847 research outputs found

    Accurate Peak Detection for Optical Sensing with Reduced Sampling Rate and Calculation Complexity

    Get PDF
    Fiber Bragg gratings (FBGs) are widely applied in optical sensing systems due to their advantages including being simple to use, high sensitivity, and having great potential for integration into optical communication systems. A common method used for FBG sensing systems is wavelength interrogation. The performance of interrogation based sensing systems is significantly determined by the accuracy of the wavelength peak detection processing. Direct maximum value readout (DMVR) is the simplest peak detection method. However, the detection accuracy of DMVR is sensitive to noise and the sampling resolution. Many modified peak detection methods, such as filtering and curve fitting schemes, have been studied in recent decades. Though these methods are less sensitive to noise and have better sensing accuracy at lower sampling resolutions, they also confer increased processing complexity. As massive sensors may be deployed for applications such as the Internet of things (IoT) and artificial intelligence (AI), lower levels of processing complexity are required. In this paper, an efficient scheme applying a three-point peak detection estimator is proposed and studied, which shows a performance that is close to the curve fitting methods along with reduced complexity. A proof-of-concept experiment for temperature sensing is performed. 34% accuracy improvement compared to the DMVR is demonstrated

    Observation of Temperature-Induced Crossover to an Orbital-Selective Mott Phase in Ax_{x}Fe2y_{2-y}Se2_2 (A=K, Rb) Superconductors

    Full text link
    In this work, we study the Ax_{x}Fe2y_{2-y}Se2_2 (A=K, Rb) superconductors using angle-resolved photoemission spectroscopy. In the low temperature state, we observe an orbital-dependent renormalization for the bands near the Fermi level in which the dxy bands are heavily renormliazed compared to the dxz/dyz bands. Upon increasing temperature to above 150K, the system evolves into a state in which the dxy bands have diminished spectral weight while the dxz/dyz bands remain metallic. Combined with theoretical calculations, our observations can be consistently understood as a temperature induced crossover from a metallic state at low temperature to an orbital-selective Mott phase (OSMP) at high temperatures. Furthermore, the fact that the superconducting state of Ax_{x}Fe2y_{2-y}Se2_2 is near the boundary of such an OSMP constraints the system to have sufficiently strong on-site Coulomb interactions and Hund's coupling, and hence highlight the non-trivial role of electron correlation in this family of iron superconductors

    Shortâ term and longâ term impacts of Helicobacter pylori eradication with reverse hybrid therapy on the gut microbiota

    Full text link
    Background and AimsAntiâ Helicobacter pylori therapy may lead to the growth of pathogenic or antibioticâ resistant bacteria in the gut. The study aimed to investigate the shortâ term and longâ term impacts of H. pylori eradication with reverse hybrid therapy on the components and macrolide resistance of the gut microbiota.MethodsHelicobacter pyloriâ related gastritis patients were administered a 14â day reverse hybrid therapy. Fecal samples were collected before treatment and at the end of week 2, week 8, and week 48. The V3â V4 region of the bacterial 16S rRNA gene in fecal specimens was amplified by polymerase chain reaction and sequenced on Illumina MiSeq platform. Additionally, amplification of erm(B) gene (encoding erythromycin resistance methylase) was performed.ResultsReverse hybrid therapy resulted in decreased relative abundances of Firmicutes (from 62.0% to 30.7%; P < 0.001) and Actinobacteria (from 3.4% to 0.6%; 0.032) at the end of therapy. In contrast, the relative abundance of Proteobacteria increased from 10.2% to 49.1% (0.002). These microbiota alterations did not persist but returned to the initial levels at week 8 and week 48. The amount of erm(B) gene in fecal specimens was comparable with the pretreatment level at week 2 but increased at week 8 (0.025) and then returned to the pretreatment level by week 48.ConclusionsHelicobacter pylori eradication with reverse hybrid therapy can lead to shortâ term gut dysbiosis. The amount of erm(B) gene in the stool increased transiently after treatment and returned to the pretreatment level at 1â year postâ treatment.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152555/1/jgh14736_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152555/2/jgh14736.pd

    Measurement of Organic Chemical Refractive Indexes Using an Optical Time-Domain Reflectometer

