24 research outputs found

    Targeted metagenomics of active microbial populations with stable-isotope probing

    Get PDF
    The ability to explore microbial diversity and function has been enhanced by novel experimental and computational tools. The incorporation of stable isotopes into microbial biomass enables the recovery of labeled nucleic acids from active microorganisms, despite their initial abundance and culturability. Combining stable-isotope probing (SIP) with metagenomics provides access to genomes from microorganisms involved in metabolic processes of interest. Studies using metagenomic analysis on DNA obtained from DNA-SIP incubations can be ideal for the recovery of novel enzymes for biotechnology applications, including biodegradation, biotransformation, and biosynthesis. This chapter introduces metagenomic and DNA-SIP methodologies, highlights biotechnology-focused studies that combine these approaches, and provides perspectives on future uses of these methods as analysis tools for applied and environmental microbiology

    Implications of climate change: how does increased water temperature influence biofilm and water quality of chlorinated drinking water distribution systems?

    Get PDF
    Temperature variation can promote physico-chemical and microbial changes in the water transported through distribution systems and influence the dynamics of biofilms attached to pipes, thus contributing to the release of pathogens into the bulk drinking water. An experimental real-scale chlorinated DWDS was used to study the effect of increasing temperature from 16 to 24°C on specific pathogens, bacterial-fungal communities (biofilm and water samples) and determine the risk of material accumulation and mobilisation from the pipes into the bulk water. Biofilm was developed for 30 days at both temperatures in the pipe walls, and after this growth phase, a flushing was performed applying 4 gradual steps by increasing the shear stress. The fungal-bacterial community characterised by Illumina MiSeq sequencing, and specific pathogens were studied using qPCR: Mycobacterium spp., Mycobacterium avium complex, Acanthamoeba spp., Pseudomonas aeruginosa, Legionella pneumophilia, and Stenotrophomonas maltophilia. Sequencing data showed that temperature variation significantly modified the structure of biofilm microbial communities from the early stages of biofilm development. Regarding bacteria, Pseudomonas increased its relative abundance in biofilms developed at 24°C, while fungal communities showed loss of diversity and richness, and the increase in dominance of Fusarium genus. After the mobilisation phase, Pseudomonas continued being the most abundant genus at 24°C, followed by Sphingobium and Sphingomonas. For biofilm fungal communities after the mobilisation phase, Helotiales incertae sedis and Fusarium were the most abundant taxa. Results from qPCR showed a higher relative abundance of Mycobacterium spp. on day 30 and M. avium complex throughout the growth phase within the biofilms at higher temperatures. The temperature impacts were not only microbial, with physical mobilisation showing higher discolouration response and metals release due to the increased temperature. While material accumulation was accelerated by temperature, it was not preferentially to either stronger or weaker biofilm layers, as turbidity results during the flushing steps showed. This research yields new understanding on microbial challenges that chlorinated DWDS will undergo as global temperature rises, this information is needed in order to protect drinking water quality and safety while travelling through distribution systems

    The microbial methane cycle

    No full text
    This special issue highlights several recent discoveries in the microbial methane cycle, including the diversity and activity of methanotrophic bacteria in special habitats, distribution and contribution of the newly discovered Verrucomicrobia, metabolism of methane and related one-carbon compounds such as methanol and methylamine in freshwater and marine environments, methanol and methane-dependent nitrate reduction, the relationships of methane cycle microorganisms with plants and animals, and the environmental factors that regulate microbial processes of the methane cycle. These articles also highlight the plethora of new organisms and metabolism relating to the methane cycle that have been discovered in recent years and outline the many questions in the methane cycle that still need to be addressed. It is clear that despite a tremendous amount of research on the biology of the methane cycle, the microbes involved in catalysing methane production and consumption harbour many secrets that need to be disclosed in order for us to fully understand how the biogeochemical methane cycle is regulated in the environment, and for us to make future predictions about the global sources and sinks of methane and how anthropogenic changes impact on the cycling of this important greenhouse gas

    XoxF encoding an alternative methanol dehydrogenase is widespread in coastal marine environments

    Get PDF
    The xoxF gene, encoding a pyrroloquinoline quinone-dependent methanol dehydrogenase, is found in all known proteobacterial methylotrophs. In several newly discovered methylotrophs, XoxF is the active methanol dehydrogenase, catalysing the oxidation of methanol to formaldehyde. Apart from that, its potential role in methylotrophy and carbon cycling is unknown. So far, the diversity of xoxF in the environment has received little attention. We designed PCR primer sets targeting clades of the xoxF gene, and used 454 pyrosequencing of PCR amplicons obtained from DNA of four coastal marine environments for a unique assessment of the diversity of xoxF in these habitats. Phylogenetic analysis of the data obtained revealed a high diversity of xoxF genes from two of the investigated clades, and substantial differences in sequence composition between environments. Sequences were classified as being related to a wide range of both methylotrophs and non-methylotrophs from Alpha-, Beta- and Gammaproteobacteria. The most prominent sequences detected were related to the family Rhodobacteraceae, the genus Methylotenera and the OM43 clade of Methylophilales, and are thus related to organisms that employ XoxF for methanol oxidation. Furthermore, our analyses revealed a high degree of so far undescribed sequences, suggesting a high number of unknown species in these habitats
    corecore