253 research outputs found

    Riccati Solutions of Discrete Painlev\'e Equations with Weyl Group Symmetry of Type E8(1)E_8^{(1)}

    Full text link
    We present a special solutions of the discrete Painlev\'e equations associated with A0(1)A_0^{(1)}, A0(1)A_0^{(1)*} and A0(1)A_0^{(1)**}-surface. These solutions can be expressed by solutions of linear difference equations. Here the A0(1)A_0^{(1)}-surface discrete Painlev\'e equation is the most generic difference equation, as all discrete Painlev\'e equations can be obtained by its degeneration limit. These special solutions exist when the parameters of the discrete Painlev\'e equation satisfy a particular constraint. We consider that these special functions belong to the hypergeometric family although they seems to go beyond the known discrete and qq-discrete hypergeometric functions. We also discuss the degeneration scheme of these solutions.Comment: 22 page

    A Case of Hypoglycemic Brain Injuries with Cortical Laminar Necrosis

    Get PDF
    We report a case of 68-yr-old male who died from brain injuries following an episode of prolonged hypoglycemia. While exploring controversies surrounding magnetic resonance imaging (MRI) findings indicating the bad prognosis in patients with hypoglycemia-induced brain injuries, we here discuss interesting diffusion-MRI of hypoglycemic brain injuries and their prognostic importance focusing on laminar necrosis of the cerebral cortex

    Quenching-assisted actuation mechanisms in core-shell structured BiFeO3-BaTiO3 piezoceramics

    Get PDF
    Electromechanical actuation in piezoceramics is usually enhanced by creating chemically homogeneous materials with structurally heterogeneous morphotropic phase boundaries, leading to abrupt changes in ion displacement directions within the perovskite unit cell. In the present study, an alternative mechanism to enhance electromechanical coupling is found in both chemically and structurally heterogeneous BiFeO3-BaTiO3 lead-free piezoceramics. Such a mechanism is observed in a composition exhibiting core-shell type microstructure, associated with donor-type substitution of Ti4+ for Fe3+, and is primarily activated by thermal quenching treatment. Here, we describe the use of in situ high-energy synchrotron X-ray powder diffraction upon the application of a high electric field to directly monitor the ferroelectric and elastic interactions between these composite-like components, formed as core and shell regions within grains. Translational short or long-range ordering is observed in the BiFeO3-depleted shell regions which undergo significant structural alterations from pseudocubic Pm3m relaxor-ferroelectric in slow-cooled ceramics to rhombohedral R3c or R3m with long-range ferroelectric order in the quenched state. The strain contributions from each component are calculated, leading to the conclusion that the total macroscopic strain arises predominantly from the transformed shell after quenching. Such observations are also complemented by investigations of microstructure and electrical properties, including ferroelectric behaviour and temperature-dependent dielectric properties

    Comprehensive analysis of metabolites produced by co-cultivation of Bifidobacterium breve MCC1274 with human iPS-derived intestinal epithelial cells

    Get PDF
    Examining how host cells affect metabolic behaviors of probiotics is pivotal to better understand the mechanisms underlying the probiotic efficacy in vivo. However, studies to elucidate the interaction between probiotics and host cells, such as intestinal epithelial cells, remain limited. Therefore, in this study, we performed a comprehensive metabolome analysis of a co-culture containing Bifidobacterium breve MCC1274 and induced pluripotent stem cells (iPS)-derived small intestinal-like cells. In the co-culture, we observed a significant increase in several amino acid metabolites, including indole-3-lactic acid (ILA) and phenyllactic acid (PLA). In accordance with the metabolic shift, the expression of genes involved in ILA synthesis, such as transaminase and tryptophan synthesis-related genes, was also elevated in B. breve MCC1274 cells. ILA production was enhanced in the presence of purines, which were possibly produced by intestinal epithelial cells (IECs). These findings suggest a synergistic action of probiotics and IECs, which may represent a molecular basis of host-probiotic interaction in vivo

