29 research outputs found

    Investigation of tumor hypoxia using a two-enzyme system for in vitro generation of oxygen deficiency

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oxygen deficiency in tumor tissue is associated with a malign phenotype, characterized by high invasiveness, increased metastatic potential and poor prognosis. Hypoxia chambers are the established standard model for <it>in vitro </it>studies on tumor hypoxia. An enzymatic hypoxia system (GOX/CAT) based on the use of glucose oxidase (GOX) and catalase (CAT) that allows induction of stable hypoxia for <it>in vitro </it>approaches more rapidly and with less operating expense has been introduced recently. Aim of this work is to compare the enzymatic system with the established technique of hypoxia chamber in respect of gene expression, glucose metabolism and radioresistance, prior to its application for <it>in vitro </it>investigation of oxygen deficiency.</p> <p>Methods</p> <p>Human head and neck squamous cell carcinoma HNO97 cells were incubated under normoxic and hypoxic conditions using both hypoxia chamber and the enzymatic model. Gene expression was investigated using Agilent microarray chips and real time PCR analysis. <sup>14</sup>C-fluoro-deoxy-glucose uptake experiments were performed in order to evaluate cellular metabolism. Cell proliferation after photon irradiation was investigated for evaluation of radioresistance under normoxia and hypoxia using both a hypoxia chamber and the enzymatic system.</p> <p>Results</p> <p>The microarray analysis revealed a similar trend in the expression of known HIF-1 target genes between the two hypoxia systems for HNO97 cells. Quantitative RT-PCR demonstrated different kinetic patterns in the expression of carbonic anhydrase IX and lysyl oxidase, which might be due to the faster induction of hypoxia by the enzymatic system. <sup>14</sup>C-fluoro-deoxy-glucose uptake assays showed a higher glucose metabolism under hypoxic conditions, especially for the enzymatic system. Proliferation experiments after photon irradiation revealed increased survival rates for the enzymatic model compared to hypoxia chamber and normoxia, indicating enhanced resistance to irradiation. While the GOX/CAT system allows independent investigation of hypoxia and oxidative stress, care must be taken to prevent acidification during longer incubation.</p> <p>Conclusion</p> <p>The results of our study indicate that the enzymatic model can find application for <it>in vitro </it>investigation of tumor hypoxia, despite limitations that need to be considered in the experimental design.</p

    Proteomic profiling of Burkholderia cenocepacia clonal isolates with different virulence potential retrieved from a cystic fibrosis patient during chronic lung infection

