39 research outputs found

    The Ecology of Signal Crayfish in Two Large Ultra-Oligotrophic Ecosystems: Crater Lake and Lake Tahoe

    Get PDF
    Invasive species have become an increasing problem in the Western United States particularly when there are multiple stressors (e.g., invasive species and eutrophication) occurring to ecosystems. Invasive omnivores can present unique problems for aquatic ecosystems by having both direct and indirect impacts on native benthic invertebrates and vertebrates. Omnivorous crayfish, for example, strongly influence littoral habitats and biota with their foraging habits, creating both direct and indirect effects on trophic interactions in aquatic systems. Once they invade, these crayfish can ultimately dominate freshwater ecosystems. This dissertation investigates the distribution, density changes, and the direct and indirect impacts of the invasive signal crayfish (Pacifastacus leniusculus) in two oligotrophic lentic ecosystems in the western United States; Lake Tahoe (CA-NV) and Crater Lake (OR). In chapter 1, I investigate the distribution, movement, and feeding behavior of invasive signal crayfish in Crater Lake. This lake population presents a unique opportunity to understand the movement of crayfish in a recently expanding population. I used minnow traps and snorkeling to determine crayfish distribution and stable isotope ratios of δ13C and δ15N to determine the flow of organic matter through the food web, trophic position, and percent benthic reliance. Depth gradient minnow traps demonstrate that crayfish densities can live as deep as 250 m. Trap and snorkel surveys from 2008 to 2013 indicate an expansion of crayfish from 44% to 78% of the littoral zone. Summer water temperature in Crater Lake has been warming, which may increase the recruitment of individuals and expand habitat availability for growth. Between 1965 and 2014 the nearshore surface temperature increased by 3.5°C. Principal component analysis revealed a positive relationship between crayfish occupation and cobble and boulder habitats of the lake. Crayfish in the littoral zone rely heavily (97.4%) on littoral-benthic carbon sources indicating their potential for impacting native invertebrate communities and the overall dynamics of Crater Lake’s ecosystem. Our findings indicate, however, that deeper water crayfish also may rely on littoral benthic energy resources. Crayfish movement to deeper waters may be subsidizing generally nutrient poor, deep-water habitats with littoral energy through excretion and egestion, where physical conditions are stable and natural perturbation is low.In Chapter 2, I quantify the influence of this early, expanding invasion in Crater Lake to littoral zone ecology by evaluating their influence on zoobenthic consumer biomass and basal algal biomass. Benthic invertebrate biomass was 77% lower in hard substrate and 78% lower in soft substrate areas with crayfish present than in crayfish-absent locations. Using Bayesian, stable isotope mixing models, dietary preferences of crayfish at three locations with varying crayfish densities were quantified. Only slight variations in crayfish diet were detected between the three locations where crayfish have been established, the outer boundary of crayfish expansion, and the middle of the crayfish population indicating that crayfish. Despite differing densities, crayfish are feeding on similar food sources, particularly benthic invertebrates. At low crayfish densities (0 to 10), benthic invertebrate numbers were 222.3±36.6 individuals m-2, while chlorophyll a was 16.8±5.8 mg m-2. At high densities of crayfish (>50), benthic invertebrates had low mean density 3.0±4.2 individuals m-2, while chlorophyll a biomass was high 226.7±48.1 mg m-2. Crayfish are impacting native invertebrate communities and periphyton biomass in Crater Lake by changing trophic interactions in the lake’s littoral zone and altering the lake’s food web.In Chapter 3, I focus on the benthic environment and biodiversity of Lake Tahoe and regional lakes (Donner Lake, Marlette Lake, and Fallen Leaf Lake. Signal crayfish were introduced into the Central Sierra Nevada region of the United States in the late 19th to early 20th century. I used a long-term data set to document highly variable crayfish densities in the littoral zone of Lake Tahoe, showing an increase during the summer months linked to an increase in water temperature (R2 = 0.69, P<0.001). Crayfish responded to site-specific characteristics of the nearshore rather than to lake-wide characteristics; local stream discharge was the only factor that explained a positive increase in lake densities (P< 0.04). Trophic niche models developed from stable isotope measurements of crayfish and nongame fish indicate that crayfish influence the dietary breadth (e.g. niche area) of nongame fish consumers. Crayfish feeding behavior may be forcing nongame fish to feed on a broader set of food resources when crayfish are present. Stable isotope analysis also indicates an overlap of crayfish niche area with other nongame fish and amphibians, indicating interspecific competition between organisms. Our study highlights that local factors influence cold-water crayfish movement and densities in large lakes, as well as potential direct and indirect influences on nongame fish consumers in the littoral region, potentially affecting native biota and ecosystem function. This research has significant implications for understanding the direct and indirect impacts of signal crayfish in oligotrophic food webs, particularly on benthic invertebrate densities. It expands on the current understanding of expansion of signal crayfish and the factors that influence crayfish density. Future research will need to focus on better understanding the life history and mechanisms controlling this species if they are to be controlled in lakes of the Western United States

