290 research outputs found

    A simple role of coral-algal symbiosis in coral calcification based on multiple geochemical tracers

    Get PDF
    Light-enhanced calcification of reef-building corals, which eventually create vast coral reefs, is well known and based on coral-algal symbiosis. Several controversial hypotheses have been proposed as possible mechanisms for connecting symbiont photosynthesis and coral calcification, including pH rise in the internal pool, role of organic matrix secretion, and enzyme activities. Here, based on the skeletal chemical and isotopic compositions of symbiotic and asymbiotic primary polyps of Acropora digitifera corals, we show a simple pH increase in the calcification medium as the predominant contribution of symbionts to calcification of host corals. We used the symbiotic and asymbiotic primary polyps reared for 10 days at four temperatures (27, 29, 31, and 33 °C), five salinities (34, 32, 30, 28, and 26), and four pCO2 levels (<300, 400, 800, and 1000 µatm). As a result of analyzing multiple geochemical tracers (U/Ca, Mg/Ca, Sr/Ca, δ18O, δ13C, and δ44Ca), a clear and systematic decrease in skeletal U/Ca ratio (used as a proxy for calcification fluid pH) was observed, indicating a higher pH of the fluid in symbiotic compared to asymbiotic polyps. In contrast, Mg/Ca ratios (used as a tentative proxy for organic matrix secretion) and δ44Ca (used as an indicator of Ca2+ pathway to the fluid) did not differ between symbiotic and asymbiotic polyps. This suggests that organic matrix secretion related to coral calcification is controlled mainly by the coral host itself, and a transmembrane transport of Ca2+ does not vary according to symbiosis relationship. Skeletal δ18O values of both symbiotic and asymbiotic polyps showed offsets between them with identical temperature dependence. Based on a newly proposed model, behavior of δ18O in the present study seems to reflect the rate of CO2 hydration in the calcifying fluid. Since CO2 hydration is promoted by enzyme carbonic anhydrase, the offset of δ18O values between symbiotic and asymbiotic polyps is attributed to the differences of enzyme activity, although the enzyme is functional even in the asymbiotic polyp. Symbiotic δ13C values in the temperature and salinity experiments were higher compared to those in the asymbiotic polyps due to photosynthesis, although photosynthetic δ13C signals in the pCO2 experiment were masked by the dominant δ13C gradient in dissolved inorganic carbon in seawater caused by 13C-depletd CO2 gas addition in the higher pCO2 treatments. Sr/Ca ratios showed a negligible relationship according to variation of temperature, salinity, and pCO2, although it might be attributed to relatively large deviations of replicates of Sr/Ca ratios in the present study. Overall, only the U/Ca ratio showed a significant difference between symbiotic and asymbiotic polyps throughout all experiments, indicating that the critical effect on coral calcification caused by symbiotic algae is the increase of pH of the calcifying fluid by photosynthesis

    Partitioning and Chemical Environments of Minor Elements in Individual Large Benthic Foraminifera Cultured in Temperature-Controlled Tanks

    Get PDF
    Because reef-dwelling large benthic foraminifera (LBF) tests, which is composed of high-magnesium calcite, are the common components of modern reef sediments, and ancient reef carbonate rocks, they can provide a continuous record of the paleoenvironment of reef sediments. Evaluation of the responses of the minor element concentrations (Mg, Sr, Na, P, and S) of individual tests to ambient temperature and LBF growth modes was conducted with two cultured species, Calcarina gaudichaudii and Amphisorus kudakajimensis. The elements were assessed as tracers of temperature, salinity, nutrient concentration, and calcification rate. The Mg content of C. gaudichaudii and the Sr content of both species were controlled by temperature. It can be confirmed that the Mg of individual tests of C. gaudichaudii is a useful paleothermometer. There was a large biological modulation of Na, P, and S incorporation. In situ XANES analysis revealed that both inorganic and organic species contributed to the P and S content of LBF tests. We observed five sulfur components with variable oxidation states

    Last Interglacial coral record of enhanced insolation seasonality and seawater O enrichment in the Ryukyu Islands, northwest Pacific

