532 research outputs found

    Phonetic detail in the developing lexicon

    Get PDF
    Although infants show remarkable sensitivity to linguistically relevant phonetic variation in speech, young children sometimes appear not to make use of this sensitivity. Here, children's knowledge of the sound-forms of familiar words was assessed using a visual fixation task. Dutch 19-month-olds were shown pairs of pictures and heard correct pronunciations and mispronunciations of familiar words naming one of the pictures. Mispronunciations were word-initial in Experiment 1 and word-medial in Experiment 2, and in both experiments involved substituting one segment with [d] (a common sound in Dutch) or [g] (a rare sound). In both experiments, word recognition performance was better for correct pronunciations than for mispronunciations involving either substituted consonant. These effects did not depend upon children's knowledge of lexical or nonlexical phonological neighbors of the tested words. The results indicate the encoding of phonetic detail in words at 19 months

    11-month-olds' knowledge of how familiar words sounds

    Get PDF
    During the first year of life, infants' perception of speech becomes tuned to the phonology of the native language, as revealed in laboratory discrimination and categorization tasks using syllable stimuli. However, the implications of these results for the development of the early vocabulary remain controversial, with some results suggesting that infants retain only vague, sketchy phonological representations of words. Five experiments using a preferential listening procedure tested Dutch 11-month-olds' responses to word, nonword and mispronounced-word stimuli. Infants listened longer to words than nonwords, but did not exhibit this response when words were mispronounced at onset or at offset. In addition, infants preferred correct pronunciations to onset mispronunciations. The results suggest that infants' encoding of familiar words includes substantial phonological detail

    Lexical exposure and word-from encoding in 1.5-year-olds

    Get PDF
    In this study, 1.5-year-olds were taught a novel word. Some children were familiarized with the word's phonological form before learning the word's meaning. Fidelity of phonological encoding was tested in a picture-fixation task using correctly pronounced and mispronounced stimuli. Only children with additional exposure in familiarization showed reduced recognition performance given slight mispronunciations relative to correct pronunciations; children with fewer exposures did not. Mathematical modeling of vocabulary exposure indicated that children may hear thousands of words frequently enough for accurate encoding. The results provide evidence compatible with partial failure of phonological encoding at 19 months of age, demonstrate that this limitation in learning does not always hinder word recognition, and show the value of infants' word-form encoding in early lexical development

    tRNA signatures reveal polyphyletic origins of streamlined SAR11 genomes among the alphaproteobacteria

    Get PDF
    Phylogenomic analyses are subject to bias from compositional convergence and noise from horizontal gene transfer (HGT). Compositional convergence is a likely cause of controversy regarding phylogeny of the SAR11 group of Alphaproteobacteria that have extremely streamlined, A+T-biased genomes. While careful modeling can reduce artifacts caused by convergence, the most consistent and robust phylogenetic signal in genomes may lie distributed among encoded functional features that govern macromolecular interactions. Here we develop a novel phyloclassification method based on signatures derived from bioinformatically defined tRNA Class-Informative Features (CIFs). tRNA CIFs are enriched for features that underlie tRNA-protein interactions. Using a simple tRNA-CIF-based phyloclassifier, we obtained results consistent with those of bias-corrected whole proteome phylogenomic studies, rejecting monophyly of SAR11 and affiliating most strains with Rhizobiales with strong statistical support. Yet SAR11 and Rickettsiales tRNA genes share distinct patterns of A+T-richness, as expected from their elevated genomic A+T compositions. Using conventional supermatrix methods on total tRNA sequence data, we could recover the artifactual result of a monophyletic SAR11 grouping with Rickettsiales. Thus tRNA CIF-based phyloclassification is more robust to base content convergence than supermatrix phylogenomics on whole tRNA sequences. Also, given the notoriously promiscuous HGT of aminoacyl-tRNA synthetases, tRNA CIF-based phyloclassification may be relatively robust to HGT of network components. We describe how unique features of tRNA-protein interaction networks facilitate the mining of traits governing macromolecular interactions from genomic data, and discuss why interaction-governing traits may be especially useful to solve difficult problems in microbial classification and phylogeny

    Lexical competition in young children's word learning

    Get PDF
    In two experiments, 1.5-year-olds were taught novel words whose sound patterns were phonologically similar to familiar words (novel neighbors) or were not (novel nonneighbors). Learning was tested using a picture-fixation task. In both experiments, children learned the novel nonneighbors but not the novel neighbors. In addition, exposure to the novel neighbors impaired recognition performance on familiar neighbors. Finally, children did not spontaneously use phonological differences to infer that a novel word referred to a novel object. Thus, lexical competition—inhibitory interaction among words in speech comprehension—can prevent children from using their full phonological sensitivity in judging words as novel. These results suggest that word learning in young children, as in adults, relies not only on the discrimination and identification of phonetic categories, but also on evaluating the likelihood that an utterance conveys a new word

    tRNA functional signatures classify plastids as late-branching cyanobacteria.

