21 research outputs found

    ASSESSMENT OF ANTIMICROBIAL AND ANTIOXIDANT ACTIVITIES OF AMOMUM SUBULATUM ROXB. OF NEPAL

    Get PDF
    Objective: The present study was designed to study and compare the antibacterial and antioxidant activity of methanol extracts of Amomum subulatumRoxb. seeds collected from two different regions of Nepal.Methods: Antioxidant activity was determined by 1, 1-diphenyl-2-picrylhydrazyl assay and Antibacterial activity was measured by agar well-diffusionmethod.Results: Results showed that both sample extracts had interesting antibacterial activity against all test microorganisms and had remarkable radicalscavenging potential to be used as an antioxidant. Sample B (i.e., collected from high altitude Taplejung district) exerted comparative quit higherantimicrobial and antioxidant activity than the Sample A (i.e., is collected from low altitude Panchthar district). However, the standard antibacterialdrug Tetracycline exhibits superior activity than the extracts.Conclusions: The results suggest that both samples (i.e., seed extract of A. subulatum Roxb.) possess almost similar moderate antibacterial andantioxidant activity in comparison to standards which justifies the traditional use of this plant.Keywords: Extract, Cardamom, Activity, Medicinal plants, Seeds, Bacillus pumilus

    Canine Distemper Virus in Tigers (Panthera tigris) and Leopards (P. pardus) in Nepal

    Get PDF
    From wild dogs (Lycaon pictus) in the Serengeti to tigers (Panthera tigris altaica) in the Russian Far East, canine distemper virus (CDV) has been repeatedly identified as a threat to wild carnivores. Between 2020 and 2022, six Indian leopards (P. pardus fusca) presented to Nepali authorities with fatal neurological disease, consistent with CDV. Here, we report the findings of a serosurvey of wild felids from Nepal. A total of 48 serum samples were tested, comprising 28 Bengal tigers (P. t. tigris) and 20 Indian leopards. Neutralizing antibodies were identified in three tigers and six leopards, equating to seroprevalences of 11% (CI: 2.8–29.3%, n = 28) and 30% (CI: 12.8–54.3%, n = 20), respectively. More than one-third of seropositive animals were symptomatic, and three died within a week of being sampled. The predation of domestic dogs (Canis lupus familiaris) has been posited as a potential route of infection. A comparison of existing diet studies revealed that while leopards in Nepal frequently predate on dogs, tigers do not, potentially supporting this hypothesis. However, further work, including molecular analyses, would be needed to confirm this

    Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and attributable disease burden in 204 countries and territories, 1990-2019 : a systematic analysis from the Global Burden of Disease Study 2019

    Get PDF
    Background Ending the global tobacco epidemic is a defining challenge in global health. Timely and comprehensive estimates of the prevalence of smoking tobacco use and attributable disease burden are needed to guide tobacco control efforts nationally and globally. Methods We estimated the prevalence of smoking tobacco use and attributable disease burden for 204 countries and territories, by age and sex, from 1990 to 2019 as part of the Global Burden of Diseases, Injuries, and Risk Factors Study. We modelled multiple smoking-related indicators from 3625 nationally representative surveys. We completed systematic reviews and did Bayesian meta-regressions for 36 causally linked health outcomes to estimate non-linear dose-response risk curves for current and former smokers. We used a direct estimation approach to estimate attributable burden, providing more comprehensive estimates of the health effects of smoking than previously available. Findings Globally in 2019, 1.14 billion (95% uncertainty interval 1.13-1.16) individuals were current smokers, who consumed 7.41 trillion (7.11-7.74) cigarette-equivalents of tobacco in 2019. Although prevalence of smoking had decreased significantly since 1990 among both males (27.5% [26. 5-28.5] reduction) and females (37.7% [35.4-39.9] reduction) aged 15 years and older, population growth has led to a significant increase in the total number of smokers from 0.99 billion (0.98-1.00) in 1990. Globally in 2019, smoking tobacco use accounted for 7.69 million (7.16-8.20) deaths and 200 million (185-214) disability-adjusted life-years, and was the leading risk factor for death among males (20.2% [19.3-21.1] of male deaths). 6.68 million [86.9%] of 7.69 million deaths attributable to smoking tobacco use were among current smokers. Interpretation In the absence of intervention, the annual toll of 7.69 million deaths and 200 million disability-adjusted life-years attributable to smoking will increase over the coming decades. Substantial progress in reducing the prevalence of smoking tobacco use has been observed in countries from all regions and at all stages of development, but a large implementation gap remains for tobacco control. Countries have a dear and urgent opportunity to pass strong, evidence-based policies to accelerate reductions in the prevalence of smoking and reap massive health benefits for their citizens. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019: A Systematic Analysis for the Global Burden of Disease Study 2019.