    Get PDF
    Respiratory infections with Burkholderia cepacia complex (Bcc) bacteria in cystic fibrosis (CF) are associated with a worse prognosis and increased risk of death. In this work, we assessed the virulence potential of three B. cenocepacia clonal isolates obtained from a CF patient between the onset of infection (isolate IST439) and before death with cepacia syndrome 3.5 years later (isolate IST4113 followed by IST4134), based on their ability to invade epithelial cells and compromise epithelial monolayer integrity. The two clonal isolates retrieved during late-stage disease were significantly more virulent than IST439. Proteomic profiling by 2-D DIGE of the last isolate recovered before the patient's death, IST4134, and clonal isolate IST439, was performed and compared with a prior analysis of IST4113 vs. IST439. The cytoplasmic and membrane-associated enriched fractions were examined and 52 proteins were found to be similarly altered in the two last isolates compared with IST439. These proteins are involved in metabolic functions, nucleotide synthesis, translation and protein folding, cell envelope biogenesis and iron homeostasis. Results are suggestive of the important role played by metabolic reprogramming in the virulence potential and persistence of B. cenocepacia, in particular regarding bacterial adaptation to microaerophilic conditions. Also, the content of the virulence determinant AidA was higher in the last 2 isolates. Significant levels of siderophores were found to be secreted by the three clonal isolates in an iron-depleted environment, but the two late isolates were more tolerant to low iron concentrations than IST439, consistent with the relative abundance of proteins involved in iron uptake.This work was supported by FEDER and FCT – Fundação para a CiĂȘncia e a Tecnologia (contract PEst-OE/EQB/LA0023/2011_ research line: Systems and Synthetic Biology; PhD grant to A.M. – SFRH/BD/37012/2007, and PD grants to S.S. – SFRH/BPD/75483/2010 and C.C. – SFRH/BPD/ 81220/2011. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    Loss of expression of TGF-ÎČs and their receptors in chronic skin lesions induced by sulfur mustard as compared with chronic contact dermatitis patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sulfur mustard (SM) is a blister-forming agent that has been used as a chemical weapon. Sulfur mustard can cause damage in various organs, especially the skin, respiratory system, and eyes. Generally, the multiple complications of mustard gas result from its alkalizing potency; it reacts with cellular components like DNA, RNA, proteins, and lipid membranes.</p> <p>TGF-ÎČ is a multi-functional cytokine with multiple biological effects ranging from cell differentiation and growth inhibition to extracellular matrix stimulation, immunosuppression, and immunomodulation. TGF-ÎČ has 3 isoforms (TGF-ÎČ 1, 2, 3) and its signaling is mediated by its receptors: R1, R2 and intracellular Smads molecules.</p> <p>TGF-ÎČ has been shown to have anti-inflammatory effects. TGF-ÎČs and their receptors also have an important role in modulation of skin inflammation, proliferation of epidermal cells, and wound healing, and they have been implicated in different types of skin inflammatory disorders.</p> <p>Methods</p> <p>Seventeen exposed SM individuals (48.47 ± 9.3 years), 17 chronic dermatitis patients (46.52 ± 14.6 years), and 5 normal controls (44.00 ± 14.6 years) were enrolled in this study.</p> <p>Evaluation of TGF-ÎČs and their receptors expressions was performed by semiquantitative RT-PCR. Only TGF1was analyzed immunohistochemically.</p> <p>Results</p> <p>Our results showed significant decreases in the expression percentages of TGF-ÎČ 1, 2 and R1, R2 in chemical victims in comparison with chronic dermatitis and normal subjects and significant decreases in the intensity of R1 and R2 expressions in chemical victims in comparison with chronic dermatitis and normal controls. (P value < 0.05)</p> <p>Conclusions</p> <p>TGF-ÎČs and their receptors appear to have a noticeable role in chronic inflammatory skin lesions caused by sulfur mustard.</p

    Inhibition of ERÎČ Induces Resistance to Cisplatin by Enhancing Rad51–Mediated DNA Repair in Human Medulloblastoma Cell Lines

    Get PDF
    Cisplatin is one of the most widely used and effective anticancer drugs against solid tumors including cerebellar tumor of the childhood, Medulloblastoma. However, cancer cells often develop resistance to cisplatin, which limits therapeutic effectiveness of this otherwise effective genotoxic drug. In this study, we demonstrate that human medulloblastoma cell lines develop acute resistance to cisplatin in the presence of estrogen receptor (ER) antagonist, ICI182,780. This unexpected finding involves a switch from the G2/M to G1 checkpoint accompanied by decrease in ATM/Chk2 and increase in ATR/Chk1 phosphorylation. We have previously reported that ERÎČ, which is highly expressed in medulloblastomas, translocates insulin receptor substrate 1 (IRS-1) to the nucleus, and that nuclear IRS-1 binds to Rad51 and attenuates homologous recombination directed DNA repair (HRR). Here, we demonstrate that in the presence of ICI182,780, cisplatin-treated medulloblastoma cells show recruitment of Rad51 to the sites of damaged DNA and increase in HRR activity. This enhanced DNA repair during the S phase preserved also clonogenic potential of medulloblastoma cells treated with cisplatin. In conclusion, inhibition of ERÎČ considered as a supplemental anticancer therapy, has been found to interfere with cisplatin–induced cytotoxicity in human medulloblastoma cell lines

    Penetration of the Stigma and Style Elicits a Novel Transcriptome in Pollen Tubes, Pointing to Genes Critical for Growth in a Pistil

