30 research outputs found

    Constraints from 26^{26}Al Measurements on the Galaxy's Recent Global Star Formation Rate and Core Collapse Supernovae Rate

    Get PDF
    Gamma-rays from the decay of 26^{26}Al offer a stringent constraint on the Galaxy's global star formation rate over the past million years, supplementing other methods for quantifying the recent Galactic star formation rate, such as equivalent widths of Hα\alpha emission. Advantages and disadvantages of using 26^{26}Al gamma-ray measurements as a tracer of the massive star formation rate are analyzed. Estimates of the Galactic 26^{26}Al mass derived from COMPTEL measurements are coupled with a simple, analytical model of the 26^{26}Al injection rate from massive stars and restrict the Galaxy's recent star formation rate to \hbox{5 ±\pm 4 M\sun yr−1^{-1}}. In addition, we show that the derived 26^{26}Al mass implies a present day \hbox{Type II + Ib} supernovae rate of 3.4 ±\pm 2.8 per century, which seems consistent with other independent estimates of the Galactic core collapse supernova rate. If some independent measure of the massive star initial mass function or star formation rate or \hbox{Type II + Ib} supernovae rate were to become available (perhaps through estimates of the Galactic 60^{60}Fe mass), then a convenient way to restrain, or possibly determine, the other parameters is presented.Comment: 11 pages including 1 figure, ApJ in pres

    The metallicity-luminosity relation at medium redshift based on faint CADIS emission line galaxies

    Full text link
    The emission line survey within the Calar Alto Deep Imaging Survey (CADIS) detects galaxies with very low continuum brightness by using an imaging Fabry-Perot interferometer. With spectroscopic follow-up observations of MB>~-19 CADIS galaxies using FORS2 at the VLT and DOLORES at TNG we obtained oxygen abundances of 5 galaxies at z~0.4 and 10 galaxies at z~0.64. Combining these measurements with published oxygen abundances of galaxies with MB<~-19 we find evidence that a metallicity-luminosity relation exists at medium redshift, but it is displaced to lower abundances and higher luminosities compared to the metallicity-luminosity relation in the local universe. Comparing the observed metallicities and luminosities of galaxies at z<3 with Pegase2 chemical evolution models we have found a favoured scenario in which the metallicity of galaxies increases by a factor of ~2 between z~0.7 and today, and their luminosity decreases by ~0.5-0.9mag.Comment: Accepted for publication in A&A; 12 pages, 9 figure

    A quadruply imaged quasar with an optical Einstein ring candidate: 1RXS J113155.4-123155

    Full text link
    We report the discovery of a new quadruply imaged quasar surrounded by an optical Einstein ring candidate. Spectra of the different components of 1RXS J113155.4-123155 reveal a source at z=0.658. Up to now, this object is the closest known gravitationally lensed quasar. The lensing galaxy is clearly detected. Its redshift is measured to be z=0.295. Additionally, the total V magnitude of the system has varied by 0.3 mag between two epochs separated by 33 weeks. The measured relative astrometry of the lensed images is best fitted with an SIS model plus shear. This modeling suggests very high magnification of the source (up to 50 for the total magnification) and predicts flux ratios between the lensed images significantly different from what is actually observed. This suggests that the lensed images may be affected by a combination of micro or milli-lensing and dust extinction effects.Comment: 4 pages, 3 figures, published in A&

    The spatial clustering of mid-IR selected star forming galaxies at z ~ 1 in the GOODS fields

