiso By
of the qe_twork is selecte_d. Each node i With_state A (B) charigeB (A) with contrast the number of ABA-triplets and larger subgraphms-co
probability Andt, wheren is the number of neighbors ofn state B (A). Also, prising a number of active links attached to the same nodeglefi
each link i—j is removed with probabilityy2it and replaced either by a link LY . . .
i~k with probability /2 or by a link j—k with the complementary probability Statistical expectations close to the fragmentation point _
1/2, where node k is randomly chosen within those nodes witle #a(B). The reasoning above suggests that we should use a basis
Parameterss = 0.01,y =3p/q, N = 10°, (k) = 4. consisting of subgraphs that contairffeient numbers of ac-

] ] ) tive links attached to the same node. Two sachive motif
We obtain the equation for the densi8 k, n] by exchang- 5565 were proposed in Boshme and Gross [87]. In application

ing A and B in Eq.[1L) using the symmetry of the model. Thisy, yhe adaptive voter model, it was shown that both basis al-
closes the system of equanons. Numerical mte_gra'qon of t_hlowed a precise prediction of the transition poiﬁ] [87]. Ee
closed system of equations by standard numerical integrati ,55ch was subsequently extended to multi-state voter imode
algorithms gives the values of the fractioAg, for a given 11\ here it likewise yielded good results. In the followi
time, and therefqre, it allows one to obtalr_1 Fhe time gvohubf we briefly explain the approach and illustrate it by applimat
macroscopic variables, such as the densities of active.lMle 4 the adaptive voter model. Going beyond the previous works
numerically solve EqL{11) with initial conditions we extend this approach to the estimation of active link den-

[AB]

1/37

k e sities, which allows a direct comparison with the approache
Acn(0) = Aopk(n)(l ~Ao) Ay " discussed above.

K For computing the fragmentation poipt we consider the
Bkn(0) = BoPk(n)Ag(l — Ag)k, (15)  situation where two communities holding opposite opinioage

formed that are only connected by few active links. In angalog
whereAy = By = 1/2 andPy = e ®(ky*/k!, and determine the to the approaches discussed so far, considering the pesgibl
asymptotic values of the density of AB-paitg = > x,NAxn  dates #ecting subgraphs in the basis we derive a system of
for different values of the ratio between the rewiring and statelifferential equations, governing the evolution of the sublgsap
adoption dynamicy/B8 = p/(1 - p), wherep is the rewiring in time. However, because we are only concerned with sub-
probability. graphs containing active links and such links are rare dose
Results from the active neighborhood approximation arghe fragmentation point, we arrive at a linear system of equa
compared with agent-based simulations in Eid. 10. The agredions. The time evolution is thus fully captured by the eig@n

11
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Figure 12: lllustration of the evolution of active links indegree regular net-
work with degreek = 3 and link update rule. Updates which lead to transitions

Figure 11: (lllustration of the evolution of active links indegree regular net-  panveen dierent motifs are depicted as in Figl11. Now the transitidesra
work with degreek = 3 and link update rule. Shown is the network in the depend on the probability that a newly created fan is active.

neighborhood of an active link connecting components ffedént opinions.
Arrows correspond to dynamical updates and are labeledthéticorrespond-
ing transition rate. Depending on the parameters the updieael to prolifera-
tion or decline of active motifs containing one active lirdn¢ircled dotted) or

two active links (encircled dashed). and the conditionl(p, 3) = 0 yieldsp* = 1/3 for the transition

point. The described procedure can be generalized to anpitr
k. Fork = 4 (the degree considered here), the predicted tran-
) . . . sition point is in good agreement with the valy® &= 0.445)
ues of the corresponding Jacobian matrix. If all eigenvabfe o agent-based simulations which violates the assumpfio
the Jacobian are negative the fragmented state is stabkhend degree regularity.
remaining active motifs will disappear over time. By costra In order to account for a degree heterogeneous network, a
if the Jacobian has an eigenvalue with positive real paenth pacis set ofim I}-spiders is used: a spider motif consists of
the fragmented state is unstable and the network will remaige central base node which is connecteahttodes of its own
connected. The transition pointis thus markedity, (k)) = 0, gpinion and nodes of opposing opinion. The dynamical evolu-
whereA(p, (k)) is the leading eigenvalue. tion equation for spider motifs is provided[in Appendix Idan
To illustrate the approach in more detail let us assume thabags 10 a very close approximation of the true transitionipo

