84 research outputs found

    Construction and Performance of a Micro-Pattern Stereo Detector with Two Gas Electron Multipliers

    Get PDF
    The construction of a micro-pattern gas detector of dimensions 40x10 cm**2 is described. Two gas electron multiplier foils (GEM) provide the internal amplification stages. A two-layer readout structure was used, manufactured in the same technology as the GEM foils. The strips of each layer cross at an effective crossing angle of 6.7 degrees and have a 406 um pitch. The performance of the detector has been evaluated in a muon beam at CERN using a silicon telescope as reference system. The position resolutions of two orthogonal coordinates are measured to be 50 um and 1 mm, respectively. The muon detection efficiency for two-dimensional space points reaches 96%.Comment: 21 pages, 17 figure

    Observation of microwave induced resistance and photovoltage oscillations in MgZnO/ZnO heterostructures

    Get PDF
    Microwave induced resistance and photovoltage oscillations were investigated in Mg_xZn_(1−x)O/ZnO heterostructures. The physics of these oscillations is controlled significantly by scattering mechanisms, and therefore these experiments were motivated by the recently achieved high quality levels in this material and the apparent dominance of large angle, short-range scattering, which is distinct from the prevailing small angle scattering in state-of-the-art GaAs structures. Within the studied frequency range of 35–120 GHz, up to four oscillations were resolved at 1.4 K temperature, but only in high density samples. This allowed us to extract the value of the effective electron mass m^∗ = (0.35 ± 0.01)m₀, which is enhanced over the bare band mass, and estimate a local quantum scattering time of about 5 ps

    Observation of microwave induced resistance and photovoltage oscillations in MgZnO/ZnO heterostructures

    Get PDF
    Microwave induced resistance and photovoltage oscillations were investigated in Mg_xZn_(1−x)O/ZnO heterostructures. The physics of these oscillations is controlled significantly by scattering mechanisms, and therefore these experiments were motivated by the recently achieved high quality levels in this material and the apparent dominance of large angle, short-range scattering, which is distinct from the prevailing small angle scattering in state-of-the-art GaAs structures. Within the studied frequency range of 35–120 GHz, up to four oscillations were resolved at 1.4 K temperature, but only in high density samples. This allowed us to extract the value of the effective electron mass m^∗ = (0.35 ± 0.01)m₀, which is enhanced over the bare band mass, and estimate a local quantum scattering time of about 5 ps

    Aviation Fuel Tracer Simulation: Model Intercomparison and Implications

    Get PDF
    An upper limit for aircraft-produced perturbations to aerosols and gaseous exhaust products in the upper troposphere and lower stratosphere (UT/LS) is derived using the 1992 aviation fuel tracer simulation performed by eleven global atmospheric models. Key Endings are that subsonic aircraft emissions: (1) have not be responsible for the observed water vapor trends at 40 deg N; (2) could be a significant source of soot mass near 12 km, but not at 20 km; (3) might cause a noticeable increase in the background sulfate aerosol surface area and number densities (but not mass density) near the northern mid-latitude tropopause; and (4) could provide a global, annual mean top of the atmosphere radiative forcing up to +0.006 W/sq m and -0.013 W/sq m due to emitted soot and sulfur, respectively

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    Learning new sensorimotor contingencies:Effects of long-term use of sensory augmentation on the brain and conscious perception

    Get PDF
    Theories of embodied cognition propose that perception is shaped by sensory stimuli and by the actions of the organism. Following sensorimotor contingency theory, the mastery of lawful relations between own behavior and resulting changes in sensory signals, called sensorimotor contingencies, is constitutive of conscious perception. Sensorimotor contingency theory predicts that, after training, knowledge relating to new sensorimotor contingencies develops, leading to changes in the activation of sensorimotor systems, and concomitant changes in perception. In the present study, we spell out this hypothesis in detail and investigate whether it is possible to learn new sensorimotor contingencies by sensory augmentation. Specifically, we designed an fMRI compatible sensory augmentation device, the feelSpace belt, which gives orientation information about the direction of magnetic north via vibrotactile stimulation on the waist of participants. In a longitudinal study, participants trained with this belt for seven weeks in natural environment. Our EEG results indicate that training with the belt leads to changes in sleep architecture early in the training phase, compatible with the consolidation of procedural learning as well as increased sensorimotor processing and motor programming. The fMRI results suggest that training entails activity in sensory as well as higher motor centers and brain areas known to be involved in navigation. These neural changes are accompanied with changes in how space and the belt signal are perceived, as well as with increased trust in navigational ability. Thus, our data on physiological processes and subjective experiences are compatible with the hypothesis that new sensorimotor contingencies can be acquired using sensory augmentation
    corecore