987 research outputs found

    Historical trade-offs of livestock’s environmental impacts

    Get PDF
    Human demand for animal products has risen markedly over the past 50 years with important environmental impacts. Dairy and cattle production have disproportionately contributed to greenhouse gas (GHG) emissions and land use, while crop demands of more intensive systems have increased fertilizer use and competition for available crop calories. At the same time, chicken and pig production has grown more rapidly than for ruminants, indicating a change in the environmental burden per animal calorie (EBC) with time. How EBCs have changed and to what extent resource use efficiency (RUE), the composition of animal production and the trade of feed have played a role in these changes have not been examined to date. We employ a calorie-based perspective, distinguishing animal calorie production between calories produced from feedcrop sources—directly competing with humans for available calories—and those from non-feed sources—plant biomass unavailable for direct human consumption. Combining this information with data on agricultural resource use, we calculate EBCs in terms of land, GHG emissions and nitrogen. We find that EBCs have changed substantially for land (−62%), GHGs (−46%) and nitrogen (+188%). Changes in RUE (e.g., selective breeding, increased grain-feeding) have been the primary contributor to these EBC trends, but shifts in the composition of livestock production were responsible for 12%–41% of the total EBC changes. In addition, the virtual trade of land for feed has more than tripled in the past 25 years with 77% of countries currently relying on virtual land imports to support domestic livestock production. Our findings indicate that important tradeoffs have occurred as a result of livestock intensification, with more efficient land use and emission rates exchanged for greater nitrogen use and increased competition between feed and food. This study provides an integrated evaluation of livestock's impact on food security and the environment

    Analysis of InGaN nanodots grown by droplet heteroepitaxy using grazing incidence small-angle X-ray scattering and electron microscopy

    Full text link
    We present a detailed structural investigation of self-assembled indium gallium nitride nanodots grown on c-plane aluminum nitride templates by the droplet heteroepitaxy technique in a plasma-assisted molecular beam epitaxy reactor. Various growth parameters, including the total coverage of the metal species, relative and total metal effusion fluxes, and nitridation temperature were investigated. Analyses of in situ reflection high-energy electron diffraction patterns and comparison with simulations showed that the resulting crystal structure was a mixture of wurtzite and twinned zinc blende phases, with the zinc blende phase increasingly dominant for lower metal coverages and lower nitridation temperatures, and the wurtzite phase increasingly dominant for higher nitridation temperature. Studies by field emission scanning electron microscopy and atomic force microscopy revealed that the nanodots exhibit trimodal size distributions, with the dot morphologies of the intermediate size mode often resembling aggregations of distinct clusters. Nanodots grown at higher nitridation temperatures had larger inter-dot spacings, with hexagonal in-plane ordering observable at a sufficiently high temperature. Using grazing incidence small angle X-ray scattering, we determined the nanodots to be approximately truncated cone shaped, and extracted the mean radius, height, and inter-dot distance for each distribution. Microstructural investigations of the nanodots by cross-sectional transmission electron microscopy indicated that the majority of the dots were formed in dislocation-free regions, and confirmed that the intermediate size dots were approximately truncated cone shaped and consisted of both zinc blende and wurtzite regions. Mapping of the elemental distributions by energy dispersive X-ray spectroscopy in scanning transmission electron microscopy mode indicated highly nonuniform indium distributions within both small and intermediate size dots which are potentially indicative of indium clustering and kinetically controlled nanoscale phase separation rather than the spinodal decomposition associated with bulk diffusion. The observed enrichment in indium concentration towards the tops of the nanodot layers could be ascribed to the compositional pulling effect.The authors thank Dr. J. Bacon and Dr. D. Nothern for help with the GISAXS and the AFM experiments, respectively. The authors acknowledge the use of the MSE Core Facilities, the Precision Measurement Laboratory, and the FIB/TEM Facility in the Boston University Photonics Center. The authors also acknowledge the NSF MRI Grant No. 1337471 that purchased the Bruker N8 Horizon. The work was supported by the Department of Energy under Grant No. DE-FG02-06ER46332. (1337471 - NSF MRI Grant; DE-FG02-06ER46332 - Department of Energy)Published versio

    Effects of Multiple Sintering Parameters on the Thermal Performance of Bi-porous Nickel Wicks in Loop Heat Pipes

