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Introduction

Abstract

Active brown adipose tissue (BAT) in humans has been demonstrated through
use of positron emission tomography with 2-deoxy-2-(fluorine-18) fluoro-D-
glucose integrated with computed tomography ('*F-FDG PET/CT) scans. The
aim of our study was to determine whether active human BAT depots shown
on "*F-FDG PET/CT scans remain static in their location over time. This was
a retrospective study. Adult human subjects (n = 15) who had had '*F-FDG
PET/CT imaging (n = 38 scans in total) for clinical reasons were included on
the basis of '®F-FDG uptake patterns consistent with BAT activity. For each
subject, "*F-FDG BAT uptake pattern on serial '*F-FDG PET/CT images was
compared to an index '"F-FDG PET/CT image with the largest demonstrable
BAT volume. Object-based colocalization was expressed as Mander’s correla-
tion coefficient (where 1 = 100% overlap, 0 = no overlap). Distribution of
'"E-EDG BAT activity over time and across multiple '*F-FDG BAT scans was
equivalent in 60% (n = 9) of the subjects. The degree of consistency in the
pattern of '"®F-FDG BAT uptake in each subject over time was greater than
expected by chance in 87% (n = 13) of the subjects (pair-wise agreement
75-100%, Fleiss’ k 0.4-1). The degree of BAT colocalization on serial scans
was greater than that expected by chance in 93% (n = 14) of the subjects
(mean Mander’s coefficient 0.81 £ 0.21 [95% CI]). To our knowledge, our
study provides the most conclusive evidence to date to support the notion
that active BAT depots in humans (volumes and activities of which were mea-
sured through use of '*F-FDG PET/CT scans) remain static in location over
sustained periods.

imaging (MRI) in the discernment of BAT from adjacent
WAT based on differences in water:fat ratios between the

Brown adipose tissue (BAT) is both anatomically and
functionally distinct from white adipose tissue (WAT)
(Cannon and Nedergaard 2004; Ronti et al. 2006; Saely
et al. 2012). Through generating heat from non-shivering
thermogenesis (Del Mar Gonzalez-Barroso et al. 2000;
Enerback 2010), BAT has therapeutic potential to facili-
tate weight loss, and may persist into adulthood in a large
proportion of humans. Previously, our own group pub-
lished the first proof of concept study in a living human
adult to demonstrate the utility of magnetic resonance

© 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
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two tissues (Reddy et al. 2014). This MRI-based anatomi-
cal approach to BAT imaging contrasts with the more
widely published imaging modality of positron emission
tomography with 2-deoxy-2-(fluorine-18) fluoro-D-glu-
cose integrated with computed tomography ('*F-FDG
PET/CT), which only demonstrates active BAT (rather
than BAT anatomy) through its uptake of '*F-FDG. Such
reported studies have demonstrated that BAT activity in
human adults predominates within certain anatomical
locations that include cervical, thoracic and paravertebral
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regions (Barrington and Maisey 1996). Comparison of
images from '"E-FDG PET/CT scans from the same sub-
ject have demonstrated the facultative nature of human
BAT, with BAT depots becoming active within minutes of
stimulation through cold exposure (van Marken Lichten-
belt et al. 2009).

Although human BAT activity as a whole is clearly
inducible and facultative in response to stimuli such as
cold exposure (Cannon & Nedergaard 2004), an impor-
tant unanswered question relates to the pattern of BAT
activity in each individual over time: it is not clear
whether the distribution of BAT depot activity in each
individual human adult (with demonstrable BAT activity)
remains fixed and static in location over time, or is sus-
ceptible to changeability and impermanence. Such under-
standing and insight into patterns of BAT activity are
relevant for future therapeutic approaches to manipulate
BAT. Factors that would perhaps predispose to a change-
able pattern of BAT depot activity over time may include
trans-differentiation of WAT into new beige fat depots
(separate from established BAT depots), or perhaps other
hitherto unknown local paracrine factors that influence
activity of individual BAT depots. These hypotheses how-
ever are purely speculative, and we accept that transdiffer-
entiation (of WAT surrounding established BAT depots
for example) may also be consistent with a pattern of
BAT depot activity that is fixed and static over time. The
aim of our study was to determine whether active human
BAT depots shown on '*F-FDG PET/CT scans remain
static in their location over time.

