12 research outputs found

    Inflating in a Better Racetrack

    Full text link
    We present a new version of our racetrack inflation scenario which, unlike our original proposal, is based on an explicit compactification of type IIB string theory: the Calabi-Yau manifold P^4_[1,1,1,6,9]. The axion-dilaton and all complex structure moduli are stabilized by fluxes. The remaining 2 Kahler moduli are stabilized by a nonperturbative superpotential, which has been explicitly computed. For this model we identify situations for which a linear combination of the axionic parts of the two Kahler moduli acts as an inflaton. As in our previous scenario, inflation begins at a saddle point of the scalar potential and proceeds as an eternal topological inflation. For a certain range of inflationary parameters, we obtain the COBE-normalized spectrum of metric perturbations and an inflationary scale of M = 3 x 10^{14} GeV. We discuss possible changes of parameters of our model and argue that anthropic considerations favor those parameters that lead to a nearly flat spectrum of inflationary perturbations, which in our case is characterized by the spectral index n_s = 0.95.Comment: 20 pages, 7 figures. Brief discussion on the non-gaussianity of this model, one more figure of the field trajectories added as well as other minor changes to the tex

    The NANOGrav 15-year Data Set: Evidence for a Gravitational-Wave Background

    Get PDF
    We report multiple lines of evidence for a stochastic signal that is correlated among 67 pulsars from the 15-year pulsar-timing data set collected by the North American Nanohertz Observatory for Gravitational Waves. The correlations follow the Hellings-Downs pattern expected for a stochastic gravitational-wave background. The presence of such a gravitational-wave background with a power-law-spectrum is favored over a model with only independent pulsar noises with a Bayes factor in excess of 101410^{14}, and this same model is favored over an uncorrelated common power-law-spectrum model with Bayes factors of 200-1000, depending on spectral modeling choices. We have built a statistical background distribution for these latter Bayes factors using a method that removes inter-pulsar correlations from our data set, finding p=103p = 10^{-3} (approx. 3σ3\sigma) for the observed Bayes factors in the null no-correlation scenario. A frequentist test statistic built directly as a weighted sum of inter-pulsar correlations yields p=5×1051.9×104p = 5 \times 10^{-5} - 1.9 \times 10^{-4} (approx. 3.54σ3.5 - 4\sigma). Assuming a fiducial f2/3f^{-2/3} characteristic-strain spectrum, as appropriate for an ensemble of binary supermassive black-hole inspirals, the strain amplitude is 2.40.6+0.7×10152.4^{+0.7}_{-0.6} \times 10^{-15} (median + 90% credible interval) at a reference frequency of 1/(1 yr). The inferred gravitational-wave background amplitude and spectrum are consistent with astrophysical expectations for a signal from a population of supermassive black-hole binaries, although more exotic cosmological and astrophysical sources cannot be excluded. The observation of Hellings-Downs correlations points to the gravitational-wave origin of this signal.Comment: 30 pages, 18 figures. Published in Astrophysical Journal Letters as part of Focus on NANOGrav's 15-year Data Set and the Gravitational Wave Background. For questions or comments, please email [email protected]