    Get PDF
    In this investigation, we propose and experimentally demonstrate a method for measuring the refractive index (RI) of liquid organic chemicals. The scheme is based on a single-mode fiber (SMF) sensor and an optical time-domain reflectometer (OTDR). Here, due to the different reflectance (R) between the SMF and organic liquid chemicals, the reflected power level of the backscattering light (BSL) measured by the OTDR would be different. Therefore, we can measure the RI of chemical under test via the measured BSL level. The proposed RI sensor is simple and easy to manipulate, with stable detected signals, and has the potential to be a valuable tool for use in biological and chemical applications

    Non-Thermal Emergence of an Orbital-Selective Mott Phase in FeTe1x_{1-x}Sex_x

    Full text link
    Electronic correlation is of fundamental importance to high temperature superconductivity. Iron-based superconductors are believed to possess moderate correlation strength, which combined with their multi-orbital nature makes them a fascinating platform for the emergence of exotic phenomena. A particularly striking form is the emergence of an orbital selective Mott phase, where the localization of a subset of orbitals leads to a drastically reconstructed Fermi surface. Here, we report spectroscopic evidence of the reorganization of the Fermi surface from FeSe to FeTe as Se is substituted by Te. We uncover a particularly transparent way to visualize the localization of the dxyd_{xy} electron orbital through the suppression of its hybridization with the more coherent dd electron orbitals, which leads to a redistribution of the orbital-dependent spectral weight near the Fermi level. These noteworthy features of the Fermi surface are accompanied by a divergent behavior of a band renormalization in the dxyd_{xy} orbital. All of our observations are further supported by our theoretical calculations to be salient spectroscopic signatures of such a non-thermal evolution from a strongly correlated metallic phase towards an orbital-selective Mott phase in FeTe1x_{1-x}Sex_x as Se concentration is reduced.Comment: 11 pages, 5 figure

    Reversible Non-Volatile Electronic Switching in a Near Room Temperature van der Waals Ferromagnet

    Full text link
    The ability to reversibly toggle between two distinct states in a non-volatile method is important for information storage applications. Such devices have been realized for phase-change materials, which utilizes local heating methods to toggle between a crystalline and an amorphous state with distinct electrical properties. To expand such kind of switching between two topologically distinct phases requires non-volatile switching between two crystalline phases with distinct symmetries. Here we report the observation of reversible and non-volatile switching between two stable and closely-related crystal structures with remarkably distinct electronic structures in the near room temperature van der Waals ferromagnet Fe5δ_{5-\delta}GeTe2_2. From a combination of characterization techniques we show that the switching is enabled by the ordering and disordering of an Fe site vacancy that results in distinct crystalline symmetries of the two phases that can be controlled by a thermal annealing and quenching method. Furthermore, from symmetry analysis as well as first principle calculations, we provide understanding of the key distinction in the observed electronic structures of the two phases: topological nodal lines compatible with the preserved global inversion symmetry in the site-disordered phase, and flat bands resulting from quantum destructive interference on a bipartite crystaline lattice formed by the presence of the site order as well as the lifting of the topological degeneracy due to the broken inversion symmetry in the site-ordered phase. Our work not only reveals a rich variety of quantum phases emergent in the metallic van der Waals ferromagnets due to the presence of site ordering, but also demonstrates the potential of these highly tunable two-dimensional magnets for memory and spintronics applications

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Measurement of nuclear modification factors of gamma(1S)), gamma(2S), and gamma(3S) mesons in PbPb collisions at root s(NN)=5.02 TeV

    Get PDF
    The cross sections for ϒ(1S), ϒ(2S), and ϒ(3S) production in lead-lead (PbPb) and proton-proton (pp) collisions at √sNN = 5.02 TeV have been measured using the CMS detector at the LHC. The nuclear modification factors, RAA, derived from the PbPb-to-pp ratio of yields for each state, are studied as functions of meson rapidity and transverse momentum, as well as PbPb collision centrality. The yields of all three states are found to be significantly suppressed, and compatible with a sequential ordering of the suppression, RAA(ϒ(1S)) > RAA(ϒ(2S)) > RAA(ϒ(3S)). The suppression of ϒ(1S) is larger than that seen at √sNN = 2.76 TeV, although the two are compatible within uncertainties. The upper limit on the RAA of ϒ(3S) integrated over pT, rapidity and centrality is 0.096 at 95% confidence level, which is the strongest suppression observed for a quarkonium state in heavy ion collisions to date. © 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.Peer reviewe
    corecore