20 research outputs found

    Antibiotic resistance genes in treated wastewater and in the receiving water bodies: a pan-European survey of urban settings

    Get PDF
    There is increasing public concern regarding the fate of antibiotic resistance genes (ARGs) during wastewater treatment, their persistence during the treatment process and their potential impacts on the receiving water bodies. In this study, we used quantitative PCR (qPCR) to determine the abundance of nine ARGs and a class 1 integron associated integrase gene in 16 wastewater treatment plant (WWTP) effluents from ten different European countries. In order to assess the impact on the receiving water bodies, gene abundances in the latter were also analysed. Six out of the nine ARGs analysed were detected in all effluent and river water samples. Among the quantified genes, intI1 and sul1 were the most abundant. Our results demonstrate that European WWTP contribute to the enrichment of the resistome in the receiving water bodies with the particular impact being dependent on the effluent load and local hydrological conditions. The ARGs concentrations in WWTP effluents were found to be inversely correlated to the number of implemented biological treatment steps, indicating a possible option for WWTP management. Furthermore, this study has identified bla as a possible resistance gene for future studies investigating the impact of WWTPs on their receiving water. [Abstract copyright: Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.

    Making waves: collaboration in the time of SARS-CoV-2 - rapid development of an international co-operation and wastewater surveillance database to support public health decision-making

    Get PDF
    The presence of SARS-CoV-2 RNA in wastewater was first reported in March 2020. Over the subsequent months, the potential for wastewater surveillance to contribute to COVID-19 mitigation programmes has been the focus of intense national and international research activities, gaining the attention of policy makers and the public. As a new application of an established methodology, focused collaboration between public health practitioners and wastewater researchers is essential to developing a common understanding on how, when and where the outputs of this non-invasive community-level approach can deliver actionable outcomes for public health authorities. Within this context, the NORMAN SCORE "SARS-CoV-2 in sewage" database provides a platform for rapid, open access data sharing, validated by the uploading of 276 data sets from nine countries to-date. Through offering direct access to underpinning meta-data sets (and describing its use in data interpretation), the NORMAN SCORE database is a resource for the development of recommendations on minimum data requirements for wastewater pathogen surveillance. It is also a tool to engage public health practitioners in discussions on use of the approach, providing an opportunity to build mutual understanding of the demand and supply for data and facilitate the translation of this promising research application into public health practice. [Abstract copyright: Copyright © 2021 Elsevier Ltd. All rights reserved.

    A global multinational survey of cefotaxime-resistant coliforms in urban wastewater treatment plants

    Get PDF
    The World Health Organization Global Action Plan recommends integrated surveillance programs as crucial strategies for monitoring antibiotic resistance. Although several national surveillance programs are in place for clinical and veterinary settings, no such schemes exist for monitoring antibiotic-resistant bacteria in the environment. In this transnational study, we developed, validated, and tested a low-cost surveillance and easy to implement approach to evaluate antibiotic resistance in wastewater treatment plants (WWTPs) by targeting cefotaxime-resistant (CTX-R) coliforms as indicators. The rationale for this approach was: i) coliform quantification methods are internationally accepted as indicators of fecal contamination in recreational waters and are therefore routinely applied in analytical labs; ii) CTX-R coliforms are clinically relevant, associated with extended-spectrum β-lactamases (ESBLs), and are rare in pristine environments. We analyzed 57 WWTPs in 22 countries across Europe, Asia, Africa, Australia, and North America. CTX-R coliforms were ubiquitous in raw sewage and their relative abundance varied significantly (<0.1% to 38.3%), being positively correlated (p < 0.001) with regional atmospheric temperatures. Although most WWTPs removed large proportions of CTX-R coliforms, loads over 10 colony-forming units per mL were occasionally observed in final effluents. We demonstrate that CTX-R coliform monitoring is a feasible and affordable approach to assess wastewater antibiotic resistance status. [Abstract copyright: Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.

    A global multinational survey of cefotaxime-resistant coliforms in urban wastewater treatment plants

    Get PDF
    The World Health Organization Global Action Plan recommends integrated surveillance programs as crucial strategies for monitoring antibiotic resistance. Although several national surveillance programs are in place for clinical and veterinary settings, no such schemes exist for monitoring antibiotic-resistant bacteria in the environment. In this transnational study, we developed, validated, and tested a low-cost surveillance and easy to implement approach to evaluate antibiotic resistance in wastewater treatment plants (WWTPs) by targeting cefotaxime-resistant (CTX-R) coliforms as indicators. The rationale for this approach was: i) coliform quantification methods are internationally accepted as indicators of fecal contamination in recreational waters and are therefore routinely applied in analytical labs; ii) CTX-R coliforms are clinically relevant, associated with extended-spectrum β-lactamases (ESBLs), and are rare in pristine environments. We analyzed 57 WWTPs in 22 countries across Europe, Asia, Africa, Australia, and North America. CTX-R coliforms were ubiquitous in raw sewage and their relative abundance varied significantly (&lt;0.1% to 38.3%), being positively correlated (p &lt; 0.001) with regional atmospheric temperatures. Although most WWTPs removed large proportions of CTX-R coliforms, loads over 103 colony-forming units per mL were occasionally observed in final effluents. We demonstrate that CTX-R coliform monitoring is a feasible and affordable approach to assess wastewater antibiotic resistance status

    The Mediterranean Decision Support System for Marine Safety dedicated to oil slicks predictions

