274 research outputs found

    On transient dynamics, off-equilibrium behaviour and identification in blended multiple model structures

    Get PDF
    The use of multiple-model techniques has been reported in a variety of control and signal processing applications. However, several theoretical analyses have recently appeared which outline fundamental limitations of these techniques in certain domains of application. In particular, the identifiability and interpretability of local linear model parameters in transient operating regimes is shown to be limited. Some modifications to the basic paradigm are suggested which overcome a number of problems. As an alternative to parametric identification of blended multiple model structures, nonparametric Gaussian process priors are suggested as a means of providing local models, and the results compared to a multiple-model approach in a Monte Carlo simulation on some simulated vehicle dynamics data

    Nonparametric identification of linearizations and uncertainty using Gaussian process models – application to robust wheel slip control

    Get PDF
    Gaussian process prior models offer a nonparametric approach to modelling unknown nonlinear systems from experimental data. These are flexible models which automatically adapt their model complexity to the available data, and which give not only mean predictions but also the variance of these predictions. A further advantage is the analytical derivation of derivatives of the model with respect to inputs, with their variance, providing a direct estimate of the locally linearized model with its corresponding parameter variance. We show how this can be used to tune a controller based on the linearized models, taking into account their uncertainty. The approach is applied to a simulated wheel slip control task illustrating controller development based on a nonparametric model of the unknown friction nonlinearity. Local stability and robustness of the controllers are tuned based on the uncertainty of the nonlinear models’ derivatives

    On the interpretation and identification of dynamic Takagi-Sugenofuzzy models

    Get PDF
    Dynamic Takagi-Sugeno fuzzy models are not always easy to interpret, in particular when they are identified from experimental data. It is shown that there exists a close relationship between dynamic Takagi-Sugeno fuzzy models and dynamic linearization when using affine local model structures, which suggests that a solution to the multiobjective identification problem exists. However, it is also shown that the affine local model structure is a highly sensitive parametrization when applied in transient operating regimes. Due to the multiobjective nature of the identification problem studied here, special considerations must be made during model structure selection, experiment design, and identification in order to meet both objectives. Some guidelines for experiment design are suggested and some robust nonlinear identification algorithms are studied. These include constrained and regularized identification and locally weighted identification. Their usefulness in the present context is illustrated by examples

    Approximate explicit constrained linear model predictive control via orthogonal search tree

    Full text link

    One-dimensional structures behind twisted and untwisted superYang-Mills theory

    Full text link
    We give a one-dimensional interpretation of the four-dimensional twisted N=1 superYang-Mills theory on a Kaehler manifold by performing an appropriate dimensional reduction. We prove the existence of a 6-generator superalgebra, which does not possess any invariant Lagrangian but contains two different subalgebras that determine the twisted and untwisted formulations of the N=1 superYang-Mills theory.Comment: 12 pages. Final version to appear in Lett. Math. Phys. with improved notation and misprints correcte

    Surgery for degenerative cervical myelopathy: a nationwide registry-based observational study with patient-reported outcomes

    Get PDF
    BACKGROUND: Indications and optimal timing for surgical treatment of degenerative cervical myelopathy (DCM) remain unclear, and data from daily clinical practice are warranted.OBJECTIVE: To investigate clinical outcomes following decompressive surgery for DCM.METHODS: Data were obtained from the Norwegian Registry for Spine Surgery. The primary outcome was change in the neck disability index (NDI) 1 yr after surgery. Secondary endpoints were the European myelopathy score (EMS), quality of life (EuroQoL 5D [EQ-5D]), numeric rating scales (NRS) for headache, neck pain, and arm pain, complications, and perceived benefit of surgery assessed by the Global Perceived Effect (GPE) scale.RESULTS: We included 905 patients operated between January 2012 and June 2018. There were significant improvements in all patient-reported outcome measures (PROMs) including NDI (mean -10.0, 95% CI -11.5 to -8.4, P<.001), EMS (mean 1.0, 95% CI 0.8-1.1, P<.001), EQ-5D index score (mean 0.16, 95% CI 0.13-0.19, P<.001), EQ-5D visual analogue scale (mean 13.8, 95% CI 11.7-15.9, P<.001), headache NRS (mean -1.1, 95% CI -1.4 to -0.8, P<.001), neck pain NRS (mean-1.8, 95% CI-2.0 to-1.5, P<.001), and arm pain NRS (mean -1.7, 95% CI -1.9 to -1.4, P<.001). According to GPE scale assessments, 229/513 patients (44.6%) experienced "complete recovery" or felt "much better" at 1 yr. There were significant improvements in all PROMs for both mild and moderate-to-severe DCM. A total of 251 patients (27.7%) experienced adverse effects within 3 mo.CONCLUSION: Surgery for DCM is associated with significant and clinically meaningful improvement across a wide range of PROMs.Scientific Assessment and Innovation in Neurosurgical Treatment Strategie