the network isdegree-regular such that every node has the

same degree. This assumption can be justified by our earlier |, ihe estimation above for the calculation of the tranaitio
observation that the degree distribution stays narrowlfoaé point, we assumed that in@fan motif, all neighbors of the
ues ofp. For illustration let us further consider the specific CaSefringe nodes (except for the base node) hold the same opinion
of k = 3. Here, the dynamics of active motifs is illustrated in 45 the fringe nodes. This assumption is valid for vanishing a
Fig.[I1. We start by considering a single active link (whioc® W e |ink density at the symmetric state= [AB]/((K)[A]) — O.
call a 1-fan). In the next update, the link will be rewired lwit N ow we consider the cage< p*, where there is a finite density
probability p deactivating the motif. With probability1pone 4t active links. In our equations we therefore have to inelud
of the nodes connected by this link adopts the other's state. he hossibility that a fringe node already hotdgeractive links
the adoption event, the original active link becomes ineut, (3541t from the one connecting to the base node), which becom
thek — 1 other connections of the adopting agent become aGpert when the fringe node adopts the state of the base ngde. B
tive. This leads to & - 1-fan, a motif ofk — 1 active links, ilizing the observation that active links tend to gathather
connected by dase nodelf the next update, whichfiects the o distribute homogeneously over the whole system, we as-
k- 1-fan, is a rewiring event (probabilify) the motifis turned g me that whenever a néw- 1-fan is created, this fan is either
into ak—2-fan. If the update is an adoption event, then either thedctive, with probability (1- o), or inactive with probabilityr.

base node changes its opinion or one of the fringe nodessdopt |, Fig.[12 an example for the degree regular case (3)
the base node’s opinion, giving rise to a 1-fan or to two fansig jjlystrated, where we include the active link density fire t
one containing — 2 and the other onle— 1 active links. Inthe  5nsjtion probabilities. As before, this can be summarinea
E:ase ())félnk update both processes occur with equal prababil system of evolution equations for the motif densities

1-p)/2.

For k = 3, we obtain a closed system of twofférential &1} - {1} +2(2)
equations for the densitig¢g} of g-fans: dt
d{2}
— = 2{2l+(1-p)(1- 1} +{2}). 18
W o, = @+@-PA-(L+@). (18
di2) Note that foro- = 0 we recover E4.16.
o - "2+ (1-pil+QQ-pi2 (16) The corresponding Jacobian now dependp ando-. Solv-

ing A(p, o) = 0 yields

_4(1-2p)- (1-p)?

. -1 2 0'()— _ (1 _n\2
J_(l_p _1_p), (17) 81-p-(1-p)

The corresponding Jacobian is

(19)
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1 an expansion is used that is tailored specifically to theesysit
. agent-based simulation hand. In this paper we have used extensive numerical and an-
link update alytical investigations to identify the problematic cdat@ns.
—degree-regular However, in retrospect just considering a sketch of theaitn
active motif approximation . . .
close to fragmentation, such as the inset in Elg. 5, coule: hav
] pointed us to these correlations and hence to a suitablexppr
imation scheme.

Anticipating the structures that are likely to emerge promi
nently in a given model should generally allow to identify a
suitable approximation scheme. Using the spider or fanfmoti
i of the active motif approximation will improve predictioins
models close to fragmentation or related de-mixing traorsst
By contrast, including such motifs in the subgraph basisnof a
approximation scheme could be cumbersome and even have an
adverse ffect in models that remain well-mixed. Models that
0 ‘ ‘ ‘ ‘ are prone to evolve degree-state correlations or strorgjertu
0 0.2 0.4 0.6 0.8 1 ing will require specific approaches suchlad [64,65] 101121

p ] (see 2] for a review). By contrast, in models with
strong random rewiring and ficiently low degree, small cy-
cles should be rare and thus subgraphs containing cycles can
(and should) be ignored when selecting the approximatiberse.
Clearly, for all models that tend to evolve very heterogerseo

In Fig.[I3 the resulting curveNB] = o(k)/2 from the de-  degree distributions, heterogeneous approximationsasitine
gree regular approach is shown t&f = 4. Comparisonto sim- heterogeneous pair approximation or the active neighlmarho
ulation results shows that, as expected, the approximatihie  approach are required. However, even in the case when degree
active link density works well in the vicinity of the fragmian  distributions become broad but not exceedingly broad, sisch
tion threshold, whereas for small rewiring rates it becowegg  in Gross et aI.|E9], it may be worth to consider homogeneous

2/3

[AB]

1/3

Figure 13: (Color online) Performance of active motif afgmio, compared to
agent-based simulations for the link update rule. Parasidte= 107, (k) = 4.

bad as active links are increasingly well mixed. approximations as they may still provide relatively gooslles,
at a significantly lower cost than the heterogeneous appr@xi
6. SUMMARY AND DISCUSSION tions.

Finally, we note even for the deceptively simple adaptive

In this paper we investigated the performance of momentvoter model, we have not yet identified an approximation that
closure approximations for discrete adaptive networkgdnr  works well over the whole parameter range. While the active
ticular we used the adaptive voter model as a benchmark modsiotif approximation yields faithful results in the orderstdtes
to assess flierent approaches. The comparison with agentelose to fragmentation it fails in well-mixed systems. Con-
based simulations revealed that both homogeneous andhetewrersely, all other approaches studied here work reasomaily
geneous moment-closure approximations capture quedifatop- when far from fragmentation, but fail at the fragmentatiomp.
erties of the fragmentation transition, but fail to proviglsod  Inthe future a scheme that works over the whole range of iregvir
gquantitative estimates close to the fragmentation poine- R rates may be found, either as a reasonable interpolatiarebet
markably, even very sophisticated heterogeneous appesachthe existing approaches, or by the informed design of alsleita
can produce results that are worse than those from simple happroximation. We hope that the information gathered in the
mogeneous schemes. Finally, we identified the active mptif a present survey will contribute to reaching this goal.
proximations as a class of approximations that were ablate ¢
ture the behavior close to fragmentation point quantiédyiv

The present results are likely to hold in a much larger clas
of models. In the adaptive voter model conventionalapgteac  The authors thank D. Kimura for the insightful discussions.
fail close to the fragmentation point because some spedfic ¢
relations appear. These correlations can be generallyctsgbe
to arise in fragmentation transitions regardless of theifpe APpendix A. The origin of second-order terms in the first-
model under consideration and should thus occur in a large order moment expansion
variety of modelsﬂﬂﬂﬂl@?@ @@118]. We fur-
ther expect that similar correlations could arise in neksahat
self-organize into specific topologies such as leadeo¥a

écknowledgement

Here, we derive the triplet density terms in the moment ex-
pansion Eq[11 from local selection events and combinatorics
We illustrate it onQ(A|BA) which denotes the number of ad-

networks, approximately bipartite nets, or complex tog@s I .
with other long-ranged state correlatiops [30. 120]. Ic;::(onal A-neighbors of the B-end of a randomly selected AB

Perhaps the main message from the current work is tha
even the evolution of problematic models can be captured if
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The quantityQ(A/BA) can be written aQ(A|BA) = P(AIBA)
(gs), whereP(A|BA) denotes the probability that a random neigh-

bor of the B-end of a randomly selected AB-link has state A and E[A] = 0,
(gs) denotes the mean excess degree, as derived in the main ddt 1
text. The probability?(AIBA) is expressed as a ratio of the cor- —[AA = ( p)([AB] + 2[ABA - [AAB) + E[AB],
responding triplet densities, i.B(AIBA) = 2[ABA]/(2[ABA + %t (1 ) 2
[ABH]), where ABA] = Naga/N (Nagais the number of ABA- ZBB = &P ag + 2[BAG - [ABE) + P[AB],
triplets) and analogoushABB] = Nagg/N. dt 2
Let ki andn; be the number of all (A and B) neighbors E[AAA] = 1- p(z[ABA] +[AAB + [ABAA
and A-neighbors of a B-node selected at random (node i) re- dt 2
spectively. The number of triplets is obtained from a summa- +3[(B)AAA] - [AAAH — [(A)BAA])
tion over all B-nodesNaga = ¥;¢(g, Ni(Ni — 1)/2 andNagg =
Yicim ki, where{B} is the set of B-nodes. We thus obtain +E([AAB_| 2['A\A][N-”])
2Naga + Nags = Yieig Ni(ki — 1). Now, we proceed with the Y
summation d%[AABg - —1; p([ABa + 2[BAB| - 2[AAB]
Dink-1) = >nk->n +[BAAA + [ABAH + 2[(B)AAR
ie(B) ic(B ie(B)
-~ Y k-nag ~[ABAA - 2[BAAH - 2[(A)BBA
icB g( _ [AB]Z)
PcA +2 2[BAB| - 2[AAB + A )
i,j) e Ed -
(.)€ Bdges d%[ABA] _ 17'0( _ A[ABA + 2[ABBA + [(A)BAA
= N[AB K———
[ ][Z Bl ] ~[ABAB - 3{(B)AAA) - 4plABA
kPE kPE
= NI[AB] Z( ) (B.1)
[B(ks)  [Bl(ks) : :
where XY ZW denotes the density of chain-quadruplets con-
= N[AB] Z (k- 1)kPE/([B](kB>) stituted by a node of state X (node 1), a Y-neighbor of node 1
k (node 2), a Z-neighbor of node 2 (node 3), and a W-neighbor
= N[ABJ(gs) of node 3 (node 4), andX)Y ZW denotes the density of star-