    Cosmology with the Laser Interferometer Space Antenna

    Get PDF
    254 pags:, 44 figs.The Laser Interferometer Space Antenna (LISA) has two scientific objectives of cosmological focus: to probe the expansion rate of the universe, and to understand stochastic gravitational-wave backgrounds and their implications for early universe and particle physics, from the MeV to the Planck scale. However, the range of potential cosmological applications of gravitational-wave observations extends well beyond these two objectives. This publication presents a summary of the state of the art in LISA cosmology, theory and methods, and identifies new opportunities to use gravitational-wave observations by LISA to probe the universe.This work is partly supported by: A.G. Leventis Foundation; Academy of Finland Grants 328958 and 345070; Alexander S. Onassis Foundation, Scholarship ID: FZO 059-1/2018-2019; Amaldi Research Center funded by the MIUR program “Dipartimento di Eccellenza” (CUP: B81I18001170001); ASI Grants No. 2016-24-H.0 and No. 2016-24-H.1-2018; Atracción de Talento Grant 2019-T1/TIC-15784; Atracción de Talento contract no. 2019-T1/TIC-13177 granted by the Comunidad de Madrid; Ayuda ‘Beatriz Galindo Senior’ by the Spanish ‘Ministerio de Universidades’, Grant BG20/00228; Basque Government Grant (IT-979-16); Belgian Francqui Foundation; Centre national d’Etudes spatiales; Ben Gurion University Kreitman Fellowship, and the Israel Academy of Sciences and Humanities (IASH) & Council for Higher Education (CHE) Excellence Fellowship Program for International Postdoctoral Researchers; Centro de Excelencia Severo Ochoa Program SEV-2016-0597; CERCA program of the Generalitat de Catalunya; Cluster of Excellence “Precision Physics, Fundamental Interactions, and Structure of Matter” (PRISMA? EXC 2118/1); Comunidad de Madrid, Contrato de Atracción de Talento 2017-T1/TIC-5520; Czech Science Foundation GAČR, Grant No. 21-16583M; Delta ITP consortium; Department of Energy under Grant No. DE-SC0008541, DE-SC0009919 and DESC0019195; Deutsche Forschungsgemeinschaft (DFG), Project ID 438947057; Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy - EXC 2121 Quantum Universe - 390833306; European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports (Project CoGraDS - CZ.02.1.01/0.0/0.0/15 003/0000437); European Union’s H2020 ERC Consolidator Grant “GRavity from Astrophysical to Microscopic Scales” (Grant No. GRAMS-815673); European Union’s H2020 ERC, Starting Grant Agreement No. DarkGRA-757480; European Union’s Horizon 2020 programme under the Marie Sklodowska-Curie Grant Agreement 860881 (ITN HIDDeN); European Union’s Horizon 2020 Research and Innovation Programme Grant No. 796961, “AxiBAU” (K.S.); European Union’s Horizon 2020 Research Council grant 724659 MassiveCosmo ERC-2016-COG; FCT through national funds (PTDC/FIS-PAR/31938/2017) and through project “BEYLA – BEYond LAmbda” with Ref. Number PTDC/FIS-AST/0054/2021; FEDER-Fundo Europeu de Desenvolvimento Regional through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI-01-0145- FEDER-031938) and research Grants UIDB/04434/2020 and UIDP/04434/2020; Fondation CFM pour la Recherche in France; Foundation for Education and European Culture in Greece; French ANR project MMUniverse (ANR-19-CE31-0020); FRIA Grant No.1.E.070.19F of the Belgian Fund for Research, F.R. S.-FNRS Fundação para a Ciência e a Tecnologia (FCT) through Contract No. DL 57/2016/CP1364/ CT0001; Fundação para a Ciência e a Tecnologia (FCT) through Grants UIDB/04434/2020, UIDP/04434/ 2020, PTDC/FIS-OUT/29048/2017, CERN/FIS-PAR/0037/2019 and “CosmoTests – Cosmological tests of gravity theories beyond General Relativity” CEECIND/00017/2018; Generalitat Valenciana Grant PROMETEO/2021/083; Grant No. 758792, project GEODESI; Government of Canada through the Department of Innovation, Science and Economic Development and Province of Ontario through the Ministry of Colleges and Universities; Grants-in-Aid for JSPS Overseas Research Fellow (No. 201960698); I?D Grant PID2020-118159GB-C41 of the Spanish Ministry of Science and Innovation; INFN iniziativa specifica TEONGRAV; Israel Science Foundation (Grant No. 2562/20); Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Nos. 20H01899 and 20H05853; IFT Centro de Excelencia Severo Ochoa Grant SEV-2; Kavli Foundation and its founder Fred Kavli; Minerva Foundation; Ministerio de Ciencia e Innovacion Grant PID2020-113644GB-I00; NASA Grant 80NSSC19K0318; NASA Hubble Fellowship grants No. HST-HF2-51452.001-A awarded by the Space Telescope Science Institute with NASA contract NAS5-26555; Netherlands Organisation for Science and Research (NWO) Grant Number 680-91-119; new faculty seed start-up grant of the Indian Institute of Science, Bangalore, the Core Research Grant CRG/2018/002200 of the Science and Engineering; NSF Grants PHY-1820675, PHY-2006645 and PHY-2011997; Polish National Science Center Grant 2018/31/D/ ST2/02048; Polish National Agency for Academic Exchange within the Polish Returns Programme under Agreement PPN/PPO/2020/1/00013/U/00001; Pró-Reitoria de Pesquisa of Universidade Federal de Minas Gerais (UFMG) under Grant No. 28359; Ramón y Cajal Fellowship contract RYC-2017-23493; Research Project PGC2018-094773-B-C32 [MINECO-FEDER]; Research Project PGC2018-094773-B-C32 [MINECO-FEDER]; ROMFORSK Grant Project. No. 302640; Royal Society Grant URF/R1/180009 and ERC StG 949572: SHADE; Shota Rustaveli National Science Foundation (SRNSF) of Georgia (Grant FR/18-1462); Simons Foundation/SFARI 560536; SNSF Ambizione grant; SNSF professorship Grant (No. 170547); Spanish MINECO’s “Centro de Excelencia Severo Ochoa” Programme Grants SEV-2016- 0597 and PID2019-110058GB-C22; Spanish Ministry MCIU/AEI/FEDER Grant (PGC2018-094626-BC21); Spanish Ministry of Science and Innovation (PID2020-115845GB-I00/AEI/10.13039/ 501100011033); Spanish Proyectos de I?D via Grant PGC2018-096646-A-I00; STFC Consolidated Grant ST/T000732/1; STFC Consolidated Grants ST/P000762/1 and ST/T000791/1; STFC Grant ST/ S000550/1; STFC Grant ST/T000813/1; STFC Grants ST/P000762/1 and ST/T000791/1; STFC under the research Grant ST/P000258/1; Swiss National Science Foundation (SNSF), project The Non-Gaussian Universe and Cosmological Symmetries, Project Number: 200020-178787; Swiss National Science Foundation Professorship Grants No. 170547 and No. 191957; SwissMap National Center for Competence in Research; “The Dark Universe: A Synergic Multi-messenger Approach” Number 2017X7X85K under the MIUR program PRIN 2017; UK Space Agency; UKSA Flagship Project, Euclid.Peer reviewe

