11 research outputs found

    Spatio-temporal divergence in the responses of Finland's boreal forests to climate variables

    Get PDF
    Spring greening in boreal forest ecosystems has been widely linked to increasing temperature, but few studies have attempted to unravel the relative effects of climate variables such as maximum temperature (TMX), minimum temperature (TMN), mean temperature (TMP), precipitation (PRE) and radiation (RAD) on vegetation growth at different stages of growing season. However, clarifying these effects is fundamental to better understand the relationship between vegetation and climate change. This study investigated spatio-temporal divergence in the responses of Finland's boreal forests to climate variables using the plant phenology index (PPI) calculated based on the latest Collection V006 MODIS BRDF-corrected surface reflectance products (MCD43C4) from 2002 to 2018, and identified the dominant climate variables controlling vegetation change during the growing season (May-September) on a monthly basis. Partial least squares (PLS) regression was used to quantify the response of PPI to climate variables and distinguish the separate impacts of different variables. The study results show the dominant effects of temperature on the PPI in May and June, with TMX, TMN and TMP being the most important explanatory variables for the variation of PPI depending on the location, respectively. Meanwhile, drought had an unexpectedly positive impact on vegetation in few areas. More than 50 % of the variation of PPI could be explained by climate variables for 68.5 % of the entire forest area in May and 87.7 % in June, respectively. During July to September, the PPI variance explained by climate and corresponding spatial extent rapidly decreased. Nevertheless, the RAD was found be the most important explanatory variable to July PPI in some areas. In contrast, the PPI in August and September was insensitive to climate in almost all of the regions studied. Our study gives useful insights on quantifying and identifying the relative importance of climate variables to boreal forest, which can be used to predict the possible response of forest under future warming.Peer reviewe

    Evaluation of the plant phenology index (PPI), NDVI and EVI for start-of-season trend analysis of the Northern Hemisphere boreal zone

    No full text
    Satellite remote sensing of plant phenology provides an important indicator of climate change. However, start of the growing season (SOS) estimates in Northern Hemisphere boreal forest areas are known to be challenged by the presence of seasonal snow cover and limited seasonality in the greenness signal for evergreen needleleaf forests, which can both bias and impede trend estimates of SOS. The newly developed Plant Phenology Index (PPI) was specifically designed to overcome both problems. Here we use Moderate Resolution Imaging Spectroradiometer (MODIS) data (2000-2014) to analyze the ability of PPI for estimating start of season (SOS) in boreal regions of the Northern Hemisphere, in comparison to two other widely applied indices for SOS retrieval: the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI). Satellite-based SOS is evaluated against gross primary production (GPP)-retrieved SOS derived from a network of flux tower observations in boreal areas (a total of 81 site-years analyzed). Spatiotemporal relationships between SOS derived from PPI, EVI and NDVI are furthermore studied for different boreal land cover types and regions. The overall correlation between SOS derived from VIs and ground measurements was rather low, but PPI performed significantly better (r = 0.50, p < 0.01) than EVI and NDVI which both showed a very poor correlation (r = 0.11, p = 0. 16 and r = 0.08, p = 0.24). PPI, EVI and NDVI overall produce similar trends in SOS for the Northern Hemisphere showing an advance in SOS towards earlier dates (0.28, 0.23 and 0.26 days/year), but a pronounced difference in trend estimates between PPI and EVI/NDVI is observed for different land cover types. Deciduous needleleaf forest is characterized by the largest advance in SOS when considering all indices, yet PPI showed less dramatic changes as compared to EVI/NDVI (0.47 days/year as compared to 0.62 and 0.74). PPI SOS trends were found to be higher for deciduous broadleaf forests and savannas (0.54 and 0.56 days/year). Taken together, the findings of this study suggest improved performance of PPI over NDVI and EVI in retrieval of SOS in boreal regions and precautions must be taken when interpreting spatio-temporal patterns of SOS from the latter two indices
    corecore