    Get PDF
    This document is the Accepted Manuscript version of the following article: Y. Qu, K. Zhou, K. F. Zhang and Y. Tian, ‘Effects of multiple sintering parameters on the thermal performance of bi-porous nickel wicks in Loop Heat Pipes’, International Journal of Heat and Mass Transfer, Vol. 99: 638-646, August 2016, doi: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.04.005. This manuscript version is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License CC BY NC-ND 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.The thermal performance of a water-saturated Loop Heat Pipe (LHP) with bi-porous nickel wicks has been examined theoretically and experimentally, based on five key influencing factors including the content of foaming agent, compacting pressure, incubation time at suitable temperature, sintering temperature and particle size of foaming agent. Comparison was made among a total number of 20 tests with each influencing factor allocated by four different values, where porosity, permeability, capillary suction head and effective thermal conductivity (ETC) were examined. ETC is an important parameter of thermal performance, and its experimental values were compared with eleven theoretical models. The results showed that ETC was mostly affected by the content of foaming agent: 1.9-2.2 times compared to the effect of compacting pressure and incubation time, with the effect of sintering temperature and particle size of foaming agent ata underestimated the true ETC values. In the porosity range of 0.5-0.7, an average of the Chernysheva & Maydanik model and the Chaudhary & Bhandari model was found to be the best fit to the experimental data, providing an accurate method to predict ETC values of water-saturated LHP with bi-porous nickel wicks.Peer reviewedFinal Accepted Versio

    Model Analysis of Time Reversal Symmetry Test in the Caltech Fe-57 Gamma-Transition Experiment

    Full text link
    The CALTECH gamma-transition experiment testing time reversal symmetry via the E2/M1 mulipole mixing ratio of the 122 keV gamma-line in Fe-57 has already been performed in 1977. Extending an earlier analysis in terms of an effective one-body potential, this experiment is now analyzed in terms of effective one boson exchange T-odd P-even nucleon nucleon potentials. Within the model space considered for the Fe-57 nucleus no contribution from isovector rho-type exchange is possible. The bound on the coupling strength phi_A from effective short range axial-vector type exchange induced by the experimental bound on sin(eta) leads to phi_A < 10^{-2}.Comment: 5 pages, RevTex 3.

    Antipsychotic drug use in pregnancy: A multinational study from ten countries

    Get PDF
    Aim: To compare the prevalence and trends of antipsychotic drug use during pregnancy between countries across four continents. Methods: Individually linked health data in Denmark (2000−2012), Finland (2005–2014), Iceland (2004–2017), Norway (2005–2015), Sweden (2006–2015), Germany (2006–2015), Australia (New South Wales, 2004–2012), Hong Kong (2001–2015), UK (2006–2016), and the US (Medicaid, 2000–2013, and IBM MarketScan, 2012–2015) were used. Using a uniformed approach, we estimated the prevalence of antipsychotic use as the proportion of pregnancies where a woman filled at least one antipsychotic prescription within three months before pregnancy until birth. For the Nordic countries, data were meta-analyzed to investigate maternal characteristics associated with the use of antipsychotics. Results: We included 8,394,343 pregnancies. Typical antipsychotic use was highest in the UK (4.4%) whereas atypical antipsychotic use was highest in the US Medicaid (1.5%). Atypical antipsychotic use increased over time in most populations, reaching 2% in Australia (2012) and US Medicaid (2013). In most countries, prochlorperazine was the most commonly used typical antipsychotic and quetiapine the most commonly used atypical antipsychotic. Use of antipsychotics decreased across the trimesters of pregnancy in all populations except Finland. Antipsychotic use was elevated among smokers and those with parity ≥4 in the Nordic countries. Conclusion: Antipsychotic use during pregnancy varied considerably between populations, partly explained by varying use of the typical antipsychotic prochlorperazine, which is often used for nausea and vomiting in early pregnancy. Increasing usage of atypical antipsychotics among pregnant women reflects the pattern that was previously reported for the general population

    Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}}=2.76 TeV

    Get PDF
    The elliptic, v2v_2, triangular, v3v_3, and quadrangular, v4v_4, azimuthal anisotropic flow coefficients are measured for unidentified charged particles, pions and (anti-)protons in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV with the ALICE detector at the Large Hadron Collider. Results obtained with the event plane and four-particle cumulant methods are reported for the pseudo-rapidity range η<0.8|\eta|<0.8 at different collision centralities and as a function of transverse momentum, pTp_{\rm T}, out to pT=20p_{\rm T}=20 GeV/cc. The observed non-zero elliptic and triangular flow depends only weakly on transverse momentum for pT>8p_{\rm T}>8 GeV/cc. The small pTp_{\rm T} dependence of the difference between elliptic flow results obtained from the event plane and four-particle cumulant methods suggests a common origin of flow fluctuations up to pT=8p_{\rm T}=8 GeV/cc. The magnitude of the (anti-)proton elliptic and triangular flow is larger than that of pions out to at least pT=8p_{\rm T}=8 GeV/cc indicating that the particle type dependence persists out to high pTp_{\rm T}.Comment: 16 pages, 5 captioned figures, authors from page 11, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/186
    corecore