. quadruplets constituted by a node of state X at the centeitand
and o_btam 2ABA + [ABB] = (2Naga+ Nagg)/N = [AB[(Gs). e neighbors of state Y, Z, and W with X, Y, Z, ¥\|A,B}.
By this, we reach For illustration, we derive the corresponding contribntio
2[ABA to d[ABA]/dt for processes (e) and (h) in Fig, Bl14.
[AB] In the process (e), an ABA-triplet is created per each AB-
link connected through its B-node to the B-end of an AB-link
) ) ) on which B-node adopts state A. We denote the A (B) end of a
Appendix B. Second order moment expansion for the link  ranqomly selected AB-link as node X (Y) and a random excess
update rule neighbor of node Y as node Z. The expected number of AB-
inks connected through its B-node to node YQ§ABIBA) =
(ABIBA)Kga, WhereP(AB|BA) is the probability that node Z
s state B and a random neighbor of node Z has state A and
A IS the expected number of excess triplets attached to node

Q(AIBA) =

Since the right-hand side of EQl 1 involves second-orde
moments, the first-order expansion is not closed. We now tre
the second-order moments as dynamical variables and deri
the corresponding rate equations. In Fig. B.14, we illusttiae
complete set of possibilities and the corresponding ratesrev

. . - .
ABA-triplets are created or destroyed. The second-order ex Node ¥ has degrek with probability kP /([B](ke)). As-
pansion reads suming neutral mixing by degree, node Z has dedgewith

probabilityk' P /(k). Thus,Kea = (Zy (k- 1)kPE/([B](ks)))x
(Zr (K = 1K' Py /<k)) = (gs)Q). Inthe symmetric stat&pa =
(@2

Analogous to the expression &{ABA) in [Appendix A,
we write the conditional probability?(ABBA) as a fraction
of appropriate network moments, i.8(ABBA) = 2[ABBA/
(2[ABBA + [ABBB + [ABAB + [ABAA). In order to approx-
imate the denominator, we use the second-order approximati
for chain-quadruplets, which is derived[in Appendix C . Fol-
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contribution to
before update after update d[ABA)/dt
A adBopts
@ [O-@0 — oo O -2(1-p)[ABA]
" B adAopts - -2(1-p)[ABA]
© @—O A rewires g ._O —2p[ABA]
O
@ @—O B rewires O I_O -2p[ABA]
[
B adopts
© A O_O_._O +2(1-p)[ABBA]
A adopts
n Oeloe > Oee-e -t
@ % A adopts ._< +(1-p)[(A)BAA]
B adopts
® @i 'y @—< =3(1-p)[(B)AAA]
density of
A B
O [ ] = [(B)AAA]
stars

Figure B.14: Second order moment expansiordf@BA] /dtin the link update
rule.

lowing this approximation,
2[ABBA + [ABBH + [ABAR + [ABAA
_ [ABB|([ABE] + 2[BBB]) = 2[ABA([AAB + 2[BAH])
- 2[BB] [AB]
= (O ([ABB] + 2[ABA)
= (@’[AB].

Thus,P(ABBA) = 2[ABBA/({(Q)’[AB]). SinceKap = (q)?, we
reach

Q(ABBA) = 2[ABBA//[AB]. (B.2)
Similarly,
QAAAB) = [’?’Afg\]a,
Quang - R
Qeang - 2002,
qesag - A (8.:3)

Furthermore, in the process (h), an ABA-triplet becomes an

the A (B) end of a randomly selected AB-link as node X (Y).
We denote the expected number of the configurations where
node Y is connected to two additional A-nodes%#, A|BA) =
P(A, ABA)Sg, whereP(A, AIBA) is the probability that two ran-
dom neighbors of node Y both have state A, &dis the av-
erage number of two-combinations of excess neighbors of nod
Y.

Node Y has degrek with probability kPE/([B](kB)). The
termSg is obtained fronsg = >, (k- 2)(k - 1)kPE/(2[B](kB)).
In terms of statistical moments of the degree distribution,

o (8- + 20k
2[BJ(ks)

We write the conditional probabilitiP(A, AIBA) as a frac-
tion of appropriate moments as before such #@, AIBA) =
3[(B)AAA/(3[(B)AAA] + 2[(B)AAB] + [(B)ABB]). The density
[(B)AAA is defined as [B)AAA = Nijaaa/N, whereNgaaa
is the total number of (B)AAA-stars (central B-node, three A
neighbors). The densitiesJAAB] = N(g)aas/N and [B)ABB| =
Niaee/N are defined analogously. The number of stars are
obtained from a summation over B-nodes such tigjaas =
Tiergy Ni(Mi = 1)(ni — 2)/6, Ngjans = Zicg Mi(ni — 1) (ki —m)/2,
andNg)ase = ZiciB) ni(ki —ni) (ki —n; —1)/2, wherek; andn; are
the number of all neighbors and A-neighbors of nodespec-
tively. We reach the expressiolNgyaaa+ 2Ni)jaas+ Ne)ase =
Ylie(Bl ni(ki2 — 3k + 2)/2 and proceed with the summation

din(-3k+2) = > (-3k+2)
i€(B) ieB
jeA
(i, j) € Edges
(k- 2)(k — 1)kPB
= NAR Y —2 Tk
A8 ) B
(k3) — 3% (k3) + 2(ke)
= N[AB
[AB] [Bl(ks)
= 2N[AB|Sg

and obtain 3[B)AAA + 2[(B)AAB + [(B)ABB = [AB]Sg. We
reach

Q(A, AIBA) = 3[(B)AAA]/[AB]. (B.4)
Similarly,
[(A)BAA
Q(A, AIAB) AR
_ ,l(ABBA
Q(A,BIAB) = ZW,
Q(B,BIAB) = 3@. (B.5)