    Get PDF
    In the Mediterranean sea the risk from oil spill pollution is high due to the heavy traffic of merchant vessels for transporting oil and gas, especially after the recent enlargement of the Suez canal and to the increasing coastal and offshore installations related to the oil industry in general. The basic response to major oil spills includes different measures and equipment. However, in order to strengthen the maritime safety related to oil spill pollution in the Mediterranean and to assist the response agencies, a multi-model oil spill prediction service has been set up, known as MEDESS-4MS (Mediterranean Decision Support System for Marine Safety). The concept behind the MEDESS-4MS service is the integration of the existing national ocean forecasting systems in the region with the Copernicus Marine Environmental Monitoring Service (CMEMS) and their interconnection, through a dedicated network data repository, facilitating access to all these data and to the data from the oil spill monitoring platforms, including the satellite data ones, with the well established oil spill models in the region. The MEDESS-4MS offer a range of service scenarios, multi-model data access and interactive capabilities to suite the needs of REMPEC (Regional Marine Pollution Emergency Response Centre for the Mediterranean Sea) and EMSA-CSN (European Maritime Safety Agency-CleanseaNet)

    A global multinational survey of cefotaxime-resistant coliforms in urban wastewater treatment plants

    Get PDF
    The World Health Organization Global Action Plan recommends integrated surveillance programs as crucial strategies for monitoring antibiotic resistance. Although several national surveillance programs are in place for clinical and veterinary settings, no such schemes exist for monitoring antibiotic-resistant bacteria in the environment. In this transnational study, we developed, validated, and tested a low-cost surveillance and easy to implement approach to evaluate antibiotic resistance in wastewater treatment plants (WWTPs) by targeting cefotaxime-resistant (CTX-R) coliforms as indicators. The rationale for this approach was: i) coliform quantification methods are internationally accepted as indicators of fecal contamination in recreational waters and are therefore routinely applied in analytical labs; ii) CTX-R coliforms are clinically relevant, associated with extended-spectrum ?-lactamases (ESBLs), and are rare in pristine environments. We analyzed 57 WWTPs in 22 countries across Europe, Asia, Africa, Australia, and North America. CTX-R coliforms were ubiquitous in raw sewage and their relative abundance varied significantly (< 0.1% to 38.3%), being positively correlated (p < 0.001) with regional atmospheric temperatures. Although most WWTPs removed large proportions of CTX-R coliforms, loads over 103 colony-forming units per mL were occasionally observed in final effluents. We demonstrate that CTX-R coliform monitoring is a feasible and affordable approach to assess wastewater antibiotic resistance status

    Shotgun metagenomics assessment of the resistome, mobilome, pathogen dynamics and their ecological control modes in full-scale urban wastewater treatment plants

    No full text
    The conventional activated sludge (CAS) process has limited capacity to remove pathogenic microorganisms and antibiotic resistance genes (ARGs), compared to membrane bioreactors (MBRs). However, the full extent of pathogenic microbial fraction, resistome (antibiotic and biocide resistance genes, ARGs and BRGs) and mobilome (mobile genetic elements, MGE) of urban wastewater treatment plant (UWTP) influents and effluents remains unknown. Thus, the fate of putative pathogenic bacteria, ARGs and potential co-occurrence patterns with BRGs, MGEs and bacterial-predatory microorganisms was determined in two full-scale UWTPs, a MBR and a CAS system, using shotgun metagenomics. Both UWTPs significantly reduced the BOD5 (99.4–99.9%), COD (97.6–99.4%) and TSS (98.9–99.9%). MBR was more effective in reducing the abundance and diversity of pathogen-containing taxa, with 4 and 30 taxa enriched in MBR and CAS effluents, respectively. MBR treatment favored resistance genes associated with triclosan, whereas CAS effluents contained ARGs associated with antibiotics of clinical importance. Correlations between putative pathogenic bacteria, ARG/BRGs/MGEs and bacterial-predatory microorganisms suggested that: (i) opportunistic pathogens (Clostridia, Nocardia) may acquire ARGs against first-line treatments and (ii) bacteriophages may act as a biogenic mechanism of pathogen removal. These findings reinforce the MBR capacity to retain pathogenic components, hence reducing potential health risks associated with treated wastewater reuse. © 2021 Elsevier B.V

    The Mediterranean Decision Support System for Marine Safety dedicated to oil slicks predictions

    No full text
    In the Mediterranean sea the risk from oil spill pollution is high due to the heavy traffic of merchant vessels for transporting oil and gas, especially after the recent enlargement of the Suez canal and to the increasing coastal and offshore installations related to the oil industry in general. The basic response to major oil spills includes different measures and equipment. However, in order to strengthen the maritime safety related to oil spill pollution in the Mediterranean and to assist the response agencies, a multi-model oil spill prediction service has been set up, known as MEDESS-4MS (Mediterranean Decision Support System for Marine Safety). The concept behind the MEDESS-4MS service is the integration of the existing national ocean forecasting systems in the region with the Copernicus Marine Environmental Monitoring Service (CMEMS) and their interconnection, through a dedicated network data repository, facilitating access to all these data and to the data from the oil spill monitoring platforms, including the satellite data ones, with the well established oil spill models in the region. The MEDESS-4MS offer a range of service scenarios, multi-model data access and interactive capabilities to suite the needs of REMPEC (Regional Marine Pollution Emergency Response Centre for the Mediterranean Sea) and EMSA-CSN (European Maritime Safety Agency-CleanseaNet). © 2016 Elsevier Lt
    corecore