1,037 research outputs found

    New results from the NA57 experiment

    Full text link
    We report results from the experiment NA57 at CERN SPS on hyperon production at midrapidity in Pb-Pb collisions at 158 AA GeV/cc and 40 AA GeV/cc. Λ\Lambda, Ξ\Xi and Ω\Omega yields are compared with those from the STAR experiment at the higher energy of the BNL RHIC. Λ\Lambda, Ξ\Xi, Ω\Omega\ and preliminary KS0K_S^0 transverse mass spectra are presented and interpreted within the framework of a hydro-dynamical blast wave model.Comment: 8 pages, 3 figures, contribution to the proceedings of The XXXVIIIth Rencontres de Moriond "QCD and High Energy Hadronic Interactions

    Strange particle production in 158 and 40 AA GeV/cc Pb-Pb and p-Be collisions

    Full text link
    Results on strange particle production in Pb-Pb collisions at 158 and 40 AA GeV/cc beam momentum from the NA57 experiment at CERN SPS are presented. Particle yields and ratios are compared with those measured at RHIC. Strangeness enhancements with respect to p-Be reactions at the same beam momenta have been also measured: results about their dependence on centrality and collision energy are reported and discussed.Comment: Contribution to the proceedings of the "Hot Quarks 2004" Conference, July 18-24 2004, New Mexico, USA, submitted to Journal of Physics G 7 pages, 5 figure

    Results on cascade production in lead-lead interactions from the NA57 experiment

    Get PDF
    The NA57 experiment has been designed to study the production of strange and multi-strange particles in Pb-Pb and p-Be collisions at the CERN SPS. The predecessor experiment WA97 has measured an enhanced abundance of strange particles in Pb-Pb collisions relative to p-A reactions at 160 GeV/c per nucleon beam momentum. NA57 has extended the WA97 measurements to investigate the evolution of the strangeness enhancement pattern as a function of the beam energy and over a wider centrality range. In this paper, we report results on cascade production for about the 60% most central collisions at 160 GeV/c per nucleon

    Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions

    Get PDF
    At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark-gluon plasma (QGP)(1). Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed(2-6). Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions(7), is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton-proton (pp) collisions(8,9), but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton-proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with the p-Pb collision results(10,11), indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb-Pb collisions, where a QGP is formed.Peer reviewe

    Long- and short-range correlations and their event-scale dependence in high-multiplicity pp collisions at 1as = 13 TeV

    Get PDF
    Two-particle angular correlations are measured in high-multiplicity proton-proton collisions at s = 13 TeV by the ALICE Collaboration. The yields of particle pairs at short-( 06\u3b7 3c 0) and long-range (1.6 < | 06\u3b7| < 1.8) in pseudorapidity are extracted on the near-side ( 06\u3c6 3c 0). They are reported as a function of transverse momentum (pT) in the range 1 < pT< 4 GeV/c. Furthermore, the event-scale dependence is studied for the first time by requiring the presence of high-pT leading particles or jets for varying pT thresholds. The results demonstrate that the long-range \u201cridge\u201d yield, possibly related to the collective behavior of the system, is present in events with high-pT processes as well. The magnitudes of the short- and long-range yields are found to grow with the event scale. The results are compared to EPOS LHC and PYTHIA 8 calculations, with and without string-shoving interactions. It is found that while both models describe the qualitative trends in the data, calculations from EPOS LHC show a better quantitative agreement for the pT dependency, while overestimating the event-scale dependency. [Figure not available: see fulltext.

    Constraints on jet quenching in p-Pb collisions at root s(NN)=5.02 TeV measured by the event-activity dependence of semi-inclusive hadron-jet distributions

    Get PDF
    CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFINEP - FINANCIADORA DE ESTUDOS E PROJETOSFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOThe ALICE Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets recoiling from a high-transverse momentum trigger hadron in p-Pb collisions at root s(NN) = 5.02TeV. Jets are reconstructed from charged-particle tracks using the anti-k(T) algorithm with resolution parameter R = 0.2 and 0.4. A data-driven statistical approach is used to correct the uncorrelated background jet yield. Recoil jet distributions are reported for jet transverse momentum 15 < p(T,jet)(ch) < 50 GeV/c and are compared in various intervals of p-Pb event activity, based on charged-particle multiplicity and zero-degree neutral energy in the forward (Pb-going) direction. The semi-inclusive observable is self-normalized and such comparisons do not require the interpretation of p-Pb event activity in terms of collision geometry, in contrast to inclusive jet observables. These measurements provide new constraints on the magnitude of jet quenching in small systems at the LHC. In p-Pb collisions with high event activity, the average medium-induced out-of-cone energy transport for jets with R = 0.4 and 15 < p(T,jet)(ch) < 50 GeV/c is measured to be less than 0.4 GeV/c at 90% confidence, which is over an order of magnitude smaller than a similar measurement for central Pb-Pb collisions at root s(NN) = 2.76 TeV. Comparison is made to theoretical calculations of jet quenching in small systems, and to inclusive jet measurements in p-Pb collisions selected by event activity at the LHC and in d-Au collisions at RHIC.78395113CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFINEP - FINANCIADORA DE ESTUDOS E PROJETOSFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFINEP - FINANCIADORA DE ESTUDOS E PROJETOSFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOSem informaçãoSem informaçãoSem informaçãoAgĂȘncias de fomento estrangeiras apoiaram essa pesquisa, mais informaçÔes acesse artig
    • 

    corecore