[AB]

Appendix C. Second-order moment closure approximation

In order to close the expansion [EQ. B.1, we need to express

AAA-triplet per every two A-neighbors of the B-end of a ran- hirq-order moments in terms of lower order ones.
domly selected AB-link. We call such subgraphs constituted e first derive the second-order approximation for the chain

by a node and its three neighborssiars We again denote

quadruplet densityABBA. We start with the BB-link at the



center, which has densit3B], and estimate the number of the An A-node adopts state B at rate £1p)[A][ AB]/(ka) and
A-nodes connected to the two ends, between which no correlan AB-link is replaced by an BB-link through rewiring at rate
tion exists according to the second-order approximatiaathE p[A][AB]/(ka). Analogously, a B-node adopts state A at rate
B-end has ABB]/2[BB] A-neighbors on average, as obtained (1 — p)[B][AB]/{ks) and an AB-link is replaced by an AA-link
in[Appendix_A. We reach the following second-order approx-through rewiring at rat@[ B][ AB] /(kg).

imation: 2JABBA ~ 0.5[ABB|?/[BB]. We note that 2 appears The degree distributions of the nodes selected at an update
on both sides, because we can't distinguish between the twevent depend on the update rule. In the link update rule, both

B-nodes in the BB-link and the two ABB-triplets, of the nodes at the two ends of a selected link have ddgree
We derive the remaining terms for chain quadruplets analowith the same probabilitikPy/(k). In the reverse node update
gously and obtain rule, the first selected node (node X) has dedrerith proba-
[AAA[AAB bility Py and its random neighbor (node Y) has degke®ith
[AAAH TR probabilitykP,/(k). The degree distribution of node X does not

show up in the first-order equation and the degree distobuti

[ABAA =~ 2% of node Y is the same as in the link update rule. Therefore, the
first-order equation for the reverse node update rufeidi from
[ABAH =~ 4%, that of the link update rule due to the changes of rates ofteven
only
[ABB?
[ABBA 4[BB €D %[A] = (1- p)([/;—B] - [’;—B]),
We now illustrate the second-order approximation for the (k) (ke) 5
star motif density [A)BBA], which is the density of subgraphs E[AA] - a- p)([AB] N [AB]= 2[AB][BB])
formed by an A-node in the center and its three (two B and dt (kay  (ka)Al  (ke)[B]
one A) neighbors. We consider the star motif as an assembly [AB]
of two triplets originating from the same end of a shared.link (@)
We start with IO(_:atlng an AB-link that appears at c!ensAjBI. N d [AB] [AB]2 2[AB|[AA]
Each excess neighbor of the A-node has state A with probabili d_t[BB] = (1- p)( + - )
(ke)  (ka)[B] (ka)[A]

[AAB /{a)[AB] and state B with probability BAB]/{q)[AB].
The expected number of star-quadruplets originating from o +p(@). (D.1)
end of a random link is 2((k3) — 3(k?) + 2(k))/(k), where (Ka)

(k" is the n™ moment of the degree distribution. By using At the symmetric stated]] = [B] = 1/2, Eq[D] is equiva-
it, we obtain 2[Q)BBA = (K)(((*) - 3(K*) + 2(0)/((K) = |entto Eq[® with the rescaled tinte= (kt.
(k))?)(2[BAB[AAB))/[AB]. If we assume a Poissonian distri-

bution, the second mome¢) = (k)2 + (k) and third moment

(k3 = (k)3 + 3(k)2 + (k). Thence, we reach the approximation Appendix E. Direct node update rule

[(A)BBA ~ [AAB[BAH An A-node adopts state A at rate {1p)[AB]/(ka) and an
[AB] AB-link is replaced by an AA-link through rewiring at rate

However, approximations for star-quadruplet densities ar PPABl/(ka). Similarly, a B-node adopts state A at rate1

not unique. It depends on which pair is considered to be ghareP)[ABl/(ks) and an AB-link is replaced by a BB-link at rate
by the two constituting triplets. Above we took the sharettli PIABl/(ke).