    Get PDF
    Pollen tubes extend through pistil tissues and are guided to ovules where they release sperm for fertilization. Although pollen tubes can germinate and elongate in a synthetic medium, their trajectory is random and their growth rates are slower compared to growth in pistil tissues. Furthermore, interaction with the pistil renders pollen tubes competent to respond to guidance cues secreted by specialized cells within the ovule. The molecular basis for this potentiation of the pollen tube by the pistil remains uncharacterized. Using microarray analysis in Arabidopsis, we show that pollen tubes that have grown through stigma and style tissues of a pistil have a distinct gene expression profile and express a substantially larger fraction of the Arabidopsis genome than pollen grains or pollen tubes grown in vitro. Genes involved in signal transduction, transcription, and pollen tube growth are overrepresented in the subset of the Arabidopsis genome that is enriched in pistil-interacted pollen tubes, suggesting the possibility of a regulatory network that orchestrates gene expression as pollen tubes migrate through the pistil. Reverse genetic analysis of genes induced during pollen tube growth identified seven that had not previously been implicated in pollen tube growth. Two genes are required for pollen tube navigation through the pistil, and five genes are required for optimal pollen tube elongation in vitro. Our studies form the foundation for functional genomic analysis of the interactions between the pollen tube and the pistil, which is an excellent system for elucidation of novel modes of cell–cell interaction

    Data Descriptor: A global multiproxy database for temperature reconstructions of the Common Era

    Get PDF
    Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850-2014. Global temperature composites show a remarkable degree of coherence between high-and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python.(TABLE)Since the pioneering work of D'Arrigo and Jacoby1-3, as well as Mann et al. 4,5, temperature reconstructions of the Common Era have become a key component of climate assessments6-9. Such reconstructions depend strongly on the composition of the underlying network of climate proxies10, and it is therefore critical for the climate community to have access to a community-vetted, quality-controlled database of temperature-sensitive records stored in a self-describing format. The Past Global Changes (PAGES) 2k consortium, a self-organized, international group of experts, recently assembled such a database, and used it to reconstruct surface temperature over continental-scale regions11 (hereafter, ` PAGES2k-2013').This data descriptor presents version 2.0.0 of the PAGES2k proxy temperature database (Data Citation 1). It augments the PAGES2k-2013 collection of terrestrial records with marine records assembled by the Ocean2k working group at centennial12 and annual13 time scales. In addition to these previously published data compilations, this version includes substantially more records, extensive new metadata, and validation. Furthermore, the selection criteria for records included in this version are applied more uniformly and transparently across regions, resulting in a more cohesive data product.This data descriptor describes the contents of the database, the criteria for inclusion, and quantifies the relation of each record with instrumental temperature. In addition, the paleotemperature time series are summarized as composites to highlight the most salient decadal-to centennial-scale behaviour of the dataset and check mutual consistency between paleoclimate archives. We provide extensive Matlab code to probe the database-processing, filtering and aggregating it in various ways to investigate temperature variability over the Common Era. The unique approach to data stewardship and code-sharing employed here is designed to enable an unprecedented scale of investigation of the temperature history of the Common Era, by the scientific community and citizen-scientists alike

    Induction, repair and biological relevance of radiation-induced DNA lesions in eukaryotic cells

    No full text

    SWITCH: a dynamic CRISPR tool for genome engineering and metabolic pathway control for cell factory construction in Saccharomyces cerevisiae

    Get PDF
    Additional file 1: Figure S1. The SWITCH recombination event triggering substitution of cas9 (human codon optimized) for dcas9 (yeast codon optimized). Figure S2. Confirmation of cas9 integration into the X-3 locus by diagnostic PCR. Figure S3. Control screening in strain S-0 of the three gRNAs tested for swapping cas9. Figure S4. Exploiting SWITCH for marker-free integration into a specific locus. Figure S5. The three assembler fragments used with SWITCH for marker-free integration of the complete naringenin pathway into locus XI-2. Figure S6. Naringenin producers created by SWITCH and assembler. Figure S7. Gene regulation by SWITCH. Figure S8. Implementing SWITCH for TSC13 down regulation. Table S1. The main primers used in this study. Table S2. Plasmid list
    corecore