335 research outputs found

    Next Generation Very Large Array Memo No. 6, Science Working Group 1: The Cradle of Life

    Get PDF
    This paper discusses compelling science cases for a future long-baseline interferometer operating at millimeter and centimeter wavelengths, like the proposed Next Generation Vary Large Array (ngVLA). We report on the activities of the Cradle of Life science working group, which focused on the formation of low- and high-mass stars, the formation of planets and evolution of protoplanetary disks, the physical and compositional study of Solar System bodies, and the possible detection of radio signals from extraterrestrial civilizations. We propose 19 scientific projects based on the current specification of the ngVLA. Five of them are highlighted as possible Key Science Projects: (1) Resolving the density structure and dynamics of the youngest HII regions and high-mass protostellar jets, (2) Unveiling binary/multiple protostars at higher resolution, (3) Mapping planet formation regions in nearby disks on scales down to 1 AU, (4) Studying the formation of complex molecules, and (5) Deep atmospheric mapping of giant planets in the Solar System. For each of these projects, we discuss the scientific importance and feasibility. The results presented here should be considered as the beginning of a more in-depth analysis of the science enabled by such a facility, and are by no means complete or exhaustive.Comment: 51 pages, 12 figures, 1 table. For more information visit https://science.nrao.edu/futures/ngvl

    Randomized Trial of Letrozole Following Tamoxifen as Extended Adjuvant Therapy in Receptor-Positive Breast Cancer: Updated Findings from NCIC CTG MA.17

    Get PDF
    Background: Most recurrences in women with breast cancer receiving 5 years of adjuvant tamoxifen occur after 5 years. The MA.17 trial, which was designed to determine whether extended adjuvant therapy with the aromatase inhibitor letrozole after tamoxifen reduces the risk of such late recurrences, was stopped early after an interim analysis showed that letrozole improved disease-free survival. This report presents updated findings from the trial. Methods: Postmenopausal women completing 5 years of tamoxifen treatment were randomly assigned to a planned 5 years of letrozole (n = 2593) or placebo (n = 2594). The primary endpoint was disease-free survival (DFS); secondary endpoints included distant disease-free survival, overall survival, incidence of contralateral tumors, and toxic effects. Survival was examined using Kaplan-Meier analysis and log-rank tests. Planned subgroup analyses included those by axillary lymph node status. All statistical tests were two-sided. Results: After a median follow-up of 30 months (range = 1.5-61.4 months), women in the letrozole arm had statistically significantly better DFS and distant DFS than women in the placebo arm (DFS: hazard ratio [HR] for recurrence or contralateral breast cancer = 0.58, 95% confidence interval [CI] = 0.45 to 0.76; P<.001; distant DFS: HR = 0.60, 95% CI = 0.43 to 0.84; P = .002). Overall survival was the same in both arms (HR for death from any cause = 0.82, 95% CI = 0.57 to 1.19; P = .3). However, among lymph node-positive patients, overall survival was statistically significantly improved with letrozole (HR = 0.61, 95% CI = 0.38 to 0.98; P = .04). The incidence of contralateral breast cancer was lower in women receiving letrozole, but the difference was not statistically significant. Women receiving letrozole experienced more hormonally related side effects than those receiving placebo, but the incidences of bone fractures and cardiovascular events were the same. Conclusion: Letrozole after tamoxifen is well-tolerated and improves both disease-free and distant disease-free survival but not overall survival, except in node-positive patient

    Impact flux on Jupiter: From superbolides to large-scale collisions

    Get PDF
    Context. Regular observations of Jupiter by a large number of amateur astronomers have resulted in the serendipitous discovery of short bright flashes in its atmosphere, which have been proposed as being caused by impacts of small objects. Three flashes were detected: one on June 3, 2010, one on August 20, 2010, and one on September 10, 2012. Aims. We show that the flashes are caused by impacting objects that we characterize in terms of their size, and we study the flux of small impacts on Jupiter. Methods. We measured the light curves of these atmospheric airbursts to extract their luminous energy and computed the masses and sizes of the objects. We ran simulations of impacts and compared them with the light curves. We analyzed the statistical significance of these events in the large pool of Jupiter observations. Results. All three objects are in the 5-20 m size category depending on their density, and they released energy comparable to the recent Chelyabinsk airburst. Model simulations approximately agree with the interpretation of the limited observations. Biases in observations of Jupiter suggest a rate of 12-60 similar impacts per year and we provide software tools for amateurs to examine the faint signature of impacts in their data to increase the number of detected collisions. Conclusions. The impact rate agrees with dynamical models of comets. More massive objects (a few 100 m) should impact with Jupiter every few years leaving atmospheric dark debris features that could be detectable about once per decade

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Measurement of the production cross section for W-bosons in association with jets in pp collisions at s=7 TeV with the ATLAS detector

    Get PDF

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    corecore