to be an AB-link. We could also select the AA-link instead as _ To estimate the indirect contribution term, we use the quan-
the shared link which leads to afiérent approximation. By tity Q(AlA1By) that represents the average number of A-neighbors

considering such alternative ways of motif constructitay s ©f @n A-node given that it already has a B-neighbor. Indices 1
quadruplets can be approximated as and 2 indicate that the A-node was chosen first and the B-node

was chosen after that. Given that node X is chosen at random

[(ABAA =~ [AAB? or [AAQ[AAAJ’ in the direct node update rule, it ha; degkegith probability -
2[AB] 2[AA] Px. We also know that X has a B-neighbor, thus the probability
[(ABBA =~ [AAB?> [AAB[BAB that each of th&—1 remaining neighbors has state A can be es-
4[AA [AB] timated as AAB]/{ga)[AB]. Averaging over the entire network
(ABBE ~ 2[BAE§_|2. ©2) we obtain
3[AB] [AAB _ (ky) - 1[AAH

Q(AIAle)=zk:(k_1)Pk<qA)[AB] " [AB

Appendix D. Reverse node update rule

. . Then, the following set of equations is reached for the direc
Moment expansion equations for the reverse node UpdaWode update rule:

rule are very similar to those of the link update rule with the
following changes in rates.
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Appendix F. Derivation of pair approximation for the frac-

d [AB] [AB] tion of active triplets
a = ool -55) , - -
Let's denoteB] as the fraction of B-nodes with k total (A
E[AA] _ a- p){[AB] . 2(ks) ~ 1) [ABA and B) andn A neighbors with the normalizatiof, Y5, B' =
dt (kg) (ge){kg) 1. The fractionB}' is expressed aBy' = PEP(m, k)/[B], where
((ka) — 1) [AAB] [AB] PE/[B] is the fraction of B-nodes with degréeandP(m, k) is
- (Qa)(Ka) } p k)’ the probability thatm links out of k are active. For an infi-
nite Erdés-Renyi random grapﬁE/[B] is Poisson distributed,
d [AB]  2((ka) - 1)[BAB i.e. PE/[B] = (k*e~®/Kl. If we neglect state correlations to
a[BB] = (1- D){ A RN second nearest-neighbors, then every link connected to a B-
A Ga)tKa node is active with probabilityrp = [AB]S  /([B](K) =
(ke - 1) [BBA]} . plAB E1) 2IABL /(K. at[B] = 1/2, where we measure the average ac-
(ge)(kg) (kg) ' tive link density [AB] n at a specifigp and(k). When second
At the steady-state, the link densit ] can be expressed n.ear_est—_neighbor correlations are ignorfe@n, k) is a binomial
in terms of triplet density in Eq.H.1 distribution, i.e.P(m k) = (mi(k — m)! /Ko7 (1 - o-p,<k>)"‘”_‘.
(1- (K -1) Therefore, in the uncorrelated infinite-size Erdés-Rerase
[AB] = Fjd—k) (AAB -2[ABA).  (E2) B[ obeys
However, this requires numerical values of the triplet den- m_ Mk —m)le® ok oM (1= o)™ (F.1)
sities that should be measured from the agent-based simula- k™ (k)2 P Pk ' '

tions, which is undesirable as explained in the main text. In
stead, we develop a first-order moment closure approximatio
Since node X is selected without resorting to the infornratib
node Y, node Y should be tr_eated as a samp!e from the _nelgh- TN, = Z 1/2m(m - 1)B". (F.2)
bors of node X. An alternative solution to this problem is to iom

ignore the information from node Y and use a pair approxima-

tign. Then, any neighbor OT hode X_has. state A With prOba'Appendix G. Derivation of the heterogeneous pair approx-
bility 2[ AAl/[Al{k)a. The pair approximation formulation for

The quantityT i, , is the fraction of ABA-triplets that have
a B-node withm A-neighbors. By definition,

imation
Q(AIALBy) is
Here, we first derive the rate equation for the average change
2[AA in the density of active linksAxBy] when a node with state A
Q(AIALB2) = Q(AIA) - = Z Pr(k - 1)[A]<kA) is chosen. We rewrite EQ.](9) as

k
2((kn) -~ 1) [AA]