    Against all odds? Forming the planet of the HD196885 binary

    Full text link
    HD196885Ab is the most "extreme" planet-in-a-binary discovered to date, whose orbit places it at the limit for orbital stability. The presence of a planet in such a highly perturbed region poses a clear challenge to planet-formation scenarios. We investigate this issue by focusing on the planet-formation stage that is arguably the most sensitive to binary perturbations: the mutual accretion of kilometre-sized planetesimals. To this effect we numerically estimate the impact velocities dvdv amongst a population of circumprimary planetesimals. We find that most of the circumprimary disc is strongly hostile to planetesimal accretion, especially the region around 2.6AU (the planet's location) where binary perturbations induce planetesimal-shattering dvdv of more than 1km/s. Possible solutions to the paradox of having a planet in such accretion-hostile regions are 1) that initial planetesimals were very big, at least 250km, 2) that the binary had an initial orbit at least twice the present one, and was later compacted due to early stellar encounters, 3) that planetesimals did not grow by mutual impacts but by sweeping of dust (the "snowball" growth mode identified by Xie et al., 2010b), or 4) that HD196885Ab was formed not by core-accretion but by the concurent disc instability mechanism. All of these 4 scenarios remain however highly conjectural.Comment: accepted for publication by Celestial Mechanics and Dynamical Astronomy (Special issue on EXOPLANETS

    Magnetized Kelvin-Helmholtz instability in the presence of a radiation field

    Full text link
    The purpose of this study is to analyze the dynamical role of a radiation field on the growth rate of the unstable Kelvin - Helmholtz (KH) perturbations. As a first step toward this purpose, the analyze is done in a general way, irrespective of applying the model to a specific astronomical system. The transition zone between the two layers of the fluid is ignored. Then, we perform a linear analysis and by imposing suitable boundary conditions and considering a radiation field, we obtain appropriate dispersion relation. Unstable modes are studied by solving the dispersion equation numerically, and then growth rates of them are obtained. By analyzing our dispersion relation, we show that for a wide range of the input parameters, the radiation field has a destabilizing effect on KH instability. In eruptions of the galaxies or supermassive stars, the radiation field is dynamically important and because of the enhanced KH growth rates in the presence of the radiation; these eruptions can inject more momentum and energy into their environment and excite more turbulent motions.Comment: Accepted for publication in Astrophysics and Space Scienc

    A Set-Theoretic Method for Verifying Feasibility of a Fast Explicit Nonlinear Model Predictive Controller

    Get PDF
    In this chapter an algorithm for nonlinear explicit model predictive control is presented. A low complexity receding horizon control law is obtained by approximating the optimal control law using multiscale basis function approximation. Simultaneously, feasibility and stability of the approximate control law is ensured through the computation of a capture basin (region of attraction) for the closed-loop system. In a previous work, interval methods were used to construct the capture basin (feasible region), yet this approach suffered due to slow computation times and high grid complexity. In this chapter, we suggest an alternative to interval analysis based on zonotopes. The suggested method significantly reduces the complexity of the combined function approximation and verification procedure through the use of DC (difference of convex) programming, and recursive splitting. The result is a multiscale function approximation method with improved computational efficiency for fast nonlinear explicit model predictive control with guaranteed stability and constraint satisfaction

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore