50 research outputs found

    Quarks, gluons, colour: Facts or fiction?

    Full text link
    A general method is presented which allows one to determine from the local gauge invariant observables of a quantum field theory the underlying particle and symmetry structures appearing at the lower (ultraviolet) end of the spatio--temporal scale. Particles which are confined to small scales, i.e., do not appear in the physical spectrum, can be uncovered in this way without taking recourse to gauge fields or indefinite metric spaces. In this way notions such as quark, gluon, colour symmetry and confinement acquire a new and intrinsic meaning which is stable under gauge or duality transformations. The method is illustrated by the example of the Schwinger model.Comment: 22 pages, ams-latex; the article had to be replaced because of tex problems, there are no changes in the tex

    Advances in perturbative thermal field theory

    Full text link
    The progress of the last decade in perturbative quantum field theory at high temperature and density made possible by the use of effective field theories and hard-thermal/dense-loop resummations in ultrarelativistic gauge theories is reviewed. The relevant methods are discussed in field theoretical models from simple scalar theories to non-Abelian gauge theories including gravity. In the simpler models, the aim is to give a pedagogical account of some of the relevant problems and their resolution, while in the more complicated but also more interesting models such as quantum chromodynamics, a summary of the results obtained so far are given together with references to a few most recent developments and open problems.Comment: 84 pages, 18 figues, review article submitted to Reports on Progress in Physics; v2, v3: minor additions and corrections, more reference

    Stochastic dynamics of correlations in quantum field theory: From Schwinger-Dyson to Boltzmann-Langevin equation

    Get PDF
    The aim of this paper is two-fold: in probing the statistical mechanical properties of interacting quantum fields, and in providing a field theoretical justification for a stochastic source term in the Boltzmann equation. We start with the formulation of quantum field theory in terms of the Schwinger - Dyson equations for the correlation functions, which we describe by a closed-time-path master (n=PIn = \infty PI) effective action. When the hierarchy is truncated, one obtains the ordinary closed-system of correlation functions up to a certain order, and from the nPI effective action, a set of time-reversal invariant equations of motion. But when the effect of the higher order correlation functions is included (through e.g., causal factorization-- molecular chaos -- conditions, which we call 'slaving'), in the form of a correlation noise, the dynamics of the lower order correlations shows dissipative features, as familiar in the field-theory version of Boltzmann equation. We show that fluctuation-dissipation relations exist for such effectively open systems, and use them to show that such a stochastic term, which explicitly introduces quantum fluctuations on the lower order correlation functions, necessarily accompanies the dissipative term, thus leading to a Boltzmann-Langevin equation which depicts both the dissipative and stochastic dynamics of correlation functions in quantum field theory.Comment: LATEX, 30 pages, no figure

    Efficacy and moderators of efficacy of cognitive behavioural therapies with a trauma focus in children and adolescents: an individual participant data meta-analysis of randomised trials

    Get PDF
    Background: Existing clinical trials of cognitive behavioural therapies with a trauma focus (CBTs-TF) are underpowered to examine key variables that might moderate treatment effects. We aimed to determine the efficacy of CBTs-TF for young people, relative to passive and active control conditions, and elucidate putative individual-level and treatment-level moderators. Methods: This was an individual participant data meta-analysis of published and unpublished randomised studies in young people aged 6-18 years exposed to trauma. We included studies identified by the latest UK National Institute of Health and Care Excellence guidelines (completed on Jan 29, 2018) and updated their search. The search strategy included database searches restricted to publications between Jan 1, 2018, and Nov 12, 2019; grey literature search of trial registries ClinicalTrials.gov and ISRCTN; preprint archives PsyArXiv and bioRxiv; and use of social media and emails to key authors to identify any unpublished datasets. The primary outcome was post-traumatic stress symptoms after treatment (<1 month after the final session). Predominantly, one-stage random-effects models were fitted. This study is registered with PROSPERO, CRD42019151954. Findings: We identified 38 studies; 25 studies provided individual participant data, comprising 1686 young people (mean age 13·65 years [SD 3·01]), with 802 receiving CBTs-TF and 884 a control condition. The risk-of-bias assessment indicated five studies as low risk and 20 studies with some concerns. Participants who received CBTs-TF had lower mean post-traumatic stress symptoms after treatment than those who received the control conditions, after adjusting for post-traumatic stress symptoms before treatment (b=-13·17, 95% CI -17·84 to -8·50, p<0·001, τ2=103·72). Moderation analysis indicated that this effect of CBTs-TF on post-traumatic stress symptoms post-treatment increased by 0·15 units (b=-0·15, 95% CI -0·29 to -0·01, p=0·041, τ2=0·03) for each unit increase in pre-treatment post-traumatic stress symptoms. Interpretation: This is the first individual participant data meta-analysis of young people exposed to trauma. Our findings support CBTs-TF as the first-line treatment, irrespective of age, gender, trauma characteristics, or carer involvement in treatment, with particular benefits for those with higher initial distress

