24 research outputs found

    Incised valley paleoenvironments interpreted by seismic stratigraphic approach in Patos Lagoon, Southern Brazil

    Get PDF
    <div><p>ABSTRACT: The Rio Grande do Sul (RS) coastal plain area (33,000 km 2 ) had its physiography modified several times through the Quaternary, responding to allogenic and autogenic forcings. The Patos Lagoon covers a significant area of RS coastal plain (10,000 km 2 ), where incised valleys were identified in previous works. About 1,000 km of high resolution (3.5 kHz) seismic profiles, radiocarbon datings, Standard Penetration Test (SPT) and gravity cores were analyzed to interpret the paleoenvironmental evolution as preserved in incised valley infills. Seismic facies were recognized by seismic parameters. The sediment cores were used to ground-truth the seismic interpretations and help in the paleoenvironmental identification. Key surfaces were established to detail the stratigraphical framework, and seismic facies were grouped into four seismic units, which one classified in respective system tracts within three depositional sequences. The oldest preserved deposits are predominantly fluvial and estuarine facies, representing the falling stage and lowstand system tracts. The Holocene transgressive records are dominated by muddy material, mainly represented by estuarine facies with local variations. The transgression culminated in Late Holocene deposits of Patos Lagoon, representing the highstand system tract. The depositional pattern of the vertical succession was controlled by eustatic variations, while the autogenic forcing (paleogeography and sediment supply) modulated the local facies variation.</p></div

    Differential effect of tannic acid on two tree-feeding Lepidoptera: implications for theories of plant anti-herbivore chemistry

    Full text link
    Feeding efficiencies of ultimate instar larvae of two polyphagous tree-feeding Lepidoptera, Malacosoma disstria (Lasiocampidae) and Orgyia leucostigma (Liparidae), were measured on artificial diets containing from 0% to 8% tannic acid. Relative growth rate (RGR) of O. leucostigma was not affected by up to 8% tannic acid, suggesting that O. leucostigma has evolved an effective counteradaptation to hydrolyzable tannins. In contrast, as little as 0.5% tannic acid caused a significant reduction in RGR of M. disstria , due both to reduced efficiency of conversion of digested food (ECD) and reduced relative consumption rate (RCR), and caused a significant increase in mortality during the pupal stage. Moreover, when reared from hatching on tannin-containing diets, no M. disstria larvae survived past the fourth instar.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47780/1/442_2004_Article_BF00380074.pd

    Man and the Last Great Wilderness: Human Impact on the Deep Sea

    Get PDF
    The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life – SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO2 and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO2 and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short discussion on protection and management methods

    Perspectives and Integration in SOLAS Science

    Get PDF
    Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm. Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency. The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling. Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter

    Uniendo ingeniería y ecología: la protección costera basada en ecosistemas

    Get PDF
    En un contexto de crecientes impactos y riesgos socio-económicos en las costas del planeta, la protección costera basada en ecosistemas surge como un nuevo paradigma que une los principios de protección, sostenibilidad y resiliencia, a la vez que proporciona múltiples beneficios. Este artículo ofrece una perspectiva sobre qué son y cómo se pueden utilizar las defensas naturales en el diseño, planificación y gestión de costas. La política pública muestra un creciente interés por su implementación general y el cuerpo de conocimiento y experiencia alrededor de la también denominada infraestructura ?verde? es creciente, pero aún existen importantes barreras que salvar. Una de ellas es estandarizar su diseño en términos ingenieriles, así como reconocer los aspectos que los diferencian respecto a enfoques tradicionales. La adaptación climática y la reducción de riesgos son áreas en las que su utilización puede ser más significativa, debido a la variedad de servicios que ofrecen. Tanto desde el punto de vista técnico como económico, existen argumentos sólidos para evitar la degradación de los ecosistemas, avanzando su restauración y conservación, como también desde la perspectiva de la defensa de las costas.In a context of increasing socio-economic impacts and risks in the coastal areas of the planet, coastal protection based on ecosystem features becomes a new paradigm that combines the principles of conservation, sustainability and resilience, while providing multiple benefits. This paper provides a perspective on what these are and how they can be used in the design, planning and management of the coastal zones. Policy-makers are calling for further uptake and implementation across the board and the body of knowledge and experience around the socalled ?green? infrastructure is growing, but there are still major barriers for a widespread uptake. One of them is to standardize designs in engineering terms, recognizing the different characteristics compared to traditional engineering solutions. Climate adaptation and risk reduction are areas where its use may be more significant, for the variety of services they offer. Both technically and economically, there are strong arguments to prevent degradation of ecosystems and to advance in their restoration and conservation, as well as from a coastal defense perspective

    Enhanced marine CH4 emissions to the atmosphere off Oregon caused by coastal upwelling

    Get PDF
    Methane in surface waters and marine air off Oregon (44°24´N–44°54´N, 124°36´W–125°24´W) was continuously surveyed in July 1999. During a high-resolution survey after a period of steady winds from the north, CH4 concentrations were high in the northeastern region, near the shelf edge. The highest CH4 concentrations were 2.5 times higher than equilibrium with the atmospheric partial pressure. In contrast, concentrations were near equilibrium in the western part of the survey area, the Hydrate Ridge. The increase in CH4 from southwest to northeast correlates with a drop in sea surface temperature (SST), from 16.5°C to &lt;13.5°C, toward the shelf edge. The observed SST pattern was caused by summer upwelling off Oregon. The results suggest that CH4 derived from bottom sources near the shelf/slope break and methane found in connection with shallow (100–300 m) turbidity layers is transported to the surface by coastal upwelling, which causes an enhanced net flux of CH4 to the atmosphere. Vertical profiles of the methane distribution on the shelf in October demonstrate the accumulation of methane introduced by shelf sources. Surface concentrations at these stations in October (during nonupwelling conditions) were lower than in July (during upwelling) and were only slightly oversaturated with respect to the atmosphere. An acoustic Doppler current profiler survey indicates that the observed trend cannot be attributed to a surface flow reversal in the area. The low-salinity waters in the core of the Columbia River plume (S &lt; 31) showed no enhanced CH4 concentrations. The trend of higher CH4 concentrations at lower temperatures existed over the whole 17-day survey, but large spatial and temporal variations existed. The presence of methane sources in regions of coastal upwelling worldwide, such as shallow seeps, gas hydrates, and intermediate nepheloid layers, suggests that the enhancement of CH4 fluxes to the atmosphere by coastal upwelling occurs on a global scale
    corecore