340 research outputs found

    Integrative multi-omics database (iMOMdb) of Asian pregnant women

    Get PDF
    Asians are underrepresented across many omics databases, thereby limiting the potential of precision medicine in nearly 60% of the global population. As such, there is a pressing need for multi-omics derived quantitative trait loci (QTLs) to fill the knowledge gap of complex traits in populations of Asian ancestry. Here, we provide the first blood-based multi-omics analysis of Asian pregnant women, constituting high-resolution genotyping (N= 1079), DNA methylation (N=915) and transcriptome profiling (N=238). Integrative omics analysis identified 219 154 CpGs associated with cis-DNA methylation QTLs (meQTLs) and 3703 RNAs associated with cis-RNA expression QTLs (eQTLs). Ethnicity was the largest contributor of inter-individual variation across all omics datasets, with 2561 genes identified as hotspots of this variation; 395 of these hotspot genes also contained both ethnicity-specific eQTLs and meQTLs. Gene set enrichment analysis of these ethnicity QTL hotspots showed pathways involved in lipid metabolism, adaptive immune system and carbohydrate metabolism. Pathway validation by profiling the lipidome (similar to 480 lipids) of antenatal plasma (N = 752) and placenta (N = 1042) in the same cohort showed significant lipid differences among Chinese, Malay and Indian women, validating ethnicity-QTL gene effects across different tissue types. To develop deeper insights into the complex traits and benefit future precision medicine research in Asian pregnant women, we developed iMOMdb, an open-access database.Peer reviewe

    Nuclear Scaffold Attachment Sites within ENCODE Regions Associate with Actively Transcribed Genes

    Get PDF
    The human genome must be packaged and organized in a functional manner for the regulation of DNA replication and transcription. The nuclear scaffold/matrix, consisting of structural and functional nuclear proteins, remains after extraction of nuclei and anchors loops of DNA. In the search for cis-elements functioning as chromatin domain boundaries, we identified 453 nuclear scaffold attachment sites purified by lithium-3,5-iodosalicylate extraction of HeLa nuclei across 30 Mb of the human genome studied by the ENCODE pilot project. The scaffold attachment sites mapped predominately near expressed genes and localized near transcription start sites and the ends of genes but not to boundary elements. In addition, these regions were enriched for RNA polymerase II and transcription factor binding sites and were located in early replicating regions of the genome. We believe these sites correspond to genome-interactions mediated by transcription factors and transcriptional machinery immobilized on a nuclear substructure

    Population-based plasma lipidomics reveals developmental changes in metabolism and signatures of obesity risk : a mother-offspring cohort study

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Background: Lipids play a vital role in health and disease, but changes to their circulating levels and the link with obesity remain poorly characterized in expecting mothers and their offspring in early childhood. Methods: LC-MS/MS-based quantitation of 480 lipid species was performed on 2491 plasma samples collected at 4 time points in the mother-offspring Asian cohort GUSTO (Growing Up in Singapore Towards healthy Outcomes). These 4 time points constituted samples collected from mothers at 26–28 weeks of gestation (n=752) and 4–5 years postpartum (n=650), and their offspring at birth (n=751) and 6 years of age (n=338). Linear regression models were used to identify the pregnancy and developmental age-specific variations in the plasma lipidomic profiles, and their association with obesity risk. An independent birth cohort (n=1935), the Barwon Infant Study (BIS), comprising mother-offspring dyads of Caucasian origin was used for validation. Results: Levels of 36% of the profiled lipids were significantly higher (absolute fold change > 1.5 and Padj < 0.05) in antenatal maternal circulation as compared to the postnatal phase, with phosphatidylethanolamine levels changing the most. Compared to antenatal maternal lipids, cord blood showed lower concentrations of most lipid species (79%) except lysophospholipids and acylcarnitines. Changes in lipid concentrations from birth to 6 years of age were much higher in magnitude (log2FC=−2.10 to 6.25) than the changes observed between a 6-year-old child and an adult (postnatal mother) (log2FC=−0.68 to 1.18). Associations of cord blood lipidomic profiles with birth weight displayed distinct trends compared to the lipidomic profiles associated with child BMI at 6 years. Comparison of the results between the child and adult BMI identified similarities in association with consistent trends (R2=0.75). However, large number of lipids were associated with BMI in adults (67%) compared to the children (29%). Pre-pregnancy BMI was specifically associated with decrease in the levels of phospholipids, sphingomyelin, and several triacylglycerol species in pregnancy. Conclusions: In summary, our study provides a detailed landscape of the in utero lipid environment provided by the gestating mother to the growing fetus, and the magnitude of changes in plasma lipidomic profiles from birth to early childhood. We identified the effects of adiposity on the circulating lipid levels in pregnant and non-pregnant women as well as offspring at birth and at 6 years of age. Additionally, the pediatric vs maternal overlap of the circulating lipid phenotype of obesity risk provides intergenerational insights and early opportunities to track and intervene the onset of metabolic adversities. Clinical trial registration: This birth cohort is a prospective observational study, which was registered on 1 July 2010 under the identifier NCT01174875.Peer reviewe