Methods

Subject selection

Subjects were selected for inclusion in this study retro-
spectively on the basis of identified '"F-FDG uptake
within presumed BAT depots (indicative of active BAT)
on images from all '"*F-FDG PET/CT scans (n = 3317)
performed for clinical reasons (mainly oncology assess-
ments) between June 2007 and August 2012, in patients
attending University Hospitals Coventry and Warwick-
shire (UHCW). For this purpose, a keyword search was
employed using the terms ‘brown adipose tissue’ and
‘brown fat’ to identify relevant images from their associ-
ated radiology reports written by a Consultant Radiologist
with specific expertise in nuclear imaging. It is usual prac-
tice at UHCW for the presence of active BAT to be
reported within radiology reports of '*F-FDG PET/CT
images. A total of 175 '"F-FDG PET/CT scans from 152
patients were identified to demonstrate '*F-FDG uptake
within presumed active BAT depots. Of these 152
patients, 15 had evidence of '"F-FDG uptake within
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presumed active BAT depots on multiple scans (n = 38
scans in total) performed at different times. Clinical
details of these 15 subjects are outlined in Table 1. All
investigations were conducted in accordance with the
guidelines in the Declaration of Helsinki. The study was
approved by a local Research Ethics Committee in the
United Kingdom.

'8F.FDG PET/CT image acquisition

"E-FDG PET/CT scanning was performed on a combined
GE Discovery STE PET/CT scanner (General Electric
Medical Systems, Milwaukee). In accordance with stan-
dard administration and acquisition protocol, patients
were fasted for 6 h prior to scanning. '"F-FDG was
administered intravenously one hour prior to scan acqui-
sition (mean injected dose 362 4 33 MBq; range 103—
505 MBq). Static emission data were obtained from the
skull base to mid thigh level (with the arms elevated
where possible) with unenhanced spiral CT scans at
3.3 mm slice thicknesses for attenuation correction.

'8F-FDG PET/CT image analysis

On analyzing images from '*F-FDG PET/CT scans, the
reporting Consultant Radiologist reported presence of
presumed active BAT when there was avid '*F-FDG
uptake at a location that was greater than background
level (Standard Uptake Value [SUV] >1.0 g/mL), within
an anatomical region that was consistent with the pres-
ence of active BAT (confirmed WAT on CT, with attenu-
ation of between —100 and —10 Hounsfield units).
Images from 8F_FDG PET/CT scans (n = 175) that had
reports of avid '"*F-FDG uptake within presumed active
BAT depots were then reviewed by a second radiologist
(co-author TAJ) using a GE ADW Advantage 4.3 Work-
station (GE Healthcare, Milwaukee) to determine if
"8E-FDG uptake characteristic of active BAT occurred
within each of four anatomical compartments as described
by Ouellet et al. (2011): neck/supraclavicular fossae (SCF);
mediastinum; paravertebral, and; peri-renal regions.

Within each of the "*F-FDG PET/CT images from the
15 subjects who had '"F-FDG uptake within presumed
active BAT depots on multiple scans (n = 38) over time,
"E-FDG BAT volumes were calculated using Mirada XD
3.4 (Mirada Medical Ltd, Oxford, United Kingdom).
Regions of interest (ROIs) corresponding to '*F-FDG
BAT deposits were selected semi-automatically by defining
iso-contours around putative BAT depots, with a thresh-
old SUV of 2.5 g/mL to minimize artefactual ‘bleeding’ of
FDG activity into adjacent tissues, using a similar tech-
nique to that described by van Marken Lichtenbelt et al.
(2009) and Huang et al. (2011). For each of the 15

© 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
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Table 1. Demographics of patients with multiple '®F-FDG BAT positive PET/CT scans (adapted with permission of OmniScriptum GmbH (Jones

2016)).