    Bio-anthropological Studies on Human Skeletons from the 6th Century Tomb of Ancient Silla Kingdom in South Korea

    Get PDF
    In November and December 2013, unidentified human skeletal remains buried in a mokgwakmyo (a traditional wooden coffin) were unearthed while conducting an archaeological investigation near Gyeongju, which was the capital of the Silla Kingdom (57 BCE– 660 CE) of ancient Korea. The human skeletal remains were preserved in relatively intact condition. In an attempt to obtain biological information on the skeleton, physical anthropological, mitochondrial DNA, stable isotope and craniofacial analyses were carried out. The results indicated that the individual was a female from the Silla period, of 155 ± 5 cm height, who died in her late thirties. The maternal lineage belonged to the haplogroup F1b1a, typical for East Asia, and the diet had been more C3- (wheat, rice and potatoes) than C4-based (maize, millet and other tropical grains). Finally, the face of the individual was reconstructed utilizing the skull (restored from osseous fragments) and three-dimensional computerized modelling system. This study, applying multi-dimensional approaches within an overall bio-anthropological analysis, was the first attempt to collect holistic biological information on human skeletal remains dating to the Silla Kingdom period of ancient Korea

    A cellular defense memory imprinted by early life toxic stress

    Get PDF
    Stress exposure early in life is implicated in various behavioural and somatic diseases. Experiences during the critical perinatal period form permanent, imprinted memories promoting adult survival. Although imprinting is widely recognized to dictate behaviour, whether it actuates specific transcriptional responses at the cellular level is unknown. Here we report that in response to early life stresses, Caenorhabditis elegans nematodes form an imprinted cellular defense memory. We show that exposing newly-born worms to toxic antimycin A and paraquat, respectively, stimulates the expression of toxin-specific cytoprotective reporters. Toxin exposure also induces avoidance of the toxin-containing bacterial lawn. In contrast, adult worms do not exhibit aversive behaviour towards stress-associated bacterial sensory cues. However, the mere re-encounter with the same cues reactivates the previously induced cytoprotective reporters. Learned adult defenses require memory formation during the L1 larval stage and do not appear to confer increased protection against the toxin. Thus, exposure of C. elegans to toxic stresses in the critical period elicits adaptive behavioural and cytoprotective responses, which do not form imprinted aversive behaviour, but imprint a cytoprotective memory. Our findings identify a novel form of imprinting and suggest that imprinted molecular defenses might underlie various pathophysiological alterations related to early life stress. © 2019, The Author(s)

    The role of RhoA/Rho kinase pathway in endothelial dysfunction

    Get PDF
    Endothelial dysfunction is a key event in the development of vascular disease, and it precedes clinically obvious vascular pathology. Abnormal activation of the RhoA/Rho kinase (ROCK) pathway has been found to elevate vascular tone through unbalancing the production of vasodilating and vasoconstricting substances. Inhibition of the RhoA/ROCK pathway can prevent endothelial dysfunction in a variety of pathological conditions. This review, based on recent molecular, cellular, and animal studies, focuses on the current understanding of the ROCK pathway and its roles in endothelial dysfunction

    Tumor cell dormancy

    Get PDF
    Metastasis is the primary cause of death in cancer patients and current treatments fail to provide durable responses. Efforts to treat metastatic disease are hindered by the fact that metastatic cells often remain dormant for prolonged intervals of years, or even decades. Tumor dormancy reflects the capability of disseminated tumor cells (DTCs), or micrometastases, to evade treatment and remain at low numbers after primary tumor resection. Unfortunately, dormant cells will eventually produce overt metastasis. Innovations are needed to understand metastatic dormancy and improve cancer detection and treatment. Currently, few models exist that faithfully recapitulate metastatic dormancy and metastasis to clinically relevant tissues, such as the bone. Herein, we discuss recent advances describing genetic cell-autonomous and systemic or local changes in the microenvironment that have been shown to endow DTCs with properties to survive and eventually colonize distant organs
    corecore