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019) provided systematic estimates of incidence, morbidity, and mortality to inform local and international efforts toward reducing cancer burden. To estimate cancer burden and trends globally for 204 countries and territories and by Sociodemographic Index (SDI) quintiles from 2010 to 2019. The GBD 2019 estimation methods were used to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life years (DALYs) in 2019 and over the past decade. Estimates are also provided by quintiles of the SDI, a composite measure of educational attainment, income per capita, and total fertility rate for those younger than 25 years. Estimates include 95% uncertainty intervals (UIs). In 2019, there were an estimated 23.6 million (95% UI, 22.2-24.9 million) new cancer cases (17.2 million when excluding nonmelanoma skin cancer) and 10.0 million (95% UI, 9.36-10.6 million) cancer deaths globally, with an estimated 250 million (235-264 million) DALYs due to cancer. Since 2010, these represented a 26.3% (95% UI, 20.3%-32.3%) increase in new cases, a 20.9% (95% UI, 14.2%-27.6%) increase in deaths, and a 16.0% (95% UI, 9.3%-22.8%) increase in DALYs. Among 22 groups of diseases and injuries in the GBD 2019 study, cancer was second only to cardiovascular diseases for the number of deaths, years of life lost, and DALYs globally in 2019. Cancer burden differed across SDI quintiles. The proportion of years lived with disability that contributed to DALYs increased with SDI, ranging from 1.4% (1.1%-1.8%) in the low SDI quintile to 5.7% (4.2%-7.1%) in the high SDI quintile. While the high SDI quintile had the highest number of new cases in 2019, the middle SDI quintile had the highest number of cancer deaths and DALYs. From 2010 to 2019, the largest percentage increase in the numbers of cases and deaths occurred in the low and low-middle SDI quintiles. The results of this systematic analysis suggest that the global burden of cancer is substantial and growing, with burden differing by SDI. These results provide comprehensive and comparable estimates that can potentially inform efforts toward equitable cancer control around the world.Funding/Support: The Institute for Health Metrics and Evaluation received funding from the Bill & Melinda Gates Foundation and the American Lebanese Syrian Associated Charities. Dr Aljunid acknowledges the Department of Health Policy and Management of Kuwait University and the International Centre for Casemix and Clinical Coding, National University of Malaysia for the approval and support to participate in this research project. Dr Bhaskar acknowledges institutional support from the NSW Ministry of Health and NSW Health Pathology. Dr Bärnighausen was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, which is funded by the German Federal Ministry of Education and Research. Dr Braithwaite acknowledges funding from the National Institutes of Health/ National Cancer Institute. Dr Conde acknowledges financial support from the European Research Council ERC Starting Grant agreement No 848325. Dr Costa acknowledges her grant (SFRH/BHD/110001/2015), received by Portuguese national funds through Fundação para a Ciência e Tecnologia, IP under the Norma Transitória grant DL57/2016/CP1334/CT0006. Dr Ghith acknowledges support from a grant from Novo Nordisk Foundation (NNF16OC0021856). Dr Glasbey is supported by a National Institute of Health Research Doctoral Research Fellowship. Dr Vivek Kumar Gupta acknowledges funding support from National Health and Medical Research Council Australia. Dr Haque thanks Jazan University, Saudi Arabia for providing access to the Saudi Digital Library for this research study. Drs Herteliu, Pana, and Ausloos are partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084. Dr Hugo received support from the Higher Education Improvement Coordination of the Brazilian Ministry of Education for a sabbatical period at the Institute for Health Metrics and Evaluation, between September 2019 and August 2020. Dr Sheikh Mohammed Shariful Islam acknowledges funding by a National Heart Foundation of Australia Fellowship and National Health and Medical Research Council Emerging Leadership Fellowship. Dr Jakovljevic acknowledges support through grant OI 175014 of the Ministry of Education Science and Technological Development of the Republic of Serbia. Dr Katikireddi acknowledges funding from a NHS Research Scotland Senior Clinical Fellowship (SCAF/15/02), the Medical Research Council (MC_UU_00022/2), and the Scottish Government Chief Scientist Office (SPHSU17). Dr Md Nuruzzaman Khan acknowledges the support of Jatiya Kabi Kazi Nazrul Islam University, Bangladesh. Dr Yun Jin Kim was supported by the Research Management Centre, Xiamen University Malaysia (XMUMRF/2020-C6/ITCM/0004). Dr Koulmane Laxminarayana acknowledges institutional support from Manipal Academy of Higher Education. Dr Landires is a member of the Sistema Nacional de Investigación, which is supported by Panama’s Secretaría Nacional de Ciencia, Tecnología e Innovación. Dr Loureiro was supported by national funds through Fundação para a Ciência e Tecnologia under the Scientific Employment Stimulus–Institutional Call (CEECINST/00049/2018). Dr Molokhia is supported by the National Institute for Health Research Biomedical Research Center at Guy’s and St Thomas’ National Health Service Foundation Trust and King’s College London. Dr Moosavi appreciates NIGEB's support. Dr Pati acknowledges support from the SIAN Institute, Association for Biodiversity Conservation & Research. Dr Rakovac acknowledges a grant from the government of the Russian Federation in the context of World Health Organization Noncommunicable Diseases Office. Dr Samy was supported by a fellowship from the Egyptian Fulbright Mission Program. Dr Sheikh acknowledges support from Health Data Research UK. Drs Adithi Shetty and Unnikrishnan acknowledge support given by Kasturba Medical College, Mangalore, Manipal Academy of Higher Education. Dr Pavanchand H. Shetty acknowledges Manipal Academy of Higher Education for their research support. Dr Diego Augusto Santos Silva was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil Finance Code 001 and is supported in part by CNPq (302028/2018-8). Dr Zhu acknowledges the Cancer Prevention and Research Institute of Texas grant RP210042

