142 research outputs found

    The Will to Political Power: Rwandan Women in Leadership

    Get PDF
    Rwanda has one of the highest representations of women in parliament in the world. This article examines, from the perspective of a female MP in parliament, the dynamics behind the process of supporting more women assuming leadership positions in parliament. The article argues that the implementation of an electoral gender quota certainly carves the space necessary to allow more women to enter politics, nevertheless, a constellation of factors is needed to work together in order to create the enabling environment necessary for the quota to be effective. Some of these factors include (but are not restricted to) challenging the hierarchical gender relations in post?genocide Rwanda; the political will on the part of the government to engender politics; the role of national machineries in monitoring and pressing for gender?sensitive national policies, as well as the strategic mobilisation of female parliamentarians backed by the progressive new Rwandan constitution

    Effects of the Bacterial Extract OM-85 on Phagocyte Functions and the Stress Response

    Get PDF
    The effects of the bacterial extract OM-85 on the respiratory burst, intracellular calcium and the stress response have been investigated in human peripheral blood monocytes from normal donors. Activation of the respiratory burst during bacterial phagocytosis has been previously associated with heat shock/stress proteins synthesis. Whereas OM-85 stimulated superoxide production and increased Ca2+ mobilization, it fared to induce synthesis of classical HSPs. The lack of stress protein induction was observed even in the presence of iron which potentiates both oxidative injury and stress protein induction during bacterial phagocytosis. However OM-85 induced a 75–78 kDa protein, which is likely to be a glucose regulated protein (GRP78), and enhanced intracellular expression of interleukin-lβ precursor

    Poor farmers - poor yields: socio-economic, soil fertility and crop management indicators affecting climbing bean productivity in northern Rwanda

    Get PDF
    Climbing bean is the key staple legume crop in the highlands of East and Central Africa. We assessed the impact of interactions between soil fertility characteristics, crop management and socio-economic factors, such as household resource endowment and gender of the farmer, on climbing bean productivity and yield responses to basal P fertiliser in northern Rwanda. Through a combination of detailed characterisations of 12 farms and on-farm demonstration trials at 110 sites, we evaluated variability in grain yields and responses to fertiliser. Grain yields varied between 0.14 and 6.9 t ha−1 with an overall average of 1.69 t ha−1. Household resource endowment and gender of the farmer was strongly associated with climbing bean yield, even though these were partly confounded with Sector. Poorer households and women farmers achieved lower yields than wealthier households and male farmers. Household resource endowment and gender were likely to act as proxies for a range of agronomic and crop management factors that determine crop productivity, such as soil fertility, current and past access to organic manure and mineral fertiliser, access to sufficient quality staking material, ability to conduct crop management operation on time, but we found evidence for only some of these relationships. Poorer households and female farmers grew beans on soils with poorer soil fertility. Moreover, poorer households had a lower density of stakes, while stake density was strongly correlated with yield. Diammonium phosphate (DAP) fertiliser application led to a substantial increase in the average grain yield (0.66 t ha−1), but a large variability in responses implied that its use would be economically worthwhile for roughly half of the farmers. For the sake of targeting agricultural innovations to those households that are most likely to adopt, the Ubudehe household typology – a Rwandan government system of wealth categorisation – could be a useful and easily available tool to structure rural households within regions of Rwanda that are relatively uniform in agro-ecology

    Expression and function of alpha(v)beta(3) and alpha(v)beta(5) integrins in the developing pancreas: roles in the adhesion and migration of putative endocrine progenitor cells.

    Get PDF
    Cell-cell and cell-matrix interactions play a critical role in tissue morphogenesis and in homeostasis of adult tissues. The integrin family of adhesion receptors regulates cellular interactions with the extracellular matrix, which provides three-dimensional information for tissue organization. It is currently thought that pancreatic islet cells develop from undifferentiated progenitors residing within the ductal epithelium of the fetal pancreas. This process involves cell budding from the duct, migration into the surrounding mesenchyme, differentiation, and clustering into the highly organized islet of Langerhans. Here we report that alpha(v)beta(3) and alpha(v)beta(5), two integrins known to coordinate epithelial cell adhesion and movement, are expressed in pancreatic ductal cells and clusters of undifferentiated cells emerging from the ductal epithelium. We show that expression and function of alpha(v)beta(3) and alpha(v)beta(5) integrins are developmentally regulated during pancreatic islet ontogeny, and mediate adhesion and migration of putative endocrine progenitor cells both in vitro and in vivo in a model of pancreatic islet development. Moreover, we demonstrate the expression of fibronectin and collagen IV in the basal membrane of pancreatic ducts and of cell clusters budding from the ductal epithelium. Conversely, expression of vitronectin marks a population of epithelial cells adjacent to, or emerging from, pancreatic ducts. Thus, these data provide the first evidence for the contribution of integrins alpha(v)beta(3) and alpha(v)beta(5) and their ligands to morphogenetic events in the human endocrine pancreas

