41 research outputs found

    Genes on the Move: In Vitro Transduction of Antimicrobial Resistance Genes between Human and Canine Staphylococcal Pathogens

    Get PDF
    Transmission of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus pseudintermedius (MRSP) between people and pets, and their co-carriage, are well-described. Potential exchange of antimicrobial resistance (AMR) genes amongst these staphylococci was investigated in vitro through endogenous bacteriophage-mediated transduction. Bacteriophages were UV-induced from seven donor isolates of canine (MRSP) and human (MRSA) origin, containing tet(M), tet(K), fusB or fusC, and lysates filtered. Twenty-seven tetracycline- and fusidic acid- (FA-) susceptible recipients were used in 122 donor-recipient combinations (22 tetracycline, 100 FA) across 415 assays (115 tetracycline, 300 FA). Bacteriophage lysates were incubated with recipients and presumed transductants quantified on antimicrobial-supplemented agar plates. Tetracycline resistance transduction from MRSP and MRSA to methicillin-susceptible S. pseudintermedius (MSSP) was confirmed by PCR in 15/115 assays. No FA-resistance transfer occurred, confirmed by negative fusB/fusC PCR, but colonies resulting from FA assays had high MICs (≄32 mg/L) and showed mutations in fusA, two at a novel position (F88L), nine at H457[Y/N/L]. Horizontal gene transfer of tetracycline-resistance confirms that resistance genes can be shared between coagulase-positive staphylococci from different hosts. Cross-species AMR transmission highlights the importance of good antimicrobial stewardship across humans and veterinary species to support One Health

    Using Comparative Genomics for Inquiry-Based Learning to Dissect Virulence of Escherichia coli O157:H7 and Yersinia pestis

    Get PDF
    Genomics and bioinformatics are topics of increasing interest in undergraduate biological science curricula. Many existing exercises focus on gene annotation and analysis of a single genome. In this paper, we present two educational modules designed to enable students to learn and apply fundamental concepts in comparative genomics using examples related to bacterial pathogenesis. Students first examine alignments of genomes of Escherichia coli O157:H7 strains isolated from three food-poisoning outbreaks using the multiple-genome alignment tool Mauve. Students investigate conservation of virulence factors using the Mauve viewer and by browsing annotations available at the A Systematic Annotation Package for Community Analysis of Genomes database. In the second module, students use an alignment of five Yersinia pestis genomes to analyze single-nucleotide polymorphisms of three genes to classify strains into biovar groups. Students are then given sequences of bacterial DNA amplified from the teeth of corpses from the first and second pandemics of the bubonic plague and asked to classify these new samples. Learning-assessment results reveal student improvement in self-efficacy and content knowledge, as well as students’ ability to use BLAST to identify genomic islands and conduct analyses of virulence factors from E. coli O157:H7 or Y. pestis. Each of these educational modules offers educators new ready-to-implement resources for integrating comparative genomic topics into their curricula

    Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The most diverse marine ecosystems, coral reefs, depend upon a functional symbiosis between cnidarian hosts and unicellular dinoflagellate algae. The molecular mechanisms underlying the establishment, maintenance, and breakdown of the symbiotic partnership are, however, not well understood. Efforts to dissect these questions have been slow, as corals are notoriously difficult to work with. In order to expedite this field of research, we generated and analyzed a collection of expressed sequence tags (ESTs) from the sea anemone <it>Aiptasia pallida </it>and its dinoflagellate symbiont (<it>Symbiodinium </it>sp.), a system that is gaining popularity as a model to study cellular, molecular, and genomic questions related to cnidarian-dinoflagellate symbioses.</p> <p>Results</p> <p>A set of 4,925 unique sequences (UniSeqs) comprising 1,427 clusters of 2 or more ESTs (contigs) and 3,498 unclustered ESTs (singletons) was generated by analyzing 10,285 high-quality ESTs from a mixed host/symbiont cDNA library. Using a BLAST-based approach to predict which unique sequences derived from the host versus symbiont genomes, we found that the contribution of the symbiont genome to the transcriptome was surprisingly small (1.6–6.4%). This may reflect low levels of gene expression in the symbionts, low coverage of alveolate genes in the sequence databases, a small number of symbiont cells relative to the total cellular content of the anemones, or failure to adequately lyse symbiont cells. Furthermore, we were able to identify groups of genes that are known or likely to play a role in cnidarian-dinoflagellate symbioses, including oxidative stress pathways that emerged as a prominent biological feature of this transcriptome. All ESTs and UniSeqs along with annotation results and other tools have been made accessible through the implementation of a publicly accessible database named AiptasiaBase.</p> <p>Conclusion</p> <p>We have established the first large-scale transcriptomic resource for <it>Aiptasia pallida </it>and its dinoflagellate symbiont. These data provide researchers with tools to study questions related to cnidarian-dinoflagellate symbioses on a molecular, cellular, and genomic level. This groundwork represents a crucial step towards the establishment of a tractable model system that can be utilized to better understand cnidarian-dinoflagellate symbioses. With the advent of next-generation sequencing methods, the transcriptomic inventory of <it>A. pallida </it>and its symbiont, and thus the extent of AiptasiaBase, should expand dramatically in the near future.</p

    Coral life history and symbiosis: Functional genomic resources for two reef building Caribbean corals, Acropora palmata and Montastraea faveolata

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Scleractinian corals are the foundation of reef ecosystems in tropical marine environments. Their great success is due to interactions with endosymbiotic dinoflagellates (<it>Symbiodinium </it>spp.), with which they are obligately symbiotic. To develop a foundation for studying coral biology and coral symbiosis, we have constructed a set of cDNA libraries and generated and annotated ESTs from two species of corals, <it>Acropora palmata </it>and <it>Montastraea faveolata</it>.</p> <p>Results</p> <p>We generated 14,588 (<it>Ap</it>) and 3,854 (<it>Mf</it>) high quality ESTs from five life history/symbiosis stages (spawned eggs, early-stage planula larvae, late-stage planula larvae either infected with symbionts or uninfected, and adult coral). The ESTs assembled into a set of primarily stage-specific clusters, producing 4,980 (<it>Ap</it>), and 1,732 (<it>Mf</it>) unigenes. The egg stage library, relative to the other developmental stages, was enriched in genes functioning in cell division and proliferation, transcription, signal transduction, and regulation of protein function. Fifteen unigenes were identified as candidate symbiosis-related genes as they were expressed in all libraries constructed from the symbiotic stages and were absent from all of the non symbiotic stages. These include several DNA interacting proteins, and one highly expressed unigene (containing 17 cDNAs) with no significant protein-coding region. A significant number of unigenes (25) encode potential pattern recognition receptors (lectins, scavenger receptors, and others), as well as genes that may function in signaling pathways involved in innate immune responses (toll-like signaling, NFkB p105, and MAP kinases). Comparison between the <it>A. palmata </it>and an <it>A. millepora </it>EST dataset identified ferritin as a highly expressed gene in both datasets that appears to be undergoing adaptive evolution. Five unigenes appear to be restricted to the Scleractinia, as they had no homology to any sequences in the nr databases nor to the non-scleractinian cnidarians <it>Nematostella vectensis </it>and <it>Hydra magnipapillata</it>.</p> <p>Conclusion</p> <p>Partial sequencing of 5 cDNA libraries each for <it>A. palmata </it>and <it>M. faveolata </it>has produced a rich set of candidate genes (4,980 genes from <it>A. palmata</it>, and 1,732 genes from <it>M. faveolata</it>) that we can use as a starting point for examining the life history and symbiosis of these two species, as well as to further expand the dataset of cnidarian genes for comparative genomics and evolutionary studies.</p

    Global data on earthworm abundance, biomass, diversity and corresponding environmental properties

    Get PDF
    Publisher Copyright: © 2021, The Author(s).Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change.Peer reviewe

    Comparative Lipid Profiling of the Cnidarian <em>Aiptasia pallida</em> and Its Dinoflagellate Symbiont

    Get PDF
    <div><p>Corals and other cnidarians house photosynthetic dinoflagellate symbionts within membrane-bound compartments inside gastrodermal cells. Nutritional interchanges between the partners produce carbohydrates and lipids for metabolism, growth, energy stores, and cellular structures. Although lipids play a central role in the both the energetics and the structural/morphological features of the symbiosis, previous research has primarily focused on the fatty acid and neutral lipid composition of the host and symbiont. In this study we conducted a mass spectrometry-based survey of the lipidomic changes associated with symbiosis in the sea anemone <i>Aiptasia pallida</i>, an important model system for coral symbiosis. Lipid extracts from <i>A. pallida</i> in and out of symbiosis with its symbiont <i>Symbiodinium</i> were prepared and analyzed using negative-ion electrospray ionization quadrupole time-of-flight mass spectrometry. Through this analysis we have identified, by exact mass and collision-induced dissociation mass spectrometry (MS/MS), several classes of glycerophospholipids in <i>A. pallida</i>. Several molecular species of di-acyl phosphatidylinositol and phosphatidylserine as well as 1-alkyl, 2-acyl phosphatidylethanolamine (PE) and phosphatidycholine were identified. The 1-alkyl, 2-acyl PEs are acid sensitive suggestive that they are plasmalogen PEs possessing a double bond at the 1-position of the alkyl linked chain. In addition, we identified several molecular species of phosphonosphingolipids called ceramide aminoethylphosphonates in anemone lipid extracts by the release of a characteristic negative product ion at <i>m/z</i> 124.014 during MS/MS analysis. Sulfoquinovosyldiacylglycerol (SQDG), an anionic lipid often found in photosynthetic organisms, was identified as a prominent component of <i>Symbiodinium</i> lipid extracts. A comparison of anemone lipid profiles revealed a subset of lipids that show dramatic differences in abundance when anemones are in the symbiotic state as compared to the non-symbiotic state. The data generated in this analysis will serve as a resource to further investigate the role of lipids in symbiosis between <i>Symbiodinium</i> and <i>A. pallida</i>.</p> </div

    Evolutionary analysis of orthologous cDNA sequences from cultured and symbiotic dinoflagellate symbionts of reef-building corals (Dinophyceae: Symbiodinium)

    No full text
    Dinoflagellates are ubiquitous marine and freshwater protists. The endosymbiotic relationship between dinoflagellates of the genus Symbiodinium (also known as zooxanthellae) and corals forms the basis of coral reefs. We constructed and analyzed a cDNA library from a cultured Symbiodinium species clade A (CassKB8). The majority of annotated ESTs from the Symbiodinium sp. CassKB8 library cover metabolic genes. Most of those belong to either carbohydrate or energy metabolism. In addition, components of extracellular signal transduction pathways and genes that play a role in cell–cell communication were identified. In a subsequent analysis, we determined all orthologous cDNA sequences between this library (1,484 unique sequences) and a library from a Symbiodinium species clade C (C3) (3,336 unique sequences) that was isolated directly from its symbiotic host. A set of 115 orthologs were identified between Symbiodinium sp. CassKB8 and Symbiodinium sp. C3. These orthologs were subdivided into three groups that show different characteristics and functions: conserved across eukaryotes (CE), dinoflagellate-specific (DS) and Symbiodinium-specific (SS). Orthologs conserved across eukaryotes are mainly comprised of housekeeping genes, photosynthesis-related transcripts and metabolic proteins, whereas the function for most of the dinoflagellate-specific orthologs remains unknown. A dN/dS analysis identified the highest ratio in a Symbiodinium-specific ortholog and evidence for positive selection in a dinoflagellate-specific gene. Evolution of genes and pathways in different dinoflagellates seems to be affected by different lifestyles, and a symbiotic lifestyle may affect population structure and strength of selection. This study is the first evolutionary comparative analysis of orthologs from two coral dinoflagellate symbionts
    corecore