    Status and management of the endangered wild water buffalo ('Bubalis arnee') in Koshi Tappu Wildlife Reserve, Nepal

    No full text
    Asian wild water buffalo ('Bubalus arnee') are large ungulates, and the progenitors of all domestic water buffalo ('Bubalus bubalis'). There are two domestic types: the river buffalo of the Indian sub-continent and further west to the Balkans and Italy (Figure 24.1), and the swamp buffalo of Assam in the west, through Southeast Asia to the Yangtze Valley of China (Figure 24.2). All populations of 'Bubalus arnee' are considered Endangered (IUCN 2013), but in Nepal this species is protected by the National Parks and Wildlife Conservation Act (His Majesty's Government Ministry of Law and Justice 1977). There is evidence of buffaloes in the Indus Valley at least 5000 years ago (Nowak 1999; Lenstra & Bradley 1999). Although the historic range is uncertain, the species may have occurred from Mesopotamia to Indochina (Sinclair 1977). River and swamp buffalo were domesticated independently from different wild stocks that diverged anywhere from 10 000-15 000 (Barker et al. 1997) to over one million years ago (Amano 'et al'. 1994), but probably around 128 000-280 000 years ago (Kumar 'et al'. 2007a). River buffalo were domesticated around 6300 BP in the western region of the Indian subcontinent (Kumar 'et a'l. 2007b). Microsatellite and mtDNA diversity analyses (Yindee 2010; Zhang 'et al'. 2011) combined with archaeological evidence (Higham 2002) indicate domestication of the swamp buffalo in southern China/northern Indo-China about 2000 BC

    Irrigation demands aggravate fishing threats to river dolphins in Nepal

    No full text
    Riverine species are adapted to natural habitat changes caused by seasonal flood-pulses. However, abrupt river channel changes following flooding events intersect with social systems of land and water management (e.g. agriculture,fisheries) and in turn generate significant consequences for conservation of endangered aquatic species. We investigated trade offs between changing river habitat availability and exposure to fishing intensity for a small population of Ganges River dolphins Platanista gangetica gangetica in the Karnali basin of Nepal. A major natural flooding event in the Karnali basin in 2010 caused the river channel to shift from the Geruwa (flows through a protected area where fishing is restricted) to the Karnali channel (high fishing activity, agriculture-dominated), where dolphins moved in response. Based on our survey data (2009–2015) and long-term hydrological trends in the basin, we found that irrigation diversions since 2012 had aggravated fishing impacts on dolphins, suggesting that their new habitat had become an ‘ecological trap’. Regression models showed that at low river depths, fishing intensity negatively affected dolphin abundance, but at higher depths no effect of fishing was observed. Two records of dolphin by catch in gill nets confirmed this, as both events corresponded with periods of sudden increase in water abstraction for irrigation. Overall, dolphin distribution shifted downstream and the population declined from 11 in 2012 to 6 in 2015. Effective protection of this river dolphin population from extinction will require the Government of Nepal to prioritize ecologically adequate river flow regimes for implementing efficient irrigation schemes and adaptive fisheries regulations in the Karnali basi

    Rapid behavioral responses of endangered tigers to major roads during COVID-19 lockdown

    No full text
    Roads pose a major, and growing, challenge for the conservation of endangered species. However, very little is known about how endangered species behaviorally respond to roads and what that means for road mitigation strategies. We used the nation-wide lockdown in Nepal during the COVID-19 pandemic as a natural experiment to investigate how dramatic reductions in traffic volume along the national highway affected movements of two GPS-collared tigers (Panthera tigris)—a globally endangered species. This work is the first systematic research on tigers in Nepal using radiotelemetry or GPS tracking data since the 1980s. We found that the highway more strongly constrained the space use and habitat selection of the male in Parsa National Park than the female in Bardia National Park. Over the entire study period, the female on average crossed 10 times more often per week than the male, and when he was near the highway, he was over 11 times more probable to not cross it than to cross during the day. However, we also found that the cessation of traffic during the pandemic lockdown relaxed tiger avoidance of roads and made the highway more permeable for both animals. They were 2–3 times more probable to cross the highway during the lockdown than before the lockdown. In the month following the lockdown, the space use area of the male tiger tripled in size (160–550 km2), whereas the female’s shrunk to half its previous size (33–15 km2). These divergent patterns likely reflect differences between the two parks in their highway traffic volumes and regulations as well as ecological conditions. Our results provide clear evidence that vehicle traffic on major roads impede tiger movements, but also that tigers can respond quickly to reductions in human pressures. We conclude by identifying various actions to mitigate road impacts on tigers and other endangered species
    corecore