1,024 research outputs found

    Brown fat depots in adult humans remain static in their locations on PET/CT despite changes in seasonality

    Get PDF
    Active brown adipose tissue (BAT) in humans has been demonstrated through use of positron emission tomography with 2-deoxy-2-(fluorine-18) fluoro-D-glucose integrated with computed tomography (18F-FDG PET/CT) scans. The aim of our study was to determine whether active human BAT depots shown on 18F-FDG PET/CT scans remain static in their location over time. This was a retrospective study. Adult human subjects (n = 15) who had had 18F-FDG PET/CT imaging (n = 38 scans in total) for clinical reasons were included on the basis of 18F-FDG uptake patterns consistent with BAT activity. For each subject, 18F-FDG BAT uptake pattern on serial 18F-FDG PET/CT images was compared to an index 18F-FDG PET/CT image with the largest demonstrable BAT volume. Object-based colocalization was expressed as Mander's correlation coefficient (where 1 = 100% overlap, 0 = no overlap). Distribution of 18F-FDG BAT activity over time and across multiple 18F-FDG BAT scans was equivalent in 60% (n = 9) of the subjects. The degree of consistency in the pattern of 18F-FDG BAT uptake in each subject over time was greater than expected by chance in 87% (n = 13) of the subjects (pair-wise agreement 75–100%, Fleiss’ κ 0.4–1). The degree of BAT colocalization on serial scans was greater than that expected by chance in 93% (n = 14) of the subjects (mean Mander's coefficient 0.81 ± 0.21 [95% CI]). To our knowledge, our study provides the most conclusive evidence to date to support the notion that active BAT depots in humans (volumes and activities of which were measured through use of 18F-FDG PET/CT scans) remain static in location over sustained periods

    Disruption of the Opal Stop Codon Attenuates Chikungunya Virus-Induced Arthritis and Pathology

    Get PDF
    ABSTRACT Chikungunya virus (CHIKV) is a mosquito-borne alphavirus responsible for several significant outbreaks of debilitating acute and chronic arthritis and arthralgia over the past decade. These include a recent outbreak in the Caribbean islands and the Americas that caused more than 1 million cases of viral arthralgia. Despite the major impact of CHIKV on global health, viral determinants that promote CHIKV-induced disease are incompletely understood. Most CHIKV strains contain a conserved opal stop codon at the end of the viral nsP3 gene. However, CHIKV strains that encode an arginine codon in place of the opal stop codon have been described, and deep-sequencing analysis of a CHIKV isolate from the Caribbean identified both arginine and opal variants within this strain. Therefore, we hypothesized that the introduction of the arginine mutation in place of the opal termination codon may influence CHIKV virulence. We tested this by introducing the arginine mutation into a well-characterized infectious clone of a CHIKV strain from Sri Lanka and designated this virus Opal524R. This mutation did not impair viral replication kinetics in vitro or in vivo . Despite this, the Opal524R virus induced significantly less swelling, inflammation, and damage within the feet and ankles of infected mice. Further, we observed delayed induction of proinflammatory cytokines and chemokines, as well as reduced CD4 + T cell and NK cell recruitment compared to those in the parental strain. Therefore, the opal termination codon plays an important role in CHIKV pathogenesis, independently of effects on viral replication. IMPORTANCE Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes significant outbreaks of viral arthralgia. Studies with CHIKV and other alphaviruses demonstrated that the opal termination codon within nsP3 is highly conserved. However, some strains of CHIKV and other alphaviruses contain mutations in the opal termination codon. These mutations alter the virulence of related alphaviruses in mammalian and mosquito hosts. Here, we report that a clinical isolate of a CHIKV strain from the recent outbreak in the Caribbean islands contains a mixture of viruses encoding either the opal termination codon or an arginine mutation. Mutating the opal stop codon to an arginine residue attenuates CHIKV-induced disease in a mouse model. Compared to infection with the opal-containing parental virus, infection with the arginine mutant causes limited swelling and inflammation, as well as dampened recruitment of immune mediators of pathology, including CD4 + T cells and NK cells. We propose that the opal termination codon plays an essential role in the induction of severe CHIKV disease

