37 research outputs found

    Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice.

    Get PDF
    To gain insight into how mutant huntingtin (mHtt) CAG repeat length modifies Huntington's disease (HD) pathogenesis, we profiled mRNA in over 600 brain and peripheral tissue samples from HD knock-in mice with increasing CAG repeat lengths. We found repeat length-dependent transcriptional signatures to be prominent in the striatum, less so in cortex, and minimal in the liver. Coexpression network analyses revealed 13 striatal and 5 cortical modules that correlated highly with CAG length and age, and that were preserved in HD models and sometimes in patients. Top striatal modules implicated mHtt CAG length and age in graded impairment in the expression of identity genes for striatal medium spiny neurons and in dysregulation of cyclic AMP signaling, cell death and protocadherin genes. We used proteomics to confirm 790 genes and 5 striatal modules with CAG length-dependent dysregulation at the protein level, and validated 22 striatal module genes as modifiers of mHtt toxicities in vivo

    Dendritic Cells in Chronic Mycobacterial Granulomas Restrict Local Anti-Bacterial T Cell Response in a Murine Model

    Get PDF
    Background: Mycobacterium-induced granulomas are the interface between bacteria and host immune response. During acute infection dendritic cells (DCs) are critical for mycobacterial dissemination and activation of protective T cells. However, their role during chronic infection in the granuloma is poorly understood. Methodology/Principal Findings: We report that an inflammatory subset of murine DCs are present in granulomas induced by Mycobacteria bovis strain Bacillus Calmette-guerin (BCG), and both their location in granulomas and costimulatory molecule expression changes throughout infection. By flow cytometric analysis, we found that CD11c + cells in chronic granulomas had lower expression of MHCII and co-stimulatory molecules CD40, CD80 and CD86, and higher expression of inhibitory molecules PD-L1 and PD-L2 compared to CD11c + cells from acute granulomas. As a consequence of their phenotype, CD11c + cells from chronic lesions were unable to support the reactivation of newly-recruited, antigen 85Bspecific CD4 + IFNc + T cells or induce an IFNc response from naïve T cells in vivo and ex vivo. The mechanism of this inhibition involves the PD-1:PD-L signaling pathway, as ex vivo blockade of PD-L1 and PD-L2 restored the ability of isolated CD11c + cells from chronic lesions to stimulate a protective IFNc T cell response. Conclusions/Significance: Our data suggest that DCs in chronic lesions may facilitate latent infection by down-regulating protective T cell responses, ultimately acting as a shield that promotes mycobacterium survival. This DC shield may explai

    Justify your alpha

    Get PDF
    Benjamin et al. proposed changing the conventional “statistical significance” threshold (i.e.,the alpha level) from p ≤ .05 to p ≤ .005 for all novel claims with relatively low prior odds. They provided two arguments for why lowering the significance threshold would “immediately improve the reproducibility of scientific research.” First, a p-value near .05provides weak evidence for the alternative hypothesis. Second, under certain assumptions, an alpha of .05 leads to high false positive report probabilities (FPRP2 ; the probability that a significant finding is a false positive

    Justify your alpha

    Get PDF
    In response to recommendations to redefine statistical significance to p ≤ .005, we propose that researchers should transparently report and justify all choices they make when designing a study, including the alpha level

    Efficient Solar-vapor Generation in Hollow-mesoporous Plasmonic Nanoshells

    No full text
    Plasmonic nanostructures have shown great promise in solar thermal applications. Here we report highly efficient solar vapor generation using hollow-mesoporous plasmonic nanoshells, where the steam production is significantly enhanced by the extended active surface and the nearly neutral buoyancy. An energy-to-vapor conversion efficiency of 69% was measured under 10x solar irradiance. We also show clear evidence of direct vapor nucleation from the plasmonic structure without bulk heating

    Hollow Mesoporous Plasmonic Nanoshells for Enhanced Solar Vapor Generation

    No full text
    In the past decade, nanomaterials have made their way into a variety of technologies in solar energy, enhancing the performance by taking advantage of the phenomena inherent to the nanoscale. Recent examples exploit plasmonic core/shell nanoparticles to achieve efficient direct steam generation, showing great promise of such nanoparticles as a useful material for solar applications. In this paper, we demonstrate a novel technique for fabricating bimetallic hollow mesoporous plasmonic nanoshells that yield a higher solar vapor generation rate compared with their solid-core counterparts. On the basis of a combination of nanomasking and incomplete galvanic replacement, the hollow plasmonic nanoshells can be fabricated with tunable absorption and minimized scattering. When exposed to sun light, each hollow nanoshell generates vapor bubbles simultaneously from the interior and exterior. The vapor nucleating from the interior expands and diffuses through the pores and combines with the bubbles formed on the outer wall. The lack of a solid core significantly accelerates the initial vapor nucleation and the overall steam generation dynamics. More importantly, because the density of the hollow porous nanoshells is essentially equal to the surrounding host medium these particles are much less prone to sedimentation, a problem that greatly limits the performance and implementation of standard nanoparticle dispersions
    corecore