ke A dABd|  ©IAl v < .
This is equivalent to using the pair approximation for the — dt [p IZ; o NZO"'NZ;O ML N D) SN, - AR,
density of triplets, such as B e (G.1)
AAITAB where
(AAg = 2 AALAS o
[A] 1 K
Replacing this expression foARB| and the analogous ex- S(NV1... N) = Z Z 1_[ B(Mm; NVm)
pressions for the other densities of triplets in[Eq] E.1, wiza m=0 n=0 m=1
at k
{ (1- p)[Nknk -1 + (N =1y Z nm]5l,k’
d [AB] [AB]) mk
—[Al = Q-p—-2=],
dt[ I 1-p) ( (kg)  (Ka) - (- p)[nﬁ, + N Z nm]él,k = PN dik
d AN = (1 [AB] . ((ke) - 1)[ABJ? ek
d_t[ ] - ( - p) <kB> + [B](kB)2 + pW/+1N(Ak|Bk/+1AI)_ pn(’N(Ak|Bk/AI)
_2(<kA> _ 1) [AA][AB]} . [AB] + [A]k—leABk’|Ak—l) _ [A]kNEA\Bk’|Ak)]
[Al(kw? 0 . A
d [AB] | (k) — 1) [ABJ? }
—[BB] = (1- X > Nmy. G.2
ai”® = p’{ A TN 2 2
_2(¢ke) - 1) [BB][AB]} L plABL (E.3) We have also replaced the number of active linksound
[BI(ke)? (ke) the chosen node byX,_, nm. To carry out the summations in
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Egs. [G1) and{Gl2), we assume that the network has no degrdefined in Eq.[{G}4). Now, inserting expressibn {G.5)$oin
correlations, thus the probability that a given node hasghre Eq. [(G.1) we obtain

bor of degreemis Qn = m Py/(k). Then, the probabilitie

and B become the multinomial and binomial distributions, re

. k
spectively, d[AkBk] Z AI‘—{(l p)[(qku )0k (N
M (Nl, s NG 1 Qs QE) = .
Nl'I—INM QY. Q/EVE whenyX | Nm=1; +(1 - qu) Z qmu<NkNm>]5l,k'
0 otherwise, m
(G.3) — (- P G ienNie) + G Yt (N )|
and X Ok
N qnmrlnl(l — Q)M = PO I{N Sk + PN(AIBi+1A) i+ 11 {Nke +1)
BN Nir) = G.4 ’
(n ) Nn! (Nm = Nim)! (G.4) — PN(AKI B A) i {Nie)

Here,gm = P(BIm; A1) = [ABy]/IQm[A]; is the condi-
tional probability that a neighbor of a node in clagslj that
has degreem is in state B. This probability is estimated as K
the ratioN(A, | — B, m)/N(A,1 — m) between the number of X qu“(/vm)} (G.6)
links N(A,I — B,m) = [ABy]N from nodes of class/A;I) to
nodes of classg, m), and the number of linkBI(A,1 — m) =
[AlINIQn, from nodes of classA, ) to nodes of degrem and _ ] :
state A or B. The multiple summation in EG{G.2), weighted byPer Of nodes in classi(k’) connected to a node in class, k)
the product of the binomials, leads to the first and second mo?lj71 ';'S;’lgk;;ag%a q:gktﬁgcét:ﬁda:gfn&%al ﬂz[(n::&?/ik?gd/i.s) n
ments,(Ny) = B(Nm; Nim)Nm and(n2) = B(Nm; Nm)n2, , ) k™ kA=
respeciivngly, o%tnz;ingng i (i = 2 Bl N(ABi) = (K - 1.)ri"”<” with rige = P(AIK; B, K) = [ABil/

(K" Q[ Bl ), we arrive to

[[A]klN(Bk’|Akl) B [A]kN(Bk’|Ak)]
(Al [A]

Then, using the pair approximation to estimate the num-

k
SN AR = (L= PO = )+ (M= () Y oo dlABK]

Z[Al fa-ma- 1)quuQm

mzk dt
- (1- 2 , m
( p)[m" ) (n@%i{(n >]6I’k X[(l— Qi) Qudi ke — Qk’IIQk’(SI,k]
= Pk )ik + PN+ 1) N(AK|Bie+1AY) — Ok Qu ik + PKTigke+10k+11 Qu Qi 411
- p(ni )N(ABK AY) = p(K = L)rige gy QuQxw
N p[[A]k—lN(Bk’|Ak—l) B [A]kN(Bk'|Ak)} (kK= D)ak-1Qu [Alk-1  KGeQu [Alk
[Al [Al ! [Al A ]
K k
X (Nm) il Om ¢y G.7
>, <30 } (6.7)

k
where we have used the following expressions for the mo-
= (1- -1 1-
( p)[qk”(qk“ Wi (1= G N Zm: qm“Nm] ments of the multinomial distributiol, defined in Eq.{GI3):