    Experiences of Self-Management Support Following a Stroke: A Meta-Review of Qualitative Systematic Reviews

    Get PDF
    Supporting self-management in stroke patients improves psychological and functional outcomes but evidence on how to achieve this is sparse. We aimed to synthesise evidence from systematic reviews of qualitative studies in an overarching meta-review to inform the delivery and development of self-management support interventions.We systematically searched eight electronic databases including MEDLINE, EMBASE and CINAHL for qualitative systematic reviews (published January 1993 to June 2012). We included studies exploring patients', carers' or health care professionals' experiences relevant to self-management support following a stroke, including studies describing the lived experience of surviving a stroke. We meta-synthesised the included review findings using a meta-ethnographic framework.Seven reviews, reporting 130 unique studies, were included. Themes emerging from the reviews were pertinent, consistent and showed data saturation; though explicit mention of self-management support was rare. Our meta-review highlighted the devastating impact of stroke on patients' self-image; the varying needs for self-management support across the trajectory of recovery; the need for psychological and emotional support throughout recovery particularly when physical recovery plateaus; the considerable information needs of patients and carers which also vary across the trajectory of recovery; the importance of good patient-professional communication; the potential benefits of goal-setting and action-planning; and the need for social support which might be met by groups for stroke survivors.The observed data saturation suggests that, currently, no further qualitative research simply describing the lived experience of stroke is needed; we propose that it would be more useful to focus on qualitative research informing self-management support interventions and their implementation. Our findings demonstrate both the on-going importance of self-management support and the evolving priorities throughout the stages of recovery following a stroke. The challenge now is to ensure these findings inform routine practice and the development of interventions to support self-management amongst stroke survivors

    Red clover (Trifolium pratense L.) draft genome provides a platform for trait improvement

    Get PDF
    Red clover (Trifolium pratense L.) is a globally significant forage legume in pastoral livestock farming systems. It is an attractive component of grassland farming, because of its high yield and protein content, nutritional value and ability to fix atmospheric nitrogen. Enhancing its role further in sustainable agriculture requires genetic improvement of persistency, disease resistance, and tolerance to grazing. To help address these challenges, we have assembled a chromosome-scale reference genome for red clover. We observed large blocks of conserved synteny with Medicago truncatula and estimated that the two species diverged ~23 million years ago. Among the 40,868 annotated genes, we identified gene clusters involved in biochemical pathways of importance for forage quality and livestock nutrition. Genotyping by sequencing of a synthetic population of 86 genotypes show that the number of markers required for genomics-based breeding approaches is tractable, making red clover a suitable candidate for association studies and genomic selection

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Diversity of a cytokinin dehydrogenase gene in wild and cultivated barley

    Get PDF
    The cytokinin dehydrogenase gene HvCKX2.1 is the regulatory target for the most abundant heterochromatic small RNAs in drought-stressed barley caryopses. We investigated the diversity of HvCKX2.1 in 228 barley landraces and 216 wild accessions and identified 14 haplotypes, five of these with ten or more members, coding for four different protein variants. The third largest haplotype was abundant in wild accessions (51 members), but absent from the landrace collection. Protein structure predictions indicated that the amino acid substitution specific to haplotype 3 could result in a change in the functional properties of the HvCKX2.1 protein. Haplotypes 1–3 have overlapping geographical distributions in the wild population, but the average rainfall amounts at the collection sites for haplotype 3 plants are significantly higher during November to February compared to the equivalent data for plants of haplotypes 1 and 2. We argue that the likelihood that haplotype 3 plants were excluded from landraces by sampling bias that occurred when the first wild barley plants were taken into cultivation is low, and that it is reasonable to suggest that plants with haplotype 3 are absent from the crop because these plants were less suited to the artificial conditions associated with cultivation. Although the cytokinin signalling pathway influences many aspects of plant development, the identified role of HvCKX2.1 in the drought response raises the possibility that the particular aspect of cultivation that mitigated against haplotype 3 relates in some way to water utilization. Our results therefore highlight the possibility that water utilization properties should be looked on as a possible component of the suite of physiological adaptations accompanying the domestication and subsequent evolution of cultivated barley