    Get PDF
    金沢大学大学院自然科学系研究科We present a calibrated, high-resolution and 13C/12C record for a well-preserved Last Interglacial Porites sp. coral (U-Th age of 127 } 6 ka) from the sea-level high-stand terrace of Yonaguni Island, Japan. Seasonal variations in the ƒÂ18O and ƒÂ13C values for the fossil coral are greater than those observed in modern coral records from the same reef setting and appear to be driven by the enhanced insolation seasonality in the northern hemisphere during the Last Interglacial maximum. The 18O enrichment of 1.1ñ in the fossil coral compared to the modern analogue cannot be due entirely to a reduction in sea-surface temperature because corals in this region are already growing at their lower thermal limit. Instead, most of the 18O enrichment must be due to a change in the ƒÂ18O of the surface seawater, probably in response to enhanced evaporation of the ocean or a higher volume flux of the Kuroshio Current

    Costa Rica Rift hole deepened and logged

    Get PDF
    During Leg 111 of the Ocean Drilling Program, scientists on the drilling vessel JOIDES Resolution studied crustal structure and hydrothermal processes in the eastern equatorial Pacific. Leg 111 spent 43 days on its primary objective, deepening and logging Hole 5048, a deep reference hole in 5.9-million-year-old crust 200 km south of the spreading axis of the Costa Rica Rift. Even before Leg 111 , Hole 5048 was the deepest hole drilled into the oceanic crust, penetrating 274.5 m of sediments and 1,075.5 m of pillow lavas and sheeted dikes to a total depth of 1,350 m below sea floor (mbsf). Leg 111 deepened the hole by 212.3 m to a total depth of 1,562.3 mbsf (1,287.8 m into basement), and completed a highly successful suite of geophysical logs and experiments, including sampling of borehole waters

    Lithium in the aragonite skeletons of massive Porites corals: A new tool to reconstruct tropical sea surface temperatures

    Get PDF
    Previous studies have demonstrated the potential for the Li content of coral aragonite to record information about environmental conditions, but no detailed study of tropical corals exists. Here we present the Li and Mg to Ca ratios at a bimonthly to monthly resolution over 25 years in two modern Porites corals, the genus most often used for paleoclimate reconstructions in the tropical Indo-Pacific. A strong relationship exists between coral Li/Ca and locally measured SST, indicating that coral Li/Ca can be used to reconstruct tropical SST variations. However, Li/Ca ratios of the skeleton deposited during 1979-1980 do not track local SST well and are anomalously high in places. The Mg/Ca ratios of this interval are also anomalously high, and we suggest Li/Ca can be used to reconstruct tropical SST only when Mg/Ca data are used to carefully screen for relatively rare biological effects. Mg/Li or Li/Mg ratios provide little advantage over Li/Ca ratios, except that the slope of the Li/Mg temperature relationship is more similar between the two corals. The Mg/Li temperature relationship for the coral that experienced a large temperature range is similar to that found for cold water corals and aragonitic benthic foraminifera in previous studies. The comparison with data from other biogenic aragonites suggests the relationship between Li/Mg and water temperature can be described by a single exponential relationship. Despite this hint at an overarching control, it is clear that biological processes strongly influence coral Li/Ca, and more calibration work is required before widely applying the prox

    Monsoon hydrography and productivity changes in the East China Sea during the past 100,000 years : Okinawa Trough evidence (MD012404)

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 24 (2009): PA3208, doi:10.1029/2007PA001577.We analyzed the high-resolution foraminifer isotope records, total organic carbon (TOC), and opal content from an Okinawa Trough core MD012404 in order to estimate the monsoon hydrography and productivity changes in the East China Sea (ECS) of the tropical western Pacific over the past 100,000 years. The variability shown in the records on orbital time scales indicates that high TOC intervals coincide with the increases of boreal May–September insolation driven by precession cycles (∼21 ka), implying a strong connection to the variations in monsoons. We also observed possibly nearly synchronous, millennial-scale changes of the ECS surface hydrography (mainly driven by salinity changes but also by temperature effects) and productivity coincident with monsoon events in the Hulu/Dongge stalagmite isotope records. We found that increased freshening and high productivity correlate with high monsoon intensity in interstadials. This study suggests that the millennial-scale changes in monsoon hydrography and productivity in the ECS are remarkable and persistent features over the past 100,000 years.Y.Y.’s work was partly supported by Global Environmental Research Fund (RF-081) and JSPS Kakenhi (21674003)