    Heritability and Artificial Selection on Ambulatory Dispersal Distance in Tetranychus urticae: Effects of Density and Maternal Effects

    Get PDF
    Dispersal distance is understudied although the evolution of dispersal distance affects the distribution of genetic diversity through space. Using the two-spotted spider mite, Tetranychus urticae, we tested the conditions under which dispersal distance could evolve. To this aim, we performed artificial selection based on dispersal distance by choosing 40 individuals (out of 150) that settled furthest from the home patch (high dispersal, HDIS) and 40 individuals that remained close to the home patch (low dispersal, LDIS) with three replicates per treatment. We did not observe a response to selection nor a difference between treatments in life-history traits (fecundity, survival, longevity, and sex-ratio) after ten generations of selection. However, we show that heritability for dispersal distance depends on density. Heritability for dispersal distance was low and non-significant when using the same density as the artificial selection experiments while heritability becomes significant at a lower density. Furthermore, we show that maternal effects may have influenced the dispersal behaviour of the mites. Our results suggest primarily that selection did not work because high density and maternal effects induced phenotypic plasticity for dispersal distance. Density and maternal effects may affect the evolution of dispersal distance and should be incorporated into future theoretical and empirical studies

    Gauge bosons at zero and finite temperature

    Full text link
    Gauge theories of the Yang-Mills type are the single most important building block of the standard model and beyond. Since Yang-Mills theories are gauge theories their elementary particles, the gauge bosons, cannot be described without fixing a gauge. Beyond perturbation theory, gauge-fixing in non-Abelian gauge theories is obstructed by the Gribov-Singer ambiguity. The construction and implementation of a method-independent gauge-fixing prescription to resolve this ambiguity is the most important step to describe gauge bosons beyond perturbation theory. Proposals for such a procedure, generalizing the perturbative Landau gauge, are described here. Their implementation are discussed for two example methods, lattice gauge theory and the quantum equations of motion. The most direct access to the properties of the gauge bosons is provided by their correlation functions. The corresponding two- and three-point correlation functions are presented at all energy scales. These give access to the properties of the gauge bosons, like their absence from the asymptotic physical state space, the absence of an on-shell mass pole, particle-like properties at high energies, and their running couplings. Furthermore, auxiliary degrees of freedom are introduced during gauge-fixing, and their properties are discussed as well. These results are presented for two, three, and four dimensions, and for various gauge algebras. Finally, the modifications of the properties of gauge bosons at finite temperature are presented. Evidence is provided that these reflect the phase structure of Yang-Mills theory. However, it is found that the phase transition is not deconfining the gauge bosons, although the bulk thermodynamical behavior is of a Stefan-Boltzmann type. The resolution of this apparent contradiction is also presented. This resolution also provides an explicit and constructive solution to the Linde problem.Comment: v2: 153 pages, 45 figures, revised, updated, and extended version submitted on invitation to Physics Reports; v3: Intermediate update, 152 pages, 45 figures, minor errors corrected, reference list extended; v3 minor typographical changes and corrections, added references, version to appear in Physics Report

    Design and implementation of optical imaging and sensor systems for characterization of deep-sea biological camouage