    Focal Adhesion Remodeling Is Crucial for Glucose-Stimulated Insulin Secretion and Involves Activation of Focal Adhesion Kinase and Paxillin

    Get PDF
    Actin cytoskeleton remodeling is known to be involved in glucose-stimulated insulin secretion (GSIS). We have observed glucose-stimulated changes at the β-cell basal membrane similar to focal adhesion remodeling in cell migration. This led us to study the role of two key focal adhesion proteins, focal adhesion kinase (FAK) and paxillin, in GSIS

    В.І. Вернадський і Україна

    Get PDF
    BACKGROUND: Allergies arise from aberrant Th2 responses to allergens. The processes involved in the genesis of allergic sensitization remain elusive. Some allergens such as derived from house dust mites, have proteolytic activity which can induce oxidative stress in vivo. A reduced capacity of the host to control oxidative stress might prime for allergic sensitization. METHODS: Two different strains of mice were compared for their anti-oxidant and immune response to HDM. Protease activity of the HDM extract was reduced to investigate its role in oxidative stress induction in the airways and whether this induction could determine allergic sensitization and inflammation. The role of oxidative stress in allergic sensitization was also investigated in humans. An occupational cohort of animal workers was followed for development of sensitization to rodent urinary proteins. Levels of oxidative stress in serum and anti-oxidant responses by PBMCs were determined. RESULTS: Susceptibility to allergic sensitization to mite allergens in mice was highly dependent on host genetic background and was associated with oxidative stress in the lungs before allergen exposure and poor anti-oxidant response after allergen exposure. Reduction of mite protease activity limited its capacity to induce oxidative stress and allergic inflammation in mice. We showed that also in human subjects, oxidative stress before allergen exposure and poor anti-oxidant responses were associated with predisposition to occupational allergy. CONCLUSION: Our study indicates that oxidative stress condition before allergen exposure due to an inadequate anti-oxidant response primes for allergic Th2 responses. This article is protected by copyright. All rights reserved

    Residues from black soldier fly (Hermetia illucens) larvae rearing influence the plant-associated soil microbiome in the short term

    Get PDF
    Open Access Journal; Published online: 26 Sep 2022The larvae of the black soldier fly (BSFL, Hermetia illucens) efficiently close resource cycles. Next to the nutrient-rich insect biomass used as animal feed, the residues from the process are promising plant fertilizers. Besides a high nutrient content, the residues contain a diverse microbial community and application to soil can potentially promote soil fertility and agricultural production through the introduction of beneficial microbes. This research assessed the application of the residues on plant-associated bacterial and fungal communities in the rhizosphere of a grass-clover mix in a 42-day greenhouse pot study. Potted soil was amended with BSFL residues (BR+) or conventional compost (CC+) produced by Rwandan waste management companies in parallel to residues and compost sterilized (BR-, CC-) by high-energy electron beam (HEEB) as abiotic controls. The fertilizers were applied at a rate of 150  kg N  ha−1. Soil bacterial and fungal communities in both fertilizer and soil were assessed by high-throughput sequencing of ribosomal markers at different times after fertilizer application. Additionally, indicators for soil fertility such as basal respiration, plant yield and soil physicochemical properties were analyzed. Results showed that the application of BSFL residues influenced the soil microbial communities, and especially fungi, stronger than CC fertilizers. These effects on the microbial community structure could partly be attributed to a potential introduction of microbes to the soil by BSFL residues (e.g., members of genus Bacillus) since untreated and sterilized BSFL residues promoted different microbial communities. With respect to the abiotic effects, we emphasize a potential driving role of particular classes of organic matter like fiber and chitin. Indeed, especially taxa associated with decomposition of organic matter (e.g., members of the fungal genus Mortierella) were promoted by the application of BSFL residues. Soil fertility with respect to plant yield (+17% increase compared to unamended control) and basal respiration (+16% increase compared to unamended control) tended to be improved with the addition of BSFL residues. Findings underline the versatile opportunities for soil fertility arising from the application of BSFL residues in plant production and point to further research on quantification of the described effects
    corecore