    Get PDF
    BackgroundEukaryotes acquired the trait of oxygenic photosynthesis through endosymbiosis of the cyanobacterial progenitor of plastid organelles. Despite recent advances in the phylogenomics of Cyanobacteria, the phylogenetic root of plastids remains controversial. Although a single origin of plastids by endosymbiosis is broadly supported, recent phylogenomic studies are contradictory on whether plastids branch early or late within Cyanobacteria. One underlying cause may be poor fit of evolutionary models to complex phylogenomic data.ResultsUsing Posterior Predictive Analysis, we show that recently applied evolutionary models poorly fit three phylogenomic datasets curated from cyanobacteria and plastid genomes because of heterogeneities in both substitution processes across sites and of compositions across lineages. To circumvent these sources of bias, we developed CYANO-MLP, a machine learning algorithm that consistently and accurately phylogenetically classifies ("phyloclassifies") cyanobacterial genomes to their clade of origin based on bioinformatically predicted function-informative features in tRNA gene complements. Classification of cyanobacterial genomes with CYANO-MLP is accurate and robust to deletion of clades, unbalanced sampling, and compositional heterogeneity in input tRNA data. CYANO-MLP consistently classifies plastid genomes into a late-branching cyanobacterial sub-clade containing single-cell, starch-producing, nitrogen-fixing ecotypes, consistent with metabolic and gene transfer data.ConclusionsPhylogenomic data of cyanobacteria and plastids exhibit both site-process heterogeneities and compositional heterogeneities across lineages. These aspects of the data require careful modeling to avoid bias in phylogenomic estimation. Furthermore, we show that amino acid recoding strategies may be insufficient to mitigate bias from compositional heterogeneities. However, the combination of our novel tRNA-specific strategy with machine learning in CYANO-MLP appears robust to these sources of bias with high accuracy in phyloclassification of cyanobacterial genomes. CYANO-MLP consistently classifies plastids as late-branching Cyanobacteria, consistent with independent evidence from signature-based approaches and some previous phylogenetic studies

    Data From: Developmental Change in English-Learning Children’s Interpretations of Salient Pitch Contours in Word Learning

    Get PDF
    To efficiently recognize words, children learning an intonational language like English should avoid interpreting pitch-contour variation as signaling lexical contrast, despite the relevance of pitch at other levels of structure. Thus far, the developmental time-course with which English-learning children rule out pitch as a contrastive feature has been incompletely characterized. Prior studies have tested diverse lexical contrasts and have not tested beyond 30 months. To specify the developmental trajectory over a broader age range, we extended a prior study (Quam & Swingley, 2010), in which 30-month-olds and adults disregarded pitch changes, but attended to vowel changes, in newly learned words. Using the same phonological contrasts, we tested 3- to 5-year-olds, 24-month-olds, and 18-month-olds. The older two groups were tested using the language-guided-looking method. The oldest group attended to vowels but not pitch. Surprisingly, 24-month-olds ignored not just pitch but sometimes vowels as well—conflicting with prior findings of phonological constraint at 24 months. The youngest group was tested using the Switch habituation method, half with additional phonetic variability in training. Eighteen-month-olds learned both pitch-contrasted and vowel-contrasted words, whether or not additional variability was present. Thus, native-language phonological constraint was not evidenced prior to 30 months (Quam & Swingley, 2010). Given the surprising insensitivity to mispronunciations at 24 months, we tested 24-month-olds in two additional experiments, which are reported in Supplemental Materials. Experiment S1 tested 24-month-olds in the low-variability condition of the Switch procedure used at 18 months, finding that—in contrast to 18-month-olds—24-month-olds did not detect switches to the trained word-object pairings when the switches involved either a pitch change or a vowel change. Experiment S2 again used Switch habituation training, but tested children in a language-guided looking test instead of a Switch test (Yoshida, Fennell, Swingley, & Werker, 2009). Again, 24-month-olds showed no evidence of detecting subtle differences in word pronunciations. The data from all five experiments (1, 2, 3, S1, S2) are included in the data files in the interests of transparency

    When half a word is enough: infants can recognize spoken words using partial phonetic information

    Get PDF
    Adults process speech incrementally, rapidly identifying spoken words on the basis of initial phonetic information sufficient to distinguish them from alternatives. In this study, infants in the second year also made use of word-initial information to understand fluent speech. The time course of comprehension was examined by tracking infants' eye movements as they looked at pictures in response to familiar spoken words, presented both as whole words in intact form and as partial words in which only the first 300 ms of the word was heard. In Experiment 1, 21-month-old infants (N = 32) recognized partial words as quickly and reliably as they recognized whole words; in Experiment 2, these findings were replicated with 18-month-old infants (N = 32). Combining the data from both experiments, efficiency in spoken word recognition was examined in relation to level of lexical development. Infants with more than 100 words in their productive vocabulary were more accurate in identifying familiar words than were infants with less than 60 words. Grouped by response speed, infants with faster mean reaction times were more accurate in word recognition and also had larger productive vocabularies than infants with slower response latencies. These results show that infants in the second year are capable of incremental speech processing even before entering the vocabulary spurt, and that lexical growth is associated with increased speed and efficiency in understanding spoken language
    • …
    corecore