    No full text
    The visual ecology of deep-sea animals has long been of scientific interest. In the open ocean, where there is no physical structure to hide within or behind, diverse strategies have evolved to solve the problem of camouflage from a potential predator. Simulations of specific predator-prey scenarios have yielded estimates of the range of possible appearances that an animal may exhibit. However, there is a limited amount of quantitative information available related to both animal appearance and the light field at mesopelagic depths (200 m to 1000 m). To mitigate this problem, novel optical instrumentation, taking advantage of recent technological advances, was developed and is described in this dissertation. In the first half of this dissertation, the appearance of mirrored marine animals is quantitatively evaluated. A portable optical imaging scatterometer was developed to measure angular reflectance, described by the bidirectional reflectance distribution function (BRDF), of biological specimens. The instrument allows for BRDF capture from samples of arbitrary size, over a significant fraction of the reflectance hemisphere. Multiple specimens representing two species of marine animals, collected at mesopelagic depths, were characterized using the scatterometer. Low-dimensional parametric models were developed to simplify use of the data sets, and to validate the BRDF method. Results from principal component analysis confirm that BRDF measurements can be used to study intra- and interspecific variability of mirrored marine animal appearance. Collaborative efforts utilizing the BRDF data sets to develop physically-based scattering models are underway. In the second half of this dissertation, another key part of the deep-sea biological camouflage problem is examined. Two underwater radiometers, capable of low-light measurements, were developed to address the lack of available information related to the deep-sea light field. Quantitative comparison of spectral downward irradiance profiles at blue (̃470̃nm) and green (̃560̃nm) wavelengths, collected at Pacific and Atlantic field stations, provide insight into the presence of Raman (inelastic) scattering effects at mesopelagic depths. The radiometers were also used to collect in situ flashes of bioluminescence. Collaborations utilizing both the downward irradiance and bioluminescence data sets are planne

    Coping with Accident Reactions (CARE) early intervention programme for preventing traumatic stress reactions in young injured children: study protocol for two randomised controlled trials

    Get PDF
    BACKGROUND Accidental injury represents the most common type of traumatic event experienced by children under the age of 6 years. Around 10-30 % of young injured children will go on to develop post-traumatic stress disorder (PTSD) and other co-morbid conditions. Parents of injured children are also at risk of PTSD, and this is associated with short- and long-term consequences for their children's physical and psychological recovery. Despite the significance of this problem, to date, the mental health needs of injured young children have been neglected. One reason for this is due to the uncertainty and considerable debate around how to best provide early psychological intervention to traumatised children and adults. To address these gaps, researchers and psychologists in Australia and Switzerland have developed the Coping with Accident Reactions (CARE) programme, which is a two-session early intervention designed to prevent persistent PTSD reactions in young injured children screened as 'at risk'. Two separate international studies are being conducted to evaluate the effectiveness and feasibility of this programme. METHODS/DESIGN The study design for the two proposed studies will employ a randomised controlled trial design and children (aged 1-6 years) who are screened as at risk for PTSD 1 week after an unintentional injury, and their parents will be randomised to either (1) CARE intervention or (2) treatment as usual. Assessment will be completed at baseline (2 weeks) and 3 and 6 months post-injury. DISCUSSION This international collaboration provides an excellent opportunity to test the benefit of screening and providing early intervention to young children in two different countries and settings. It is expected that outcomes from this research will lead to significant original contributions to the scientific evidence base and clinical treatment and recovery of very young injured children. TRIAL REGISTRATION The Australian study was registered with the Australian New Zealand Clinical Trials Registry ( ACTRN12614000325606 ) on 26 March 2014. The Swiss study was registered with ClinicalTrials.gov ( NCT02088814 ) on 12 March 2014

    Fisher vs. the Worms: Extraordinary Sex Ratios in Nematodes and the Mechanisms that Produce Them

    No full text
    Parker, Baker, and Smith provided the first robust theory explaining why anisogamy evolves in parallel in multicellular organisms. Anisogamy sets the stage for the emergence of separate sexes, and for another phenomenon with which Parker is associated: sperm competition. In outcrossing taxa with separate sexes, Fisher proposed that the sex ratio will tend towards unity in large, randomly mating populations due to a fitness advantage that accrues in individuals of the rarer sex. This creates a vast excess of sperm over that required to fertilize all available eggs, and intense competition as a result. However, small, inbred populations can experience selection for skewed sex ratios. This is widely appreciated in haplodiploid organisms, in which females can control the sex ratio behaviorally. In this review, we discuss recent research in nematodes that has characterized the mechanisms underlying highly skewed sex ratios in fully diploid systems. These include self-fertile hermaphroditism and the adaptive elimination of sperm competition factors, facultative parthenogenesis, non-Mendelian meiotic oddities involving the sex chromosomes, and environmental sex determination. By connecting sex ratio evolution and sperm biology in surprising ways, these phenomena link two “seminal” contributions of G. A. Parker.https://doi.org/10.3390/cells1007179
    corecore