208 research outputs found

    Transmission Roles of Symptomatic and Asymptomatic COVID-19 Cases: A Modelling Study

    Get PDF
    Coronavirus disease 2019 (COVID-19) asymptomatic cases are hard to identify, impeding transmissibility estimation. The value of COVID-19 transmissibility is worth further elucidation for key assumptions in further modelling studies. Through a population-based surveillance network, we collected data on 1342 confirmed cases with a 90-days follow-up for all asymptomatic cases. An age-stratified compartmental model containing contact information was built to estimate the transmissibility of symptomatic and asymptomatic COVID-19 cases. The difference in transmissibility of a symptomatic and asymptomatic case depended on age and was most distinct for the middle-age groups. The asymptomatic cases had a 66.7% lower transmissibility rate than symptomatic cases, and 74.1% (95% CI 65.9–80.7) of all asymptomatic cases were missed in detection. The average proportion of asymptomatic cases was 28.2% (95% CI 23.0–34.6). Simulation demonstrated that the burden of asymptomatic transmission increased as the epidemic continued and could potentially dominate total transmission. The transmissibility of asymptomatic COVID-19 cases is high and asymptomatic COVID-19 cases play a significant role in outbreaks

    Combination of 4-1BB and DAP10 promotes proliferation and persistence of NKG2D(bbz) CAR-T cells

    Get PDF
    Chimeric antigen receptor (CAR)-T cell therapy has been shown to have considerable therapeutic effects in hematological malignancies, and NKG2D(z) CAR-T cell therapy has been verified to be safe based on clinical trials. However, due to the poor persistence of NKG2D(z) CAR-T cells, their therapeutic effect is not obvious. Here, we constructed NKG2D(bbz) CAR-T cells that can simultaneously activate 4-1BB and DAP10 costimulatory signaling. They were found to be cytotoxic to the target cells in vitro and in vivo. They exhibited low differentiation, low exhaustion, and good proliferation. Importantly, the proportions of central memory T (Tcm) and stem cell-like memory T (Tscm) cell subsets were strikingly increased. After long-term incubation with the target cells, they displayed reduced exhaustion compared to NKG2D(z) CAR-T cells. Further, in the presence of the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, they exhibited reduced exhaustion and apoptosis, upregulated Bcl2 expression, and an increased proportion of Tcm cell subsets. Finally, NKG2D(bbz) CAR-T cells had better antitumor effects in vivo. In summary, the results showed that NKG2D(bbz) CAR-T cells may be valuable for cellular immunotherapy of cancer

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Prediction of Multi-Leaf Collimator Positional Error with Multi-Layer Perceptron

    No full text

    An Agent-based Approach to Chinese Named Entity Recognition

    No full text
    Chinese NE (Named Entity) recognition is a difficult problem because of the uncertainty in word segmentation and flexibility in language structure. This paper proposes the use of a rationality model in a multi-agent framework to tackle this problem. We employ a greedy strategy and use the NE rationality model to evaluate and detect all possible NEs in the text. We then treat the process of selecting the best possible NEs as a multi-agent negotiation problem. The resulting system is robust and is able to handle different types of NE effectively. Our test on the MET-2 test corpus indicates that our system is able to achieve high F1 values of above 92 % on all NE types. 1

    Modeling the Heating Dynamics of a Semiconductor Bridge Initiator with Deep Neural Network

    No full text
    A semiconductor bridge (SCB) is an ignition device that provides a safe and efficient method widely used in civilian and military fields. The heating process of an SCB under electrical stimulation has a wide range of applications owing to its unique energy release process. However, the temperature variation of an SCB is challenging to obtain, both experimentally because of the rapid reaction on a microscale and with simulation due to its high demand in nonlinear calculations. In this study, we propose deep learning (DL) approach to study the electrothermal-coupled multi-physical heating process of the SCB initiator. We generated training data with multi-physics simulation (MPS), producing surface temperature distributions of SCBs under different voltages. The model was then trained with partial data in this database and evaluated on a separate test set. A generative adversarial network (GAN) with a customized loss function was used for modeling point-wise temperature dynamics. In the test set, our proposed method can predict the temperature distribution of an SCB under different voltages with high accuracy of over 0.9 during the heating process. We reduced the computation time by several orders of magnitude by replacing MPS with a deep neural network
    corecore