    Interlaboratory study for coral Sr/Ca and other element/Ca ratio measurements

    Get PDF
    The Sr/Ca ratio of coral aragonite is used to reconstruct past sea surface temperature (SST). Twentyone laboratories took part in an interlaboratory study of coral Sr/Ca measurements. Results show interlaboratory bias can be significant, and in the extreme case could result in a range in SST estimates of 7°C. However, most of the data fall within a narrower range and the Porites coral reference material JCp- 1 is now characterized well enough to have a certified Sr/Ca value of 8.838 mmol/mol with an expanded uncertainty of 0.089 mmol/mol following International Association of Geoanalysts (IAG) guidelines. This uncertainty, at the 95% confidence level, equates to 1.5°C for SST estimates using Porites, so is approaching fitness for purpose. The comparable median within laboratory error is <0.5°C. This difference in uncertainties illustrates the interlaboratory bias component that should be reduced through the use of reference materials like the JCp-1. There are many potential sources contributing to biases in comparative methods but traces of Sr in Ca standards and uncertainties in reference solution composition can account for half of the combined uncertainty. Consensus values that fulfil the requirements to be certified values were also obtained for Mg/Ca in JCp-1 and for Sr/Ca and Mg/Ca ratios in the JCt-1 giant clam reference material. Reference values with variable fitness for purpose have also been obtained for Li/Ca, B/Ca, Ba/Ca, and U/Ca in both reference materials. In future, studies reporting coral element/Ca data should also report the average value obtained for a reference material such as the JCp-1

    Indian Monsoonal Variations During the Past 80 Kyr Recorded in NGHP-02 Hole 19B, Western Bay of Bengal: Implications From Chemical and Mineral Properties

    Get PDF
    金沢大学理工研究域地球社会基盤学系Detailed reconstruction of Indian summer monsoons is necessary to better understand the late Quaternary climate history of the Bay of Bengal and Indian peninsula. We established a chronostratigraphy for a sediment core from Hole 19B in the western Bay of Bengal, extending to approximately 80 kyr BP and examined major and trace element compositions and clay mineral components of the sediments. Higher δ 18 O values, lower TiO 2 contents, and weaker weathering in the sediment source area during marine isotope stages (MIS) 2 and 4 compared to MIS 1, 3, and 5 are explained by increased Indian summer monsoonal precipitation and river discharge around the western Bay of Bengal. Clay mineral and chemical components indicate a felsic sediment source, suggesting the Precambrian gneissic complex of the eastern Indian peninsula as the dominant sediment source at this site since 80 kyr. Trace element ratios (Cr/Th, Th/Sc, Th/Co, La/Cr, and Eu/Eu*) indicate increased sediment contributions from mafic rocks during MIS 2 and 4. We interpret these results as reflecting the changing influences of the eastern and western branches of the Indian summer monsoon and a greater decrease in rainfall in the eastern and northeastern parts of the Indian peninsula than in the western part during MIS 2 and 4. © 2018. American Geophysical Union. All Rights Reserved

    Particle flux at mooring sites in the Pacific Ocean (Table 1)

    No full text
    In order to understand the vertical transport of particulate matter, suspended and settling particles were collected along a meridional transect between 46°N and 35°S and an equatorial longitudinal transect between 135°E and 175°E in the Pacific. The low COrganic/N atomic ratios (<8.2) of suspended particulate organic matter (OM) and good correlation between particulate organic carbon (OC) and chlorophyll-a confirmed that the suspended particulate OM in the surface water was mainly produced by phytoplankton. Only 0.1–3.2% of primary production was transported to 1.3 km water depth in the boreal central Pacific. All data on settling particles (excluding deep trap data) showed strongly positive correlation between total mass and OM fluxes with high correlation factor of 0.93. Biogenic opal-producing plankton, mainly diatoms were responsible for most of the vertical transport of particulate OM in association with higher COrganic/CCarbonate ratios in the subarctic and equatorial hemipelagic regions in the Pacific. This vertical transport of settling particles potentially works as a sink of CO2. In the transition zone during the May 1993, large difference between PCO2 (<300 µatm) in the surface water and pCO2 (340 µatm) in the atmosphere was actually due to enhanced particulate OM flux. Since the deep water of the Pacific is enriched in CO2 and nutrients, upwelled seawater may tend to release CO2 to the atmosphere. However, higher production of particulate matter could reduce the partial pressure of CO2 in the surface water. Also terrestrial nutrients' inputs in the western equatorial Pacific have potential for the reduction of CO2 in the surface water
    corecore