Age at first BMI (kg/m?) Serum glucose (mmol/L)
Patient PET/CT (years) Sex at index PET/CT at index PET/CT Diagnosis
A 57 Male 26.1 5.6 Bronchogenic cancer
B 14 Male 19.1 5.1 Hodgkin’s lymphoma
C 20 Female 35.6 4.8 Hodgkin’s lymphoma
D 52 Female 26.2 6.0 Malignant melanoma
E 29 Female 23.3 4.8 Hodgkin’s lymphoma
F 20 Male 23.8 4.6 Hodgkin’s lymphoma
G 85 Female 26.1 5.6 Bronchogenic cancer
H 58 Male 21.4 6.0 Gastro-intestinal stromal tumour
| 22 Female 25.5 4.4 Hodgkin’s lymphoma
J 17 Female 21.6 4.8 Hodgkin’s lymphoma
K 37 Female 241 5.3 Breast cancer
L 43 Female 26.6 5.1 Oesophageal cancer
M 25 Female 25.3 8.9 Hodgkin’s lymphoma
N 36 Female 21.0 4.8 Cervical cancer
(0] 75 Female 23.0 5.1 Bowel cancer

subjects who had "®F-FDG active BAT uptake on multiple
scans, the '"F-FDG PET/CT image with the largest vol-
ume of '®F-FDG BAT uptake was identified as the ‘index’
scan, which formed a benchmark against which other
‘subordinate’ scans taken at other times from the same
subject were compared.

Statistical analysis

For each of the 15 patients with 18F-FDG BAT uptake on
multiple 18F-FDG PET/CT scans (n = 38 scans), the pat-
tern of BAT activity on serial scans over time was com-
pared using pair-wise percent agreement and Fleiss’ kappa
using the online calculator ‘Reliability Calculator for 3 or
more coders’ (ReCal3) (Freelon, 2010) (http://dfreelon.
org/utils/recalfront/recal3/). This technique provided an
assessment of the degree to which BAT activity pattern
remains constant and static over time. Subordinate 18F-
FDG PET/CT images were registered to their respective
index 18F-FDG PET/CT image using a combination of
automatic rigid and non-rigid registration as appropriate
using Mirada XD 3.4, and verified visually using an
inbuilt visualization tool. Quantitative object-based colo-
calization analysis (Lachmanovich et al, 2003) (a well-
established technique used in fluorescence microscopy to
demonstrate that particular proteins are associated with
certain organelles) was employed in our study to evaluate
colocalization of individual 18F-FDG active BAT depots
on these registered serial 18F-FDG PET/CT images from
each individual over time, using Image] 1.45 (U.S.
National Institutes of Health, Bethesda, Maryland, USA)
(Rasband, 1997-2004) ‘Just Another Colocalization

© 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of

The Physiological Society and the American Physiological Society.

Plugin’ (JACoP) 2.0 (Bolte & Cordelieres, 2006). The
degree of fractional overlap between segmented 18F-FDG
active BAT depots on subordinate scans with respect to
those depots on the index scan was calculated, and
expressed as a ‘Mander’s colocalization coefficient’ (where
1 = 100% overlap and 0 = no overlap).

To determine whether the degree of colocalization of
18F-FDG active BAT depots across serial scans for each
individual was greater than would be expected by chance,
the calculated ‘Mander’s colocalization coefficients’ were
compared with those derived from randomized images
using the Confined Displacement Algorithm (CDA) plu-
gin (Ramirez ef al., 2010) for Image J. Probability distri-
bution curves were generated against which the baseline
colocalization coefficients were compared. Calculated
colocalization coefficients were considered significant if
they were >95% of the coefficients generated from
randomized images.

Results

Anatomical patterns and distribution of
'8F-FDG active BAT

Amongst the "*F-FDG PET/CT images (n = 175) showing
presumed BAT activity, '®F-FDG uptake within active
BAT occurred most commonly within cervical/SCF
regions (162/175 [93%] of scans) followed by the paraver-
tebral region (143/175 [82%] of scans). The timing of the
serial "®F-FDG PET/CT scans (n = 38) for the 15 subjects
with multiple images showing '’F-FDG active BAT,
including the anatomical locations of active BAT are
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shown in Table 2. The time intervals between '*F-FDG
PET/CT scans for each of these 15 subjects ranged
between 3 months and 4 years (mean time interval
between first and last scan was 16 months). In 14 out of
these 15 subjects, the index scan showed '*F-FDG BAT
uptake within at least as many anatomical compartments
as the subordinate scans. Of the 15 subjects with multiple
"E-FDG BAT positive scans, 9 subjects (60%) showed
"E-FDG BAT uptake within the same anatomical com-
partments on serial scans (100% pair-wise agreement,
Fleiss’ k = 1), which is much greater than what would be
expected by chance (data shown in Tables 2 and 3). The
most notable exemplar was subject F, who showed 100%
concordance in '*F-FDG active BAT distribution across 4
separate '"F-FDG PET/CT scans performed over a
13-month period. Subject B also showed a very high level
of concordance across 5 scans (mean pair-wise agreement
90%, Fleiss’ k¥ = 0.76). Subjects I, ] and O showed com-
paratively lower levels of inter-rater agreement, although
discordance was limited to a single anatomical compart-
ment resulting in fair-to-moderate agreement, according
to the criteria of Landis and Koch (1977). There was poor
concordance in the pattern of BAT activity for 2 subjects
(H and L) resulting in poor agreement (Fleiss’ x = —0.14
and —0.33 respectively).

