89 research outputs found

    Auditing User-Provided Axioms in Software Verification Conditions

    Get PDF

    New γ -ray transitions observed in Ne 19 with implications for the O 15 (α,γ) Ne 19 reaction rate

    Get PDF
    The O15(α,γ)Ne19 reaction is responsible for breakout from the hot CNO cycle in type I x-ray bursts. Understanding the properties of resonances between Ex=4 and 5 MeV in Ne19 is crucial in the calculation of this reaction rate. The spins and parities of these states are well known, with the exception of the 4.14- and 4.20-MeV states, which have adopted spin-parities of 9/2- and 7/2-, respectively. γ-ray transitions from these states were studied using triton-γ-γ coincidences from the F19(He3,tγ)Ne19 reaction measured with the GODDESS (Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies) at Argonne National Laboratory. The observed transitions from the 4.14- and 4.20-MeV states provide strong evidence that the Jπ values are actually 7/2- and 9/2-, respectively. These assignments are consistent with the values in the F19 mirror nucleus and in contrast to previously accepted assignments

    γ -ray spectroscopy of astrophysically important states in Ca 39

    Get PDF
    Background: Nova explosions synthesize elements up to A≃40, and discrepancies exist between calculated and observed abundances of Ar and Ca created in the explosion. The K38(p,γ)Ca39 reaction rate has been shown to be influential on these isotopic abundances at the endpoint of nova nucleosynthesis. The energies of the three most important resonances, corresponding to Jπ=5/2+ excited states in the Ca39 nucleus above the proton separation threshold, are uncertain and one has been measured with conflicting values [Er=679(2) versus Er=701(2) keV] in previous experiments. Purpose: Reducing the uncertainties on the resonance energies would allow for a better understanding of the reaction rate. To improve these uncertainties, we searched for γ rays from the depopulation of the corresponding excited states in Ca39. Methods: We report a new measurement of these resonance energies via the observation of previously unobserved γ-ray transitions. These transitions were observed by studying the Ca40(3He,αγ)Ca39 reaction with Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies (GODDESS). The updated resonance energies were then used to calculate the K38(p,γ)Ca39 reaction rate and assess its uncertainties. Results: In total, 23 new transitions were found, including three γ-ray transitions corresponding to the three Jπ=5/2+ states of astrophysical interest at energies of 6156.2(16), 6268.8(22), and 6470.8(19) keV. These correspond to resonance energies in the K38(p,γ)Ca39 reaction of 386(2), 498(2), and 701(2) keV. Conclusions: Updated K38(p,γ)Ca39 reaction rate calculations show a reduced upper limit at nova temperatures. However, the lower-than-previously-measured energy of the 498-keV resonance and uncertainty in its resonance strength increases the upper limit of the rate close to previous estimates at 0.4 GK

    New γ -ray transitions observed in Ne 19 with implications for the O 15 (α,γ) Ne 19 reaction rate

    Get PDF
    The O15(α,γ)Ne19 reaction is responsible for breakout from the hot CNO cycle in type I x-ray bursts. Understanding the properties of resonances between Ex=4 and 5 MeV in Ne19 is crucial in the calculation of this reaction rate. The spins and parities of these states are well known, with the exception of the 4.14- and 4.20-MeV states, which have adopted spin-parities of 9/2- and 7/2-, respectively. γ-ray transitions from these states were studied using triton-γ-γ coincidences from the F19(He3,tγ)Ne19 reaction measured with the GODDESS (Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies) at Argonne National Laboratory. The observed transitions from the 4.14- and 4.20-MeV states provide strong evidence that the Jπ values are actually 7/2- and 9/2-, respectively. These assignments are consistent with the values in the F19 mirror nucleus and in contrast to previously accepted assignments

    Key Ne 19 States Identified Affecting γ-Ray Emission from F 18 in Novae

    Get PDF
    Detection of nuclear-decay γ rays provides a sensitive thermometer of nova nucleosynthesis. The most intense γ-ray flux is thought to be annihilation radiation from the β+ decay of F18, which is destroyed prior to decay by the F18(p,α)O15 reaction. Estimates of F18 production had been uncertain, however, because key near-threshold levels in the compound nucleus, Ne19, had yet to be identified. We report the first measurement of the F19(He3,tγ)Ne19 reaction, in which the placement of two long-sought 3/2+ levels is suggested via triton-γ-γ coincidences. The precise determination of their resonance energies reduces the upper limit of the rate by a factor of 1.5-17 at nova temperatures and reduces the average uncertainty on the nova detection probability by a factor of 2.1