    Limnology and food web structure of a large terminal ecosystem, Walker Lake (NV, USA)

    Get PDF
    Walker Lake is a large, terminal, saline lake in the Western Great Basin of the United States. Diversions have greatly reduced river inflow, which has lead to a decrease in lake volume by 75% since the 1880s. As a result there has been a concomitant increase in salinity levels and alteration to biotic community structure. This study provides a contemporary snapshot of the water quality, phytoplankton-zooplankton biomass, and the lake\u27s food web structure. Water quality and zooplankton were sampled monthly (March to October 2007) from six locations at discrete depths. Nutrient concentrations were highly variable (ammonium levels - 0 to 30 ppb, nitrate - 0 to 12 ppb, total and dissolved phosphorus - 500 to 1000 ppb, and soluble reactive phosphorus - 400 to 600 ppb). The food web structure determined from stable isotope measurements (carbon and nitrogen) and stomach contents suggests benthic resources contributed greatly to fisheries energetics

    Development and Field Validation of an Environmental DNA (eDNA) Assay for Invasive Clams of the Genus Corbicula

    Get PDF
    Early detection is imperative for successful control or eradication of invasive species, but many organisms are difficult to detect at the low abundances characteristic of recently introduced populations. Environmental DNA (eDNA) has emerged as a promising invasive species surveillance tool for freshwaters, owing to its high sensitivity to detect aquatic species even when scarce. We report here a new eDNA assay for the globally invasive Asian clam Corbicula fluminea (Müller, 1774), with field validation in large lakes of western North America. We identified a candidate primer pair for the Cytochrome c oxidase subunit 1 (COI) gene for C. fluminea. We tested it for specificity via qPCR assay against genomic DNA of the target species C. fluminea, and synthetic DNA gBlocks for other non-target species within and outside of the genus Corbicula. Our best identified primer amplifies a 208-bp fragment for C. fluminea and several closely related species within the genus, but was specific for these non-native Asian clams relative to native mollusks of western North America. We further evaluated this assay in application to eDNA water samples for the detection of C. fluminea from four lakes in California and Nevada, United States, where the species is known to occur (including Lake Tahoe) relative to seven lakes where it has never been observed. Our assay successfully detected C. fluminea in all four lakes with historic records for this species, and did not detect C. fluminea from the seven lakes without known populations. Further, the distribution of eDNA detections within Lake Tahoe generally matched the known, restricted distribution of C. fluminea in this large lake. We conclude from this successful field validation that our eDNA assay for C. fluminea will be useful for researchers and managers seeking to detect new introductions and potentially monitor population trends of this major freshwater invader and other closely related members of its genus

    Guidelines For The Standardization Of Preanalytic Variables For Blood-based Biomarker Studies In Alzheimer\u27s Disease Research

    Get PDF
    The lack of readily available biomarkers is a significant hindrance toward progressing to effective therapeutic and preventative strategies for Alzheimer\u27s disease (AD). Blood-based biomarkers have potential to overcome access and cost barriers and greatly facilitate advanced neuroimaging and cerebrospinal fluid biomarker approaches. Despite the fact that preanalytical processing is the largest source of variability in laboratory testing, there are no currently available standardized preanalytical guidelines. The current international working group provides the initial starting point for such guidelines for standardized operating procedures (SOPs). It is anticipated that these guidelines will be updated as additional research findings become available. The statement provides (1) a synopsis of selected preanalytical methods utilized in many international AD cohort studies, (2) initial draft guidelines/SOPs for preanalytical methods, and (3) a list of required methodological information and protocols to be made available for publications in the field to foster cross-validation across cohorts and laboratorie

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Environmental DNA (eDNA) Detects the Invasive Crayfishes Orconectes rusticus and Pacifastacus leniusculus in Large Lakes of North America

    Get PDF
    We report results of a study that made reciprocal comparisons of environmental DNA (eDNA) assays for two major invasive crayfishes between their disparate invasive ranges in North America. Specifically, we tested for range expansions of the signal crayfish Pacifastacus leniusculus (Dana, 1852) into the Laurentian Great Lakes region known to be invaded by the rusty crayfish Orconectes rusticus (Girard, 1852), as well as for the invasion of O. rusticus into large lakes of California and Nevada, US known to be invaded by P. leniusculus. We compared eDNA detections to historic localities for O. rusticus within the Great Lakes, and to recent sampling for presence/absence and relative abundance of P. leniusculus in California and Nevada via overnight sets of baited traps. We successfully detected O. rusticus eDNA at six sites from the Great Lakes and P. leniusculus from six of seven lakes where it was known to occur in California and Nevada, but did not detect any range expansions by either species across the North American continent. eDNA appears suitable to detect benthic arthropods from exceptionally large lakes, and will likely be useful in applications for monitoring of new biological invasions into these and other freshwater and marine habitats
    corecore