X Ol K I I

) = M NG » = Qpl
- @ P BB+ N Y dui N (Nie) NZO NZO (N1, Nig ) NMie = Q
m v K
— PG Nk + PN(AIBio+1A) O+ 11 Vi +1 ! !
NieNm) = e Y MV, N D) Ne N,
— PN(ABA) G N (Nie Nm) ’\;0 ’\;O (N1, N 1) Nie Nim
. [[A]k—lN(Bk’|Ak—l) [A]kN(Bk/|Ak)] z": N QeQnl(l —1) fork’ # m;
- qm|l ms =
[A] [A] e Qul +Q2I(1-1) fork =m
(G.5) (G.8)
where we have used the expression for the momems = Using in Eq. [GY) the expression for the probabilitips

i Nm and(nf) = GmiNm + 62 Nm(Nm — 1) of the binomials  andry, and expressing the SUR}, GniQm as [AB]/I[A];, with
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[AB] = Zﬁhl[A. Bm], we arrive at the expression EG.(6.9).  Appendix H. Derivation of the homogeneous moment ex-
pansion from active neighborhood approach

d[AcBx] 1 ABd [AB]
dt | K k' Qu[Alk Summing ovelk andn and using the constraif{g = Ba,
_ - )k 1[ABCAB] _ [AB] Bq.M)leadsto
[Alk k v 0, and (H.1)
{ K [AkBk’+l] {ABK’Jrl} dAB
k+1 [Blw+1 e BlAag + Bea— Agg — Baa] — 2yAs. (H.2)
— 1 [AB [{AB¢
% [Ax kB]{ B} Equation[(H.1) expresses the conservation of the globalijen
[Bl of nodes in a given state, that is a well-known property of the
[Ac-1Bk] — [A«Bk] {AB}} (G.9) voter model under link update dynamics. Equation{H.2) can
[A] be associated to the evolution of the density of AB-pairs, by
- writing the first and second moments in terms of densities of
where Qc = kP/(K), [AB] = Xn1[ABml, {AB¢} =  pairs and triplets as we already defined after Eq. (14).
ZI l[A| Bk]/l and AB} = ZI 1[A| B]/l d[AB]
Given that p«By ] may also change when a B-node is cho- - = ﬂ{[AAEﬂ + [BBA] - 2[AB] - 2[ABA
sen, the evolution of4«By] is given by dt
~ 2[BAB-2y[AB] (H.3)
d[ABe]  d[AcBx] N d[AcBy]
d  ~  dt | dt |g° Eqg. (H3) is the same as the equation derived for link update

Eqg. (1), showing the equivalence between parallel and ljgk u

The second term on the right hand side can be obtained fro'@ate dynamics.

Eqg. (G9), by interchanging A arldby B andk’, respectively.
Adding the two contributions leads to
Appendix |. Active motif approach: equations for spider

d[A«Bk] k-1 k-1 motifs
KBkl _ A _
dt = @ p){ri k [ABd + Q« k’ [ABl The rate equations for spider densitjgs |} for link update
ABJ k—1 Bl K -1 are given by
(A1 A1)
Bl 4@ Al Kk ity = —1m 1y + 40+ Wim-1.1 +1
~ [AkB]k—1+[ABk/]k'—l [AkB] dt{ } {m7 +§(+ )m_ 1+ }
[Ak K = [Ble k2 K +1(1 - pmil,m) + 2(1 + 1)im 1 + 1),
+ (% + %) [AcBy] wherem # 1, and
N K [ABrs1]tABc1) Q-+ Ja-p)ih 1+ 20+ L1+ 1
k+1 [l dt o
K [A1Bel{A1B) +3i1- p)e(I +<1>)| Zy XY}
k+1 [Alks1 {xy)
- (k k_’ ! {ABB"'} + k; 1 {AXB}) [AB] for m= 1. Here we use a Poissonian degree distribufitk) =
[Blk [Alk e (kyk/k! with mean degreék). In order to obtain a Jacobian
([Ak 1By] [AkBk’—l] ) (AB) of finite size we consider only motifs with + | < Kmax.
[A] [B] The transition probabilities for node update ruleatifrom
[ABK]{AB} those for link update, depending on the degree of the chosen
_W} (G.10)  nodes. The corresponding equations for direct node update a
given by
Finally, given that AB]xx = [A«Brk]+[BkAx], and using the
symmetry between A and B states and the fact that in a time of {m I} =—=Il{m1}
order unity, a quasi-stationary state is established, iiclvtne
fraction of nodes in dierent degree classes]k/Px ([B]«/Px) +(1-p)(I+1)im-1,1+1} Z Pio(9+ L)ami(9)
reach the value corresponding to the global dengNy([B]), g
we reach the final equation E.{10). +p(l + 1)im—-1,1 + 1} Z Pio(g + 1)Bmi(Q)
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+(1 = pmil,m} " Pyo(g + 1)Bmi(9)
g

+p(l+ 1)m 1+ 1) > Pyo(g+ Dami(Q),
¢]

g{1,|} = -1l

dt
+1= )1 ) Pao(g + 1)Bri(9)
9
+p(l+ 1L 1+ 1} ) Peo(@ + Dai(9)
9

+(L= PPl + Dari() D VX y),

t8%

wheream,(g) = I+ m)/(I+ m+g+1) andBmi(9) = (g+1)/(1 +
m+ g+ 1).
The equations look similar for reverse node update.
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