141 research outputs found

    Multiscale characterisation of the mechanical properties of austenitic stainless steel joints

    Get PDF
    A multiscale investigation was pursued in order to obtain the strain distribution and evolution during tensile testing both at the macro- and micro-scale for a diffusion bonded 316L stainless steel. The samples were designed for the purpose to demonstrate that the bond line properties were equal or better than the parent material in a sample geometry that was extracted from a larger component. The macroscopic stress-strain curves were coupled to the strain distributions using a camera-based 2D – Digital Image Correlation system. Results showed significant amount of plastic deformation predominantly concentrated in shear bands which were extended over a large region, crossing through the joint area. Yet it was not possible to be certain whether the joint has shown significant plastic deformation. In order to obtain the joints’ mechanical response in more detail, in situ micromechanical testing was conducted in the SEM chamber that allowed areas of 1x1 mm2 and 50x50 mm2 to be investigated. The size of the welded region was rather small to be accurately captured from the camera based DIC system. Therefore a microscale investigation was pursued where the samples were tested within an SEM chamber. Low magnification SEM imaging was utilised in order to cover a viewing area of 1 mm×1 mm while high magnification SEM imaging was employed to provide evidence of the occurrence of plastic deformation within the joint, at an area of just 50 μm×50 μm. The strain evolution over the microstructural level, within the joint and at the base material was obtained. The local strains were highly non-homogeneous through the whole test. Final failure occurred approximately 0.2 mm away from the joint. Large local strains were measured within the joint region, while SEM imaging showed that plastic deformation occurs via the formation of strong slip bands, followed by the activation of additional slip systems upon further plastic deformation which end up in additional slip bands to form on the surface. Plastic deformation occurred by slip and twinning mechanisms. Upon necking, significant out of plane deformations and slip deformation mechanisms were observed which suggested that plastic deformation was also happening at the last stages of damage evolution for the specific alloy. This was also evident from the large difference between the 600 MPa UTS stress value and the low stress values before final failure (which in many cases was below 30 MPa)

    Additively manufactured metallic biomaterials

    Get PDF
    Metal additive manufacturing (AM) has led to an evolution in the design and fabrication of hard tissue substitutes, enabling personalized implants to address each patient's specific needs. In addition, internal pore architectures integrated within additively manufactured scaffolds, have provided an opportunity to further develop and engineer functional implants for better tissue integration, and long-term durability. In this review, the latest advances in different aspects of the design and manufacturing of additively manufactured metallic biomaterials are highlighted. After introducing metal AM processes, biocompatible metals adapted for integration with AM machines are presented. Then, we elaborate on the tools and approaches undertaken for the design of porous scaffold with engineered internal architecture including, topology optimization techniques, as well as unit cell patterns based on lattice networks, and triply periodic minimal surface. Here, the new possibilities brought by the functionally gradient porous structures to meet the conflicting scaffold design requirements are thoroughly discussed. Subsequently, the design constraints and physical characteristics of the additively manufactured constructs are reviewed in terms of input parameters such as design features and AM processing parameters. We assess the proposed applications of additively manufactured implants for regeneration of different tissue types and the efforts made towards their clinical translation. Finally, we conclude the review with the emerging directions and perspectives for further development of AM in the medical industry.National Institutes of Health || The Natural Sciences and Engineering Research Council of Canada || Network for Holistic Innovation in Additive Manufacturin

    Effect of density and unit cell size grading on the stiffness and energy absorption of short fibre-reinforced functionally graded lattice structures

    Get PDF
    Architectured structures, particularly functionally graded lattices, are receiving much attention in both industry and academia as they facilitate the customization of the structural response and harness the potential for multi-functional applications. This work experimentally investigates how the severity of density and unit cell size grading as well as the building direction affects the stiffness, energy absorption and structural response of additively manufactured (AM) short fibre-reinforced lattices with same relative density. Specimens composed of tessellated body-centred cubic (BCC), Schwarz-P (SP) and Gyroid (GY) unit cells were tested under compression. Compared to the uniform lattices of equal density, it was found, that modest density grading has a positive and no effect on the total compressive stiffness of SP and BCC lattices, respectively. More severe grading gradually reduces the total stiffness, with the modulus of the SP lattices never dropping below that of the uniform counterparts. Unit cell size grading had no significant influence on the stiffness and revealed an elastomer-like performance as opposed to the density graded lattices of the same relative density, suggesting a foam-like behaviour. Density grading of bending-dominated unit cell lattices showcased better energy absorption capability for small displacements, whereas grading of the stretching-dominated counterparts is advantageous for large displacements when compared to the ungraded lattice. The severity of unit cell size graded lattices does not affect the energy absorption capability. Finally, a power-law approach was used to semi-empirically derive a formula that predicts the cumulative energy absorption as a function of the density gradient and relative density. Overall, these findings will provide engineers with valuable knowledge that will ease the design choices for lightweight multi-functional AM-parts

    Extra low interstitial titanium based fully porous morphological bone scaffolds manufactured using selective laser melting

    Get PDF
    This is an accepted manuscript of an article published by Elsevier in Journal of the Mechanical Behavior of Biomedical Materials on 29/03/2019, available online: https://doi.org/10.1016/j.jmbbm.2019.03.025 The accepted version of the publication may differ from the final published version.Lattice structure based morphologically matched scaffolds is rapidly growing facilitated by developments in Additive Manufacturing. These porous structures are particularly promising due to their potential in reducing stress shielding and maladapted stress concentration. Accordingly, this study presents Extra Low Interstitial (ELI) Titanium alloy based morphological scaffolds featuring three different porous architecture. All scaffolds were additively manufactured using Selective Laser Melting from Ti6Al4V ELI with porosities of 73.85, 60.53 and 55.26% with the global geometry dictated through X-Ray Computed Tomography. The elastic and plastic performance of both the scaffold prototypes and the bone section being replaced were evaluated through uniaxial compression testing. Comparing the data, the suitability of the Maxwell criterion in evaluating the stiffness behaviour of fully porous morphological scaffolds are carried out. The outcomes show that the best performing scaffolds presented in this study have high strength (169 MPa) and low stiffness (5.09 GPa) suitable to minimise stress shielding. The matching morphology in addition to high porosity allow adequate space for flow circulation and has the potential to reduce maladapted stress concentration. Finally, the Electron Diffraction X-ray analysis revealed a small difference in the composition of aluminium between the particle and the bonding material at the scaffold surface

    Open Celled Porous Titanium

    Get PDF
    Among the porous metals, those made of titanium attract particular attention due to the interesting properties of this element. This review examines the state of research understanding and technological development of these materials, in terms of processing capability, resultant structure and properties, and the most advanced applications under development. The impact of the rise of additive manufacturing techniques on these materials is discussed, along with the likely future directions required for these materials to find practical applications on a large scale
    corecore