Colocalization analysis

A typical colocalized image of the upper thorax for sub-
ject B is shown in Figure 1, with areas of colocalization
between the '*F-FDG BAT ROIs on the index scan and
subordinate scan shown as yellow (non-colocalizing ROIs
on the subordinate and index scans are shown as green
and red respectively). To determine colocalized ROIs for
each subject, ROIs from subordinate scans were compared
with those from the index scan. In 14 subjects (93%), the
majority of ROIs on subordinate scans colocalized with
ROIs on the index scans. Those subjects with a high
degree of colocalization who had multiple subordinate
scans (subjects B, F, I, ] and M) tended to show consis-
tently high levels of colocalization across all their subordi-
nate scans. This is exemplified by two subjects illustrated
in Figure 2: subjects I and ] who each had 3 scans per-
formed over a 13-month and 5-month period respec-
tively. In both cases '®F-FDG BAT ROIs on subordinate
scans tended to fall within the larger "*F-FDG BAT ROIs
on the index scan.

Mander’s
0.81 £ 0.21. With one exception (patient G), quantitative
colocalization analysis yielded Mander’s colocalization
coefficients greater than what would be expected by
chance (Figure 3). There were 19/23 (83%) subordinate
scans in 11 subjects that vyielded coefficients >0.7

Mean colocalization  coefficient  was
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Table 2. Anatomical distribution patterns of '8F-FDG BAT uptake
across four anatomical compartments on serial PET/CT scans
(adapted with permission of OmniScriptum GmbH (Jones 2016))

Anatomical

SUV  '8F-FDG BAT compartment”

Patient Scan date max volume(mL) 1 2 3 4
A January 2009 6.2 31.8" N
November 2011 8.2 30.8 + 4+ + -
B March 2009 8.2 70.7 + + + =
September 2009  11.1 94.3 + o+ o+ -
November 2009  12.7 72.9 + o+ o+ -
January 2010 6.3 24.0 + + - =
December 2010 4.0 18.6 + + + -
C November 2009 3.9 2.0 + o+ - =
December 2009 7.4 494’ o = =
D November 2010  16.1 217.4 + + + =
March 2011 10.3 324.8" + o+ o+ -
E September 2010 5.9 479" + o+ - -
March 2011 4.6 9.1 + o+ - =
F January 2011 13.4 84.0 N
June 2011 12.5 33.9 + + + -
September 2011 10.2 44.3 + o+ o+ -
February 2012 4.4 32.7 + o+ o+ -
G April 2012 4.7 20.1" - o+ - o+
October 2012 33 2.5 - 4+ - +
H April 2008 8.1 43.6' + o+ -+
May 2011 5.0 43.5 oo AR
| February 2011 8.1 35.8 + + + -
August 2011 222 258.9' + o+ o+ o+
March 2012 5.1 29.5 + o+ o+ -
J February 2011 14.8 409.7" o+ o+ o+
April 2011 4.6 25.8 + o+ 4+ =
July 2011 6.2 53.8 + + + =
K November 2011 8.4 73.3 T
February 2012 4.7 10.9 + - + -
L February 2008 10.4 111.17 + o+ o+ o+
February 2012 4.5 20.0 + - + —
M March 2009 6.3 8.0 + - - =
June 2010 10.5 37.0" + - - -
February 2009 4.5 1.7 + - = =
N March 2009 4.6 23.2 + + + o+
August 2009 5.8 61.7' + o+ o+ o+
0 September 2011 2.9 0.9 - + + =
May 2009 5.9 18.9 + o+ o+ =
'Index scan.