    DNA Replication Fading As Proliferating Cells Advance in Their Commitment to Terminal Differentiation

    Get PDF
    Terminal differentiation is the process by which cycling cells stop proliferating to start new specific functions. It involves dramatic changes in chromatin organization as well as gene expression. In the present report we used cell flow cytometry and genome wide DNA combing to investigate DNA replication during murine erythroleukemia-induced terminal cell differentiation. The results obtained indicated that the rate of replication fork movement slows down and the inter-origin distance becomes shorter during the precommitment and commitment periods before cells stop proliferating and accumulate in G1. We propose this is a general feature caused by the progressive heterochromatinization that characterizes terminal cell differentiation

    Safeguarding genome integrity: the checkpoint kinases ATR, CHK1 and WEE1 restrain CDK activity during normal DNA replication

    Get PDF
    Mechanisms that preserve genome integrity are highly important during the normal life cycle of human cells. Loss of genome protective mechanisms can lead to the development of diseases such as cancer. Checkpoint kinases function in the cellular surveillance pathways that help cells to cope with DNA damage. Importantly, the checkpoint kinases ATR, CHK1 and WEE1 are not only activated in response to exogenous DNA damaging agents, but are active during normal S phase progression. Here, we review recent evidence that these checkpoint kinases are critical to avoid deleterious DNA breakage during DNA replication in normal, unperturbed cell cycle. Possible mechanisms how loss of these checkpoint kinases may cause DNA damage in S phase are discussed. We propose that the majority of DNA damage is induced as a consequence of deregulated CDK activity that forces unscheduled initiation of DNA replication. This could generate structures that are cleaved by DNA endonucleases leading to the formation of DNA double-strand breaks. Finally, we discuss how these S phase effects may impact on our understanding of cancer development following disruption of these checkpoint kinases, as well as on the potential of these kinases as targets for cancer treatment

    Preferential Localization of Human Origins of DNA Replication at the 5′-Ends of Expressed Genes and at Evolutionarily Conserved DNA Sequences

    Get PDF
    Replication of mammalian genomes requires the activation of thousands of origins which are both spatially and temporally regulated by as yet unknown mechanisms. At the most fundamental level, our knowledge about the distribution pattern of origins in each of the chromosomes, among different cell types, and whether the physiological state of the cells alters this distribution is at present very limited.We have used standard λ-exonuclease resistant nascent DNA preparations in the size range of 0.7–1.5 kb obtained from the breast cancer cell line MCF–7 hybridized to a custom tiling array containing 50–60 nt probes evenly distributed among genic and non-genic regions covering about 1% of the human genome. A similar DNA preparation was used for high-throughput DNA sequencing. Array experiments were also performed with DNA obtained from BT-474 and H520 cell lines. By determining the sites showing nascent DNA enrichment, we have localized several thousand origins of DNA replication. Our major findings are: (a) both array and DNA sequencing assay methods produced essentially the same origin distribution profile; (b) origin distribution is largely conserved (>70%) in all cell lines tested; (c) origins are enriched at the 5′ends of expressed genes and at evolutionarily conserved intergenic sequences; and (d) ChIP on chip experiments in MCF-7 showed an enrichment of H3K4Me3 and RNA Polymerase II chromatin binding sites at origins of DNA replication.Our results suggest that the program for origin activation is largely conserved among different cell types. Also, our work supports recent studies connecting transcription initiation with replication, and in addition suggests that evolutionarily conserved intergenic sequences have the potential to participate in origin selection. Overall, our observations suggest that replication origin selection is a stochastic process significantly dependent upon local accessibility to replication factors

    Replication Fork Polarity Gradients Revealed by Megabase-Sized U-Shaped Replication Timing Domains in Human Cell Lines

    Get PDF
    In higher eukaryotes, replication program specification in different cell types remains to be fully understood. We show for seven human cell lines that about half of the genome is divided in domains that display a characteristic U-shaped replication timing profile with early initiation zones at borders and late replication at centers. Significant overlap is observed between U-domains of different cell lines and also with germline replication domains exhibiting a N-shaped nucleotide compositional skew. From the demonstration that the average fork polarity is directly reflected by both the compositional skew and the derivative of the replication timing profile, we argue that the fact that this derivative displays a N-shape in U-domains sustains the existence of large-scale gradients of replication fork polarity in somatic and germline cells. Analysis of chromatin interaction (Hi-C) and chromatin marker data reveals that U-domains correspond to high-order chromatin structural units. We discuss possible models for replication origin activation within U/N-domains. The compartmentalization of the genome into replication U/N-domains provides new insights on the organization of the replication program in the human genome
    corecore