    Analogues of Marine Guanidine Alkaloids Are in Vitro Effective against Trypanosoma cruzi and Selectively Eliminate Leishmania (L.) infantum Intracellular Amastigotes

    Get PDF
    Synthetic analogues of marine sponge guanidine alkaloids showed in vitro antiparasitic activity against Leishmania (L.) infantum and Trypanosoma cruzi. Guanidines 10 and 11 presented the highest selectivity index when tested against Leishmania. The antiparasitic activity of 10 and 11 was investigated in host cells and in parasites. Both compounds induced depolarization of mitochondrial membrane potential, upregulation of reactive oxygen species levels, and increased plasma membrane permeability in Leishmania parasites. Immunomodulatory assays suggested an NO-independent effect of guanidines 10 and 11 on macrophages. The same compounds also promoted anti-inflammatory activity in L. (L.) infantum-infected macrophages cocultived with splenocytes, reducing the production of cytokines MCP-1 and IFN-γ. Guanidines 10 and 11 affect the bioenergetic metabolism of Leishmania, with selective elimination of parasites via a host-independent mechanism

    Carotenoid Distribution in Living Cells of Haematococcus pluvialis (Chlorophyceae)

    Get PDF
    Haematococcus pluvialis is a freshwater unicellular green microalga belonging to the class Chlorophyceae and is of commercial interest for its ability to accumulate massive amounts of the red ketocarotenoid astaxanthin (3,3′-dihydroxy-β,β-carotene-4,4′-dione). Using confocal Raman microscopy and multivariate analysis, we demonstrate the ability to spectrally resolve resonance–enhanced Raman signatures associated with astaxanthin and β-carotene along with chlorophyll fluorescence. By mathematically isolating these spectral signatures, in turn, it is possible to locate these species independent of each other in living cells of H. pluvialis in various stages of the life cycle. Chlorophyll emission was found only in the chloroplast whereas astaxanthin was identified within globular and punctate regions of the cytoplasmic space. Moreover, we found evidence for β-carotene to be co-located with both the chloroplast and astaxanthin in the cytosol. These observations imply that β-carotene is a precursor for astaxanthin and the synthesis of astaxanthin occurs outside the chloroplast. Our work demonstrates the broad utility of confocal Raman microscopy to resolve spectral signatures of highly similar chromophores in living cells

    Reef fishes at all trophic levels respond positively to effective marine protected areas

    Get PDF
    Marine Protected Areas (MPAs) offer a unique opportunity to test the assumption that fishing pressure affects some trophic groups more than others. Removal of larger predators through fishing is often suggested to have positive flow-on effects for some lower trophic groups, in which case protection from fishing should result in suppression of lower trophic groups as predator populations recover. We tested this by assessing differences in the trophic structure of reef fish communities associated with 79 MPAs and open-access sites worldwide, using a standardised quantitative dataset on reef fish community structure. The biomass of all major trophic groups (higher carnivores, benthic carnivores, planktivores and herbivores) was significantly greater (by 40% - 200%) in effective no-take MPAs relative to fished open-access areas. This effect was most pronounced for individuals in large size classes, but with no size class of any trophic group showing signs of depressed biomass in MPAs, as predicted from higher predator abundance. Thus, greater biomass in effective MPAs implies that exploitation on shallow rocky and coral reefs negatively affects biomass of all fish trophic groups and size classes. These direct effects of fishing on trophic structure appear stronger than any top down effects on lower trophic levels that would be imposed by intact predator populations. We propose that exploitation affects fish assemblages at all trophic levels, and that local ecosystem function is generally modified by fishing
    corecore