21, cervical/supraclavicular; 2, paravertebral, 3, mediastinal; 4,
peri-renal compartments.

3.+'denotes presence of '8F-FDG BAT in that compartment, and
'—" denotes absence of '8F-FDG BAT.

(meaning that >70% of the '"F-FDG BAT voxels on sub-
ordinate scans in those subjects coincided with '*F-FDG
BAT on the respective index scan). In 2 of the remaining
subjects, Mander’s colocalization coefficient was high at
0.69 and 0.67.

© 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
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Table 3. Inter-rater reliability calculations for serial '®F-FDG BAT
positive PET/CT scans (reprinted with permission of OmniScriptum
GmbH (Jones 2016)).

Fleiss Fleiss

Mean pairwise Fleiss’ (expected (observed

Patient  agreement (%) K agreement) agreement)
A 100 1.00 0.63 1.00
B 90 0.76 0.58 0.90
C 100 1.00 0.50 1.00
D 100 1.00 0.63 1.00
E 100 1.00 0.50 1.00
F 100 1.00 0.63 1.00
G 100 1.00 0.50 1.00
H 75 -0.14 0.78 0.75
| 83 0.40 0.72 0.83
J 83 0.40 0.72 0.83
K 100 1.00 0.63 1.00
L 50 —-0.33 0.63 0.50
M 100 1.00 0.63 1.00
N 100 Undefined due to invariant values
(0] 75 0.47 0.53 0.75

Figure 1. Axial PET/CT of the upper thorax for patient B showing
superimposed segmented '8F-FDG BAT regions of interest from the
index (red) and subordinate PET/CT scans (green), with areas of
colocalization shown as yellow (reprinted with permission of
OmniScriptum GmbH (Jones 2016)).

Discussion

To our knowledge, our study provides the most conclusive
evidence to date to support the notion that active BAT depots
in human adults (volumes and activities of which were mea-
sured through use of '*F-FDG PET/CT scans) remain static
and constant in location over long periods of time, often
years. Although variable between subjects, anatomical distri-
bution patterns of '"®F-FDG BAT activity within each subject
also remained static and constant over time.

Data from serial "®F-FDG PET/CT scans were reported
by Rousseau et al. (2006). In this study, patients with
breast cancer (n = 33) were imaged, and 8E_FDG PET/

© 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
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CT scans (n = 5) performed for each patient. Although
'"F-FDG BAT uptake was shown to be unrelated to age
or outdoor temperature, '*F-FDG BAT uptake was identi-
cal on all 5 "F-FDG PET/CT scans in only a small
minority (15%, n = 5) of the patients included in this
study (Rousseau et al. 2006). In a prospective study
design to assess the effects of cold exposure and capsinoid
ingestion over a 6-week period on human BAT activity,
energy expenditure and body fat mass, Yoneshiro and col-
leagues showed a negative correlation between BAT activ-
ity and body fat mass (Yoneshiro et al. 2011). Although
prospective in design, this study had a much shorter
duration than ours, and assessment of changes in active
BAT location over time was hampered by some of the
scans showing BAT inactivity (due to lack of stimulation)
(Yoneshiro et al. 2011). Finally, Ouellet and colleagues
demonstrated in a group of 328 '*F-FDG BAT positive
human subjects that outdoor temperature, age, sex, BMI
and diabetes status influences '®F-FDG BAT activity
(Ouellet et al. 2011). However, the authors did not report
on colocalization data for BAT depots from serial scans
on each subject (Ouellet et al. 2011).

The '®F-FDG PET/CT scan when used for clinical pur-
poses is an inherently limited imaging modality for detect-
ing '"®*F-FDG uptake within active BAT depots. Therefore
the detection of active BAT in our retrospective study was
entirely opportunistic. The likelihood of detecting metabol-
ically active BAT on PET/CT varies with age, gender, body
mass index and time of day, while activity (SUVmax) varies
with environmental temperature and age (Jones 2016). We
sought to address this inherent limitation (which undermi-
nes the reliability of '*F-FDG PET/CT as an effective imag-
ing reference standard for active BAT in humans) through
use of an ‘index’ scan. For each subject, the ‘index’ scan
provided a reasonably accurate indication of the anatomical
pattern of '"*F-FDG BAT uptake on subordinate scans. We
acknowledge that, due to its retrospective design, scans
were performed during all seasons and therefore with vari-
able environmental temperatures, and that this represents a
limitation of our study. However, it seems unlikely that
seasonal variations in environmental temperature between
scans for each subject would have changed our main con-
clusion that active BAT depots remain static and constant
in their locations over time. Indeed, our observation that
metabolically active BAT depots remained static in their
locations over long periods of time despite variations in
both environmental parameters and patient demographics
strengthens our conclusions.