    Black holes, gravitational waves and fundamental physics: a roadmap

    Get PDF
    The grand challenges of contemporary fundamental physics—dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem—all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'

    Cosmology with the Laser Interferometer Space Antenna

    No full text
    The Laser Interferometer Space Antenna (LISA) has two scientific objectives of cosmological focus: to probe the expansion rate of the universe, and to understand stochastic gravitational-wave backgrounds and their implications for early universe and particle physics, from the MeV to the Planck scale. However, the range of potential cosmological applications of gravitational wave observations extends well beyond these two objectives. This publication presents a summary of the state of the art in LISA cosmology, theory and methods, and identifies new opportunities to use gravitational wave observations by LISA to probe the universe

    Cosmology with the Laser Interferometer Space Antenna

    No full text
    The Laser Interferometer Space Antenna (LISA) has two scientific objectives of cosmological focus: to probe the expansion rate of the universe, and to understand stochastic gravitational-wave backgrounds and their implications for early universe and particle physics, from the MeV to the Planck scale. However, the range of potential cosmological applications of gravitational wave observations extends well beyond these two objectives. This publication presents a summary of the state of the art in LISA cosmology, theory and methods, and identifies new opportunities to use gravitational wave observations by LISA to probe the universe

    Cosmology with the Laser Interferometer Space Antenna

    No full text
    The Laser Interferometer Space Antenna (LISA) has two scientific objectives of cosmological focus: to probe the expansion rate of the universe, and to understand stochastic gravitational-wave backgrounds and their implications for early universe and particle physics, from the MeV to the Planck scale. However, the range of potential cosmological applications of gravitational wave observations extends well beyond these two objectives. This publication presents a summary of the state of the art in LISA cosmology, theory and methods, and identifies new opportunities to use gravitational wave observations by LISA to probe the universe

    Cosmology with the Laser Interferometer Space Antenna

    No full text
    International audienceThe Laser Interferometer Space Antenna (LISA) has two scientific objectives of cosmological focus: to probe the expansion rate of the universe, and to understand stochastic gravitational-wave backgrounds and their implications for early universe and particle physics, from the MeV to the Planck scale. However, the range of potential cosmological applications of gravitational wave observations extends well beyond these two objectives. This publication presents a summary of the state of the art in LISA cosmology, theory and methods, and identifies new opportunities to use gravitational wave observations by LISA to probe the universe

    Cosmology with the Laser Interferometer Space Antenna

    Get PDF
    The Laser Interferometer Space Antenna (LISA) has two scientific objectives of cosmological focus: to probe the expansion rate of the universe, and to understand stochastic gravitational-wave backgrounds and their implications for early universe and particle physics, from the MeV to the Planck scale. However, the range of potential cosmological applications of gravitational wave observations extends well beyond these two objectives. This publication presents a summary of the state of the art in LISA cosmology, theory and methods, and identifies new opportunities to use gravitational wave observations by LISA to probe the universe

    The NANOGrav 15-year Data Set: Search for Signals from New Physics

    Get PDF
    The 15-year pulsar timing data set collected by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) shows positive evidence for the presence of a low-frequency gravitational-wave (GW) background. In this paper, we investigate potential cosmological interpretations of this signal, specifically cosmic inflation, scalar-induced GWs, first-order phase transitions, cosmic strings, and domain walls. We find that, with the exception of stable cosmic strings of field theory origin, all these models can reproduce the observed signal. When compared to the standard interpretation in terms of inspiraling supermassive black hole binaries (SMBHBs), many cosmological models seem to provide a better fit resulting in Bayes factors in the range from 10 to 100. However, these results strongly depend on modeling assumptions about the cosmic SMBHB population and, at this stage, should not be regarded as evidence for new physics. Furthermore, we identify excluded parameter regions where the predicted GW signal from cosmological sources significantly exceeds the NANOGrav signal. These parameter constraints are independent of the origin of the NANOGrav signal and illustrate how pulsar timing data provide a new way to constrain the parameter space of these models. Finally, we search for deterministic signals produced by models of ultralight dark matter (ULDM) and dark matter substructures in the Milky Way. We find no evidence for either of these signals and thus report updated constraints on these models. In the case of ULDM, these constraints outperform torsion balance and atomic clock constraints for ULDM coupled to electrons, muons, or gluons.Comment: 74 pages, 31 figures, 4 tables; published in Astrophysical Journal Letters as part of Focus on NANOGrav's 15-year Data Set and the Gravitational Wave Background. For questions or comments, please email [email protected]
    corecore