    Get PDF
    We present the first spatial clustering measurements of z~1, 24um-selected, star forming galaxies in the Great Observatories Origins Deep Survey (GOODS). The sample under investigation includes 495 objects in GOODS-South and 811 objects in GOODS-North selected down to flux densities of f_24>20 uJy and z_AB<23.5 mag, for which spectroscopic redshifts are available. The median redshift, IR luminosity and star formation rate (SFR) of the samples are z~0.8, L_IR~4.4 x 10^10 L_sun, and SFR~7.6 M_sun/yr, respectively. We measure the projected correlation function w(r_p) on scales of r_p=0.06-10 h^-1 Mpc, from which we derive a best fit comoving correlation length of r_0 = 4.0 +- 0.4 h^-1 Mpc and slope of gamma=1.5 +- 0.1 for the whole f_24>20uJy sample after combining the two fields. We find indications of a larger correlation length for objects of higher luminosity, with Luminous Infrared Galaxies (LIRGs, L_IR>10^11 L_sun) reaching r_0~5.1 h^-1 Mpc. This would imply that galaxies with larger SFRs are hosted in progressively more massive halos, reaching minimum halo masses of ~3 x 10^12 M_sun for LIRGs. We compare our measurements with the predictions from semi-analytic models based on the Millennium simulation. The variance in the models is used to estimate the errors in our GOODS clustering measurements, which are dominated by cosmic variance. The measurements from the two GOODS fields are found to be consistent within the errors. On scales of the GOODS fields, the real sources appear more strongly clustered than objects in the Millennium-simulation based catalogs, if the selection function is applied consistently. This suggests that star formation at z~0.5-1 is being hosted in more massive halos and denser environments than currently predicted by galaxy formation models.[truncated]Comment: 19 pages, 15 figures. Accepted for publication in A&A. Style and English improve

    Galaxy luminosities, stellar masses, sizes, velocity dispersions as a function of morphological type

    Full text link
    We provide fits to the distribution of galaxy luminosity, size, velocity dispersion and stellar mass as a function of concentration index C_r and morphological type in the SDSS. We also quantify how estimates of the fraction of `early' or `late' type galaxies depend on whether the samples were cut in color, concentration or light profile shape, and compare with similar estimates based on morphology. Our fits show that Es account for about 20% of the r-band luminosity density, rho_Lr, and 25% of the stellar mass density, rho_*; including S0s and Sas increases these numbers to 33% and 40%, and 50% and 60%, respectively. Summed over all galaxy types, we find rho_* ~ 3 * 10^8 M_Sun Mpc^{-3} at z ~ 0. This is in good agreement with expectations based on integrating the star formation history. However, compared to most previous work, we find an excess of objects at large masses, up to a factor of ~ 10 at M_* ~ 5*10^{11} M_Sun. The stellar mass density further increases at large masses if we assume different IMFs for Es and spiral galaxies, as suggested by some recent chemical evolution models, and results in a better agreement with the dynamical mass function. We also show that the trend for ellipticity to decrease with luminosity is primarily because the E/S0 ratio increases at large L. However, the most massive galaxies, M_* > 5 * 10^{11} M_Sun, are less concentrated and not as round as expected if one extrapolates from lower L, and they are not well-fit by pure deVaucouleur laws. This suggests formation histories with recent radial mergers. Finally, we show that the age-size relation is flat for Es of fixed dynamical mass, but, at fixed M_dyn, S0s and Sas with large sizes tend to be younger. Explaining this difference between E and S0 formation is a new challenge for models of early-type galaxy formation.Comment: 42 pages, 34 figures, 9 tables. Accepted for publication in MNRA

    On the optical and X-ray afterglows of gamma ray bursts

    Full text link
    We severely criticize the consuetudinary analysis of the afterglows of gamma-ray bursts (GRBs) in the conical-ejection fireball scenarios. We argue that, instead, recent observations imply that the long-duration GRBs and their afterglows are produced by highly relativistic jets of cannonballs (CBs) emitted in supernova explosions. The CBs are heated by their collision with the supernova shell. The GRB is the boosted surface radiation the CBs emit as they reach the transparent outskirts of the shell. The exiting CBs further decelerate by sweeping up interstellar matter (ISM). The early X-ray afterglow is dominated by thermal bremsstrahlung from the cooling CBs, the optical afterglow by synchrotron radiation from the ISM electrons swept up by the CBs. We show that this model fits simply and remarkably well all the measured optical afterglows of the 15 GRBs with known redshift, including that of GRB 990123, for which unusually prompt data are available. We demonstrate that GRB 980425 was a normal GRB produced by SN1998bw, with standard X-ray and optical afterglows. We find that the very peculiar afterglow of GRB 970508 can be explained if its CBs encountered a significant jump in density as they moved through the ISM. The afterglows of the nearest 8 of the known-redshift GRBs show various degrees of evidence for an association with a supernova akin to SN1998bw. In all other cases such an association, even if present, would have been undetectable with the best current photometric sensitivities. This gives strong support to the proposition that most, maybe all, of the long-duration GRBs are associated with supernovae. Though our emphasis is on optical afterglows, we also provide an excellent description of X-ray afterglows.Comment: Includes fits to the and X-ray and optical afterglows of all GRBs with known redshift prior to July 2001 and an alternative interpretation of the peculiar X-ray and optical afterglows of GRB 970508. In press in Astronomy and Astrophysic

