201 research outputs found

    Comparative dissolution kinetics of biogenic and chemogenic uraninite under oxidizing conditions in the presence of carbonate

    Get PDF
    The long-term stability of biogenic uraninite with respect to oxidative dissolution is pivotal to the success of in situ bioreduction strategies for the subsurface remediation of uranium legacies. Batch and flow-through dissolution experiments were conducted along with spectroscopic analyses to compare biogenic uraninite nanoparticles obtained from Shewanella oneidensis MR-1 and chemogenic UO2.00 with respect to their equilibrium solubility, dissolution mechanisms, and dissolution kinetics in water of varied oxygen and carbonate concentrations. Both materials exhibited a similar intrinsic solubility of similar to 10(-8) M under reducing conditions. The two materials had comparable dissolution rates under anoxic as well as oxidizing conditions, consistent with structural bulk homology of biogenic and stoichiometric uraninite. Carbonate reversibly promoted uraninite dissolution under both moderately oxidizing and reducing conditions, and the biogenic material yielded higher surface area-normalized dissolution rates than the chemogenic. This difference is in accordance with the higher proportion of U(V) detected on the biogenic uraninite surface by means of X-ray photoelectron spectroscopy. Reasonable sources of a stable U(V)-bearing intermediate phase are discussed. The observed increase of the dissolution rates can be explained by carbonate complexation of U(V) facilitating the detachment of U(V) from the uraninite surface. The fraction of surface-associated U(VI) increased with dissolved oxygen concentration. Simultaneously, X-ray absorption spectra showed conversion of the bulk from UO2.0 to UO2+x. In equilibrium with air, combined spectroscopic results support the formation of a near-surface layer of approximate composition UO2.25 (U4O9) coated by an outer layer of U(VI). This result is in accordance with flow-through dissolution experiments that indicate control of the dissolution rate of surface-oxidized uraninite by the solubility of metaschoepite under the tested conditions. Although U(V) has been observed in electrochemical studies on the dissolution of spent nuclear fuel, this is the first investigation that demonstrates the formation of a stable U(V) intermediate phase on the surface of submicron-sized uraninite particles suspended in aqueous solutions. (C) 2009 Elsevier Ltd. All rights reserved

    Non-uraninite products of microbial U(VI) reduction

    Get PDF
    A promising remediation approach to mitigate subsurface uranium contamination is the stimulation of indigenous bacteria to reduce mobile U(VI) to sparingly soluble U(IV). The product of microbial uranium reduction is often reported as the mineral uraninite. Here, we show that the end products of uranium reduction by several environmentally relevant bacteria (Gram-positive and Gram-negative) and their spores include a variety of U(IV) species other than uraninite. U(IV) products were prepared in chemically variable media and characterized using transmission electron microscopy (TEM) and X-ray absorption spectroscopy (XAS) to elucidate the factors favoring/inhibiting uraninite formation and to constrain molecular structure/composition of the non-uraninite reduction products. Molecular complexes of U(IV) were found to be bound to biomass, most likely through P-containing ligands. Minor U(IV)-orthophosphates such as ningyoite [CaU(PO4)(2)], U2O(PO4)(2), and U-2(PO4)(P3O10) were observed in addition to uraninite. Although factors controlling the predominance of these species are complex, the presence of various solutes was found to generally inhibit uraninite formation. These results suggest a new paradigm for U(IV) in the subsurface, i.e., that non-uraninite U(IV) products may be found more commonly than anticipated. These findings are relevant for bioremediation strategies and underscore the need for characterizing the stability of non-uraninite U(IV) species in natural settings

    Uranium speciation and stability after reductive immobilization in sediments

    Get PDF
    It has generally been assumed that the bioreduction of hexavalent uranium in groundwater systems will result in the precipitation of immobile uraninite (UO2). In order to explore the form and stability of uranium immobilized under these conditions, we introduced lactate (15 mM for 3 months) into flow-through columns containing sediments derived from a former uranium-processing site at Old Rifle, CO. This resulted in metal-reducing conditions as evidenced by concurrent uranium uptake and iron release. Despite initial augmentation with Shewanella oneidensis, bacteria belonging to the phylum Firmicutes dominated the biostimulated columns. The immobilization of uranium (similar to 1 mmol U per kg sediment) enabled analysis by Xray absorption spectroscopy (XAS). Tetravalent uranium associated with these sediments did not have spectroscopic signatures representative of U-U shells or crystalline UO2. Analysis by microfocused XAS revealed concentrated micrometer regions of solid U(IV) that had spectroscopic signatures consistent with bulk analyses and a poor proximal correlation (mu m scale resolution) between U and Fe. A plausible explanation, supported by biogeochemical conditions and spectral interpretations, is uranium association with phosphoryl moieties found in biomass; hence implicating direct enzymatic uranium reduction. After the immobilization phase, two months of in situ exposure to oxic influent did not result in substantial uranium remobilization. Ex situ flow-through experiments demonstrated more rapid uranium mobilization than observed in column oxidation studies and indicated that sediment-associated U(IV) is more mobile than biogenic UO2. This work suggests that in situ uranium bioimmobilization studies and subsurface modeling parameters should be expanded to account for non-uraninite U(IV) species associated with biomass. (C) 2011 Elsevier Ltd. All rights reserved

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    corecore