481 research outputs found

    Nostalgia isn’t what it used to be: the collected works of Haruki Murakami

    Get PDF
    Graduate Winner: 1st Place, 2012. 25th Annual Carl Neureuther Student Book Collection Competitio

    Post-Translational Regulation of FAS-Mediated PPARα Activation

    Get PDF
    The liver is a central organ to whole-body metabolism and mediates many of the adaptive responses to changes in nutrient availability, such that the appropriate energy sources are used and blood glucose levels maintained, whether directly after a meal or after a twelve-hour fast. The adaptive responses to fasting in liver are largely mediated by the nuclear receptor peroxisome proliferator-activated receptor α, or PPARα. PPARα can be activated by a de novo synthesized lipid ligand—16:0/18:1- glycerophosphocholine (16:0/18:1-GPC)—the synthesis of which is dependent on fatty acid synthase (FAS), but little is known about the regulation of this pathway. My thesis focused on post-translational mechanisms controlling endogenous activation of PPARα in the liver and used mouse liver and a hepatocyte cell line as model systems. In addition to its role in PPARα activation during fasting, FAS helps store excess calories as fat during feeding. We demonstrated that this paradoxical relationship involves the differential regulation of FAS in at least two distinct subcellular pools: cytoplasmic and membrane-associated FAS, the latter being attached to membranes by a strong peripheral membrane association. To find candidate proteins mediating FAS membrane localization we used a proteomics approach to identify compartment-specific FAS-associated proteins. We identified three proteins—Septin-2, Septin-7, and 40S ribosomal protein S18—that in two different liver model systems associate with FAS exclusively in the membrane fraction. Because the septins are involved in membrane structuring and scaffolding, these proteins may be involved in FAS membrane localization. The ratio of cytoplasmic to membrane FAS specific activity was increased with fasting or in the absence of insulin, indicating higher cytoplasmic FAS activity under conditions associated with PPARα activation. This effect was due to a nutrient-dependent and compartment-selective covalent modification of FAS: cytoplasmic FAS was preferentially phosphorylated during feeding or insulin treatment at Thr-1029 and Thr-1033, which flank a dehydratase domain catalytic residue. Mutating these sites to alanines promoted PPAR� target gene expression. mTORC1, a mediator of the feeding/insulin signal to induce lipogenesis, emerged as a mediator of FAS phosphorylation, inhibiting cytoplasmic FAS activity and reducing PPARα target gene expression in a FAS-dependent manner. Next, we investigated the role of ligand transport in FAS-mediated PPARα activation. 16:0/18:1-GPC is synthesized in the cytoplasm and it is not known how it reaches the nuclear PPARα. We identified phosphatidylcholine transfer protein (PCTP) as a possible transport protein for this ligand. PCTP knockdown in Hepa1-6 hepatocytes caused dramatic reductions in expression of PPARα target genes, and PCTP co-immunoprecipitated with PPARα. Immunofluorescent imaging showed that starvation of cells caused an accumulation of PCTP in the nucleus, consistent with a shuttling function controlled by nutrition. Using mass spectrometry, we demonstrated that PCTP binds 16:0/18:1-GPC. We further showed that the binding of this ligand to PCTP is FAS-dependent: in mice with liver-specific knockout of FAS, the amount of 16:0/18:1-GPC bound to PCTP in the nucleus was significantly reduced. Together, these findings suggest that multiple modes of post-translational regulation of FAS combined with regulation of lipid delivery by PCTP control fasting-induced PPARα activation in liver

    Muscle lipogenesis balances insulin sensitivity and strength through calcium signaling

    Get PDF
    Exogenous dietary fat can induce obesity and promote diabetes, but endogenous fat production is not thought to affect skeletal muscle insulin resistance, an antecedent of metabolic disease. Unexpectedly, the lipogenic enzyme fatty acid synthase (FAS) was increased in the skeletal muscle of mice with diet-induced obesity and insulin resistance. Skeletal muscle–specific inactivation of FAS protected mice from insulin resistance without altering adiposity, specific inflammatory mediators of insulin signaling, or skeletal muscle levels of diacylglycerol or ceramide. Increased insulin sensitivity despite high-fat feeding was driven by activation of AMPK without affecting AMP content or the AMP/ATP ratio in resting skeletal muscle. AMPK was induced by elevated cytosolic calcium caused by impaired sarco/endoplasmic reticulum calcium ATPase (SERCA) activity due to altered phospholipid composition of the sarcoplasmic reticulum (SR), but came at the expense of decreased muscle strength. Thus, inhibition of skeletal muscle FAS prevents obesity-associated diabetes in mice, but also causes muscle weakness, which suggests that mammals have retained the capacity for lipogenesis in muscle to preserve physical performance in the setting of disrupted metabolic homeostasis