    Calibration of the distance scale from galactic Cepheids:II Use of the HIPPARCOS calibration

    Full text link
    New estimate of the distances of 36 nearby galaxies is presented. It is based on the calibration of the V- and I-band Period-Lumi- nosity relations for galactic Cepheids measured by the HIPPARCOS mission. The distance moduli are obtained in a classical way. The statistical bias due to the incompleteness of the sample is corrected according to the precepts introduced by Teerikorpi (1987). We adopt a constant slope (the one obtained with LMC Cepheids). The correction for incompleteness bias introduce an uncertainty which depends on each galaxy. On the mean, this uncertainty is small (0.04 mag) but it may reach 0.3 mag. We show that the un- certainty due to the correction of the extinction is small (propably less than 0.05 mag.). The correlation between the metallicity and the morphological type of the host galaxy sug- gests us to reduce the application to spiral galaxies in order to bypass the problem of metallicity. We suspect that the adopted PL slopes are not valid for all morphological types of galaxies. This may induce a mean systematic shift of 0.1 mag on distance moduli. A comparison with the distance moduli recently published by Freedman et al. (2001) shows there is a reasonably good agreement with our distance moduli.Comment: Accepted for Astron & Astrophys. (2002) Cepheid database available at ftp://www-obs.univ-lyon1.fr via anonymous ftp. Directory: pub/base/CEPHEIDES.tar.g

    Star cluster catalogues for the LEGUS dwarf galaxies

    Get PDF
    We present a new Bayesian hierarchical model (BHM) named Steve for performing Type Ia supernova (SN Ia) cosmology fits. This advances previous works by including an improved treatment of Malmquist bias, accounting for additional sources of systematic uncertainty, and increasing numerical efficiency. Given light-curve fit parameters, redshifts, and host-galaxy masses, we fit Steve simultaneously for parameters describing cosmology, SN Ia populations, and systematic uncertainties. Selection effects are characterized using Monte Carlo simulations. We demonstrate its implementation by fitting realizations of SN Ia data sets where the SN Ia model closely follows that used in Steve. Next, we validate on more realistic SNANA simulations of SN Ia samples from the Dark Energy Survey and low-redshift surveys (DES Collaboration et al. 2018). These simulated data sets contain more than 60,000 SNe Ia, which we use to evaluate biases in the recovery of cosmological parameters, specifically the equation of state of dark energy, w. This is the most rigorous test of a BHM method applied to SN Ia cosmology fitting and reveals small w biases that depend on the simulated SN Ia properties, in particular the intrinsic SN Ia scatter model. This w bias is less than 0.03 on average, less than half the statistical uncertainty on w. These simulation test results are a concern for BHM cosmology fitting applications on large upcoming surveys; therefore, future development will focus on minimizing the sensitivity of Steve to the SN Ia intrinsic scatter model.AA acknowledges the support of the Swedish Research Council (Vetenskapsradet) and the Swedish National Space Board (SNSB). DAG acknowledges support by the German Aerospace Center (DLR) and the Federal Ministry for Economic Affairs and Energy (BMWi) through program 50OR1801 ‘MYSST: Mapping Young Stars in Space and Time’

    Future Directions in Subglacial Environments Research

    No full text
    International audienceSubglacial Antarctic Lake Environments (SALE) exploration and study is poised to be a major focus of Antarctic science for the next decade or more. The foundation for an intensive period of SALE research and field efforts has been provided by substantial improvement in our understanding of these environments, the establishment of SALE research programs by the International Polar Year (IPY) Program Office and the Scientific Committee on Antarctic Research (SCAR), the funding of several national SALE programs, independent guidance on environmental stewardship issues, and a series of international workshops, meetings, and conferences that have refined SALE scientific objectives. This article summarizes recent developments in subglacial environment exploration and study and describes future research needs

    The ESO Slice Project (ESP) Redshift Survey

    No full text
    corecore