404 research outputs found

    Polynomial Filtered HMC -- an algorithm for lattice QCD with dynamical quarks

    Full text link
    Polynomial approximations to the inverse of the fermion matrix are used to filter the dynamics of the upper energy scales in HMC simulations. The use of a multiple time-scale integration scheme allows the filtered pseudofermions to be evolved using a coarse step size. We introduce a novel generalisation of the nested leapfrog which allows for far greater flexibility in the choice of time scales. We observe a reduction in the computational expense of the molecular dynamics integration of between 3--5 which improves as the quark mass decreases.Comment: 10 pages, 7 figure

    Scaling analysis of FLIC fermion actions

    Get PDF
    The Fat Link Irrelevant Clover (FLIC) fermion action is a variant of the O(a)O(a)-improved Wilson action where the irrelevant operators are constructed using smeared links. While the use of such smearing allows for the use of highly improved definitions of the field strength tensor Fμν,F_{\mu\nu}, we show that the standard 1-loop clover term with a mean field improved coefficient cswc_{\rm sw} is sufficient to remove the O(a)O(a) errors, avoiding the need for non-perturbative tuning. This result enables efficient dynamical simulations in QCD with the FLIC fermion action.Comment: 5 pages, 3 figure

    FLIC-Overlap Fermions and Topology

    Get PDF
    APE smearing the links in the irrelevant operators of clover fermions (Fat-Link Irrelevant Clover (FLIC) fermions) provides significant improvement in the condition number of the Hermitian-Dirac operator and gives rise to a factor of two savings in computing the overlap operator. This report investigates the effects of using a highly-improved definition of the lattice field-strength tensor F_mu_nu in the fermion action, made possible through the use of APE-smeared fat links in the construction of the irrelevant operators. Spurious double-zero crossings in the spectral flow of the Hermitian-Wilson Dirac operator associated with lattice artifacts at the scale of the lattice spacing are removed with FLIC fermions composed with an O(a^4)-improved lattice field strength tensor. Hence, FLIC-Overlap fermions provide an additional benefit to the overlap formalism: a correct realization of topology in the fermion sector on the lattice.Comment: Lattice2002(chiral

    Magnetic properties of the nucleon in a uniform background field

    Full text link
    We present results for the magnetic moment and magnetic polarisability of the neutron and the magnetic moment of the proton. These results are calculated using the uniform background field method on 32^3 x 64 dynamical QCD lattices provided by the PACS-CS collaboration as part of the ILDG. We use a uniform background magnetic field quantised by the periodic spatial volume. We investigate ways to improve the effective energy plots used to calculate magnetic polarisabilities, including the use of correlation matrix techniques with various source smearings.Comment: 9 pages, 14 figures, 2 table
    • …
    corecore