Although our sample size of 15 patients (38 PET/CT
scans) may be considered small, to identify metabolically
active BAT on serial PET/CT scans is unusual. An exhaus-
tive search of 3317 PET/CT scans identified 15 patients in
whom BAT was evident on serial PET/CT scans.

2017 | Vol. 5 | Iss. 11 | 13284
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Figure 2. Serial PET/CT scans for two exemplar patients (I and J) showing segmented "8E-FDG BAT from respective index scans (A), subordinate
scans (B and C), with merged segmented images showing a high degree of visual colocalization (D).
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Figure 3. Mander’s colocalization coefficients for each patient’s subordinate scan with respect to the index scan (red), with colocalization
coefficients derived from randomized images (grey boxes denoting 95% confidence intervals) showing colocalization to be higher than chance
for 22/23 subordinate scans (adapted with permission of OmniScriptum GmbH (Jones 2016)).

A further potential limitation of our study is that anal-
ysis of '"*F-FDG PET/CT images does not facilitate perfect
colocalization. Acquisition of images from PET and CT
(the 2 components of "*F-FDG PET/CT) are metachronous,

with durations of >30 min and a few seconds respectively.
There is therefore potential for some '*F-FDG BAT activity
on each scan to be mis-registered and appear erroneously
outside fat regions due to subtle differences in patient
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positioning during each scan. Image segmentation on the
basis of CT attenuation could then exclude any mis-
registered '*F-FDG BAT uptake. Furthermore, despite
standard operating procedures, it is reasonable to expect
small differences in patient positioning between each
scan, which may not be fully remedied by post hoc image
registration. This is an unlikely source of bias, however,
as both index and subordinate scans in each subject
would be affected similarly by such small variations in
patient positioning.

In segmenting '’F-FDG BAT, we used a higher SUV
cut-off than other authors (Quellet et al. 2011) to
maximize specificity, which has the potential to introduce
a type II error by underestimating the true extent of BAT
activity. The point prevalence of 'F-FDG BAT in our
sample was 5.3% (Jones et al. 2016) which is comparable
to those reported in other retrospective PET-based studies
(Au-Yong et al. 2009; Cypess et al. 2009; Ouellet et al.
2011; Pace et al. 2011; Cronin et al. 2012; Mei 2012),
which in turn are consistently lower than in dedicated
prospective studies (van Marken Lichtenbelt et al. 2009;
Virtanen et al. 2009). Therefore, it seems likely that even
our index scans underestimated the true extent and vol-
ume of '"F-FDG BAT depots. However, this probable
underestimation of the true extent of active BAT on each
scan is unlikely to have changed our main conclusion,
given that a standard SUV was employed for each scan,
and the standard SUV threshold employed throughout
our study would not be expected to change the observed
distribution of active BAT between scans for each subject.

An inherent problem with the '"*F-FDG PET/CT imaging
modality for detecting active BAT in humans is that
enhanced uptake of '*F-FDG is non-specific for active BAT
and appears in other metabolically active tissues. To
address this '"*F-FDG uptake was only considered as active
BAT if it occurred within WAT in anatomically well-
defined regions for human active BAT as described by
Ouellet et al. (2011). '"F-FDG uptake that appeared in
other regions was disregarded for the purposes of our
study. Although histological and immunohistochemical
(Uncoupling Protein-1, [UCPI1] staining) confirmation of
BAT was not possible in our study given its retrospective
design, we have previously provided such confirmation in a
human adult subject using the "*F-FDG PET/CT imaging
modality through examination of excised tissue specimens
from a region of increased '*F-FDG uptake, anatomically
corresponding to active BAT (Reddy et al. 2014).

In summary, we provide evidence that not only does
the distribution of metabolically active BAT in adult
humans remain fairly static over sustained periods of
time, but individual BAT deposits colocalize to a high
degree, despite changes in seasonality.

© 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
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