    Heart rate variability and target organ damage in hypertensive patients

    Get PDF
    Background: We evaluated the association between linear standard Heart Rate Variability (HRV) measures and vascular, renal and cardiac target organ damage (TOD). Methods: A retrospective analysis was performed including 200 patients registered in the Regione Campania network (aged 62.4 ± 12, male 64%). HRV analysis was performed by 24-h holter ECG. Renal damage was assessed by estimated glomerular filtration rate (eGFR), vascular damage by carotid intima-media thickness (IMT), and cardiac damage by left ventricular mass index. Results: Significantly lower values of the ratio of low to high frequency power (LF/HF) were found in the patients with moderate or severe eGFR (p-value < 0.001). Similarly, depressed values of indexes of the overall autonomic modulation on heart were found in patients with plaque compared to those with a normal IMT (p-value <0.05). These associations remained significant after adjustment for other factors known to contribute to the development of target organ damage, such as age. Moreover, depressed LF/HF was found also in patients with left ventricular hypertrophy but this association was not significant after adjustment for other factors. Conclusions: Depressed HRV appeared to be associated with vascular and renal TOD, suggesting the involvement of autonomic imbalance in the TOD. However, as the mechanisms by which abnormal autonomic balance may lead to TOD, and, particularly, to renal organ damage are not clearly known, further prospective studies with longitudinal design are needed to determine the association between HRV and the development of TOD

    Sex differences in vascular endothelial function and health in humans: Impacts of exercise.

    Get PDF
    This brief review presents historical evidence for the purported impacts of male and female sex hormones on the vasculature in humans, including effects on macro- and micro-vascular function and health. Impacts of aging on hormonal changes and artery function are considered in the context of the menopause. Physiological data are presented alongside clinical outcomes from large trials, in an attempt to rationalise disparate findings along the bench-to-bedside continuum. Finally, the theoretical likelihood that exercise and hormone treatment may induce synergistic and/or additive vascular adaptations is developed in the context of recent laboratory studies that have compared male and female responses to training. Differences between men and women in terms of the impact of age and cardiorespiratory fitness on endothelial function are addressed. Ultimately, this review highlights the paucity of high quality and compelling evidence regarding the fundamental impact, in humans, of sex differences on arterial function and the moderating impacts of exercise on arterial function, adaptation and health at different ages in either sex. This article is protected by copyright. All rights reserved

    Coherence and Coupling Functions Reveal Microvascular Impairment in Treated Hypertension

    Get PDF
    The complex interactions that give rise to heart rate variability (HRV) involve coupled physiological oscillators operating over a wide range of different frequencies and length-scales. Based on the premise that interactions are key to the functioning of complex systems, the time-dependent deterministic coupling parameters underlying cardiac, respiratory and vascular regulation have been investigated at both the central and microvascular levels. Hypertension was considered as an example of a globally altered state of the complex dynamics of the cardiovascular system. Its effects were established through analysis of simultaneous recordings of the electrocardiogram (ECG), respiratory effort, and microvascular blood flow [by laser Doppler flowmetry (LDF)]. The signals were analyzed by methods developed to capture time-dependent dynamics, including the wavelet transform, wavelet-based phase coherence, non-linear mode decomposition, and dynamical Bayesian inference, all of which can encompass the inherent frequency and coupling variability of living systems. Phases of oscillatory modes corresponding to the cardiac (around 1.0 Hz), respiratory (around 0.25 Hz), and vascular myogenic activities (around 0.1 Hz) were extracted and combined into two coupled networks describing the central and peripheral systems, respectively. The corresponding spectral powers and coupling functions were computed. The same measurements and analyses were performed for three groups of subjects: healthy young (Y group, 24.4 ± 3.4 y), healthy aged (A group, 71.1 ± 6.6 y), and aged treated hypertensive patients (ATH group, 70.3 ± 6.7 y). It was established that the degree of coherence between low-frequency oscillations near 0.1 Hz in blood flow and in HRV time series differs markedly between the groups, declining with age and nearly disappearing in treated hypertension. Comparing the two healthy groups it was found that the couplings to the cardiac rhythm from both respiration and vascular myogenic activity decrease significantly in aging. Comparing the data from A and ATH groups it was found that the coupling from the vascular myogenic activity is significantly weaker in treated hypertension subjects, implying that the mechanisms of microcirculation are not completely restored by current anti-hypertension medications

    Cryoablation: how to improve results in atrioventricular nodal reentrant tachycardia ablation?

    Get PDF
    Ablation for atrioventricular nodal reentry tachycardia is very effective, with a potential for damage to the normal conduction system. Cryoablation is an alternative, as it allows cryomapping, which permits assessment of slow pathway elimination at innocent freezing temperatures, avoiding permanent damage to the normal conduction system. It is associated with shorter radiation times and the absence of heart block in all published data. We discuss in this overview different approaches of cryoenergy delivery (focusing on spot catheter ablation), and how lesion formation is influenced by catheter tip size, application duration, and freezing rate. Some advantages of cryoenergy are explained. Whether these features also apply for an approach with a cryoballoon, e.g. for atrial fibrillation is unclear
    corecore