    Ne 19 level structure for explosive nucleosynthesis

    Get PDF
    Background: Ne19 is an important isotope in nuclear astrophysics due to its role in both the F18(p,α)O15 and O15(α,γ)Ne19 reactions in novae and Type I x-ray bursts, respectively. The energy levels of Ne19 near the α and proton thresholds (Sα=3529 keV, Sp=6410 keV) correspond to resonances in both of these reactions. Previous measurements to study the structure of Ne19 have focused on both regions in an effort to constrain these reaction rates. Purpose: Discrepancies in the energies, spins, and parities for levels in Ne19 from previous measurements contribute to the reaction-rate uncertainties. Gamma rays from the depopulation of excited states in Ne19 were measured to reduce the level-energy uncertainties and inconsistencies in previous spin-parity assignments. Methods: The F19(He3,t)Ne19 reaction was used to elucidate the structure of Ne19 levels up to Ex=6.9 MeV. The reaction products were measured using Gammasphere ORRUBA: Dual Detectors for Experimental Structure Studies - a coupling of the Oak Ridge Rutgers University Barrel Array and Gammasphere at Argonne National Laboratory. Tritons produced in the reaction were measured in coincidence with γ rays from the deexcitation of Ne19 energy levels. Results: Previously unobserved transitions allowed for discrepancies in the resonance properties relevant to these two reactions to be resolved. In total, 41 transitions from 21 energy levels were measured in Ne19, with 21 of those transitions being previously unobserved. Of particular importance, transitions from two 3/2+ states with energies of 6423(3) and 6441(3) keV, crucial for accurate estimations of the F18(p,α)O15 reaction rate, were found. Conclusions: Energies and spin-parities of important energy levels near the proton and α thresholds were measured and some of the discrepancies in previous measurements were resolved. Measurement of the two near-threshold 3/2+ states reduced the calculated upper limit of the F18(p,α)O15 reaction rate by factors of 1.5-17 in the nova temperature range

    γ -ray spectroscopy of astrophysically important states in Ca 39

    Get PDF
    Background: Nova explosions synthesize elements up to A≃40, and discrepancies exist between calculated and observed abundances of Ar and Ca created in the explosion. The K38(p,γ)Ca39 reaction rate has been shown to be influential on these isotopic abundances at the endpoint of nova nucleosynthesis. The energies of the three most important resonances, corresponding to Jπ=5/2+ excited states in the Ca39 nucleus above the proton separation threshold, are uncertain and one has been measured with conflicting values [Er=679(2) versus Er=701(2) keV] in previous experiments. Purpose: Reducing the uncertainties on the resonance energies would allow for a better understanding of the reaction rate. To improve these uncertainties, we searched for γ rays from the depopulation of the corresponding excited states in Ca39. Methods: We report a new measurement of these resonance energies via the observation of previously unobserved γ-ray transitions. These transitions were observed by studying the Ca40(3He,αγ)Ca39 reaction with Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies (GODDESS). The updated resonance energies were then used to calculate the K38(p,γ)Ca39 reaction rate and assess its uncertainties. Results: In total, 23 new transitions were found, including three γ-ray transitions corresponding to the three Jπ=5/2+ states of astrophysical interest at energies of 6156.2(16), 6268.8(22), and 6470.8(19) keV. These correspond to resonance energies in the K38(p,γ)Ca39 reaction of 386(2), 498(2), and 701(2) keV. Conclusions: Updated K38(p,γ)Ca39 reaction rate calculations show a reduced upper limit at nova temperatures. However, the lower-than-previously-measured energy of the 498-keV resonance and uncertainty in its resonance strength increases the upper limit of the rate close to previous estimates at 0.4 GK

    Search for heavy lepton partners of neutrinos in proton-proton collisions in the context of the type III seesaw mechanism

    Get PDF
    This is the Pre-print version of the Article. The official publishe version can be accessed from the link below - Copyright @ 2012 ElsevierA search is presented in proton–proton collisions at sqrt(s) = 7TeV for fermionic triplet states expected in type III seesaw models. The search is performed using final states with three isolated charged leptons and an imbalance in transverse momentum. The data, collected with the CMS detector at the LHC, correspond to an integrated luminosity of 4.9 fb−1. No excess of events is observed above the background predicted by the standard model, and the results are interpreted in terms of limits on production cross sections and masses of the heavy partners of the neutrinos in type III seesaw models. Depending on the considered scenarios, lower limits are obtained on the mass of the heavy partner of the neutrino that range from 180 to 210 GeV. These are the first limits on the production of type III seesaw fermionic triplet states reported by an experiment at the LHC.This study is spported by the BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEP, IPST and NECTEC (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); and the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund

    The Physics of the B Factories

    Get PDF

    Self Types for Dependently Typed Lambda Encodings

    No full text
    corecore