121 research outputs found
To what extent can headteachers be held to account in the practice of social justice leadership?
Internationally, leadership for social justice is gaining prominence as a global travelling theme. This article draws from the Scottish contribution to the International School Leadership Development Network (ISLDN) social justice strand and presents a case study of a relatively small education system similar in size to that of New Zealand, to explore one system's policy expectations and the practice realities of headteachers (principals) seeking to address issues around social justice. Scottish policy rhetoric places responsibility with headteachers to ensure socially just practices within their schools. However, those headteachers are working in schools located within unjust local, national and international contexts. The article explores briefly the emerging theoretical analyses of social justice and leadership. It then identifies the policy expectations, including those within the revised professional standards for headteachers in Scotland. The main focus is on the headteachers' perspectives of factors that help and hinder their practice of leadership for social justice. Macro systems-level data is used to contextualize equity and outcomes issues that headteachers are working to address. In the analysis of the dislocation between policy and reality, the article asks, 'to what extent can headteachers be held to account in the practice of social justice leadership?
A Systematic Mapping Approach of 16q12.2/FTO and BMI in More Than 20,000 African Americans Narrows in on the Underlying Functional Variation: Results from the Population Architecture using Genomics and Epidemiology (PAGE) Study
Genetic variants in intron 1 of the fat mass- and obesity-associated (FTO) gene have been consistently associated with body mass index (BMI) in Europeans. However, follow-up studies in African Americans (AA) have shown no support for some of the most consistently BMI-associated FTO index single nucleotide polymorphisms (SNPs). This is most likely explained by different race-specific linkage disequilibrium (LD) patterns and lower correlation overall in AA, which provides the opportunity to fine-map this region and narrow in on the functional variant. To comprehensively explore the 16q12.2/FTO locus and to search for second independent signals in the broader region, we fine-mapped a 646-kb region, encompassing the large FTO gene and the flanking gene RPGRIP1L by investigating a total of 3,756 variants (1,529 genotyped and 2,227 imputed variants) in 20,488 AAs across five studies. We observed associations between BMI and variants in the known FTO intron 1 locus: the SNP with the most significant p-value, rs56137030 (8.3×10-6) had not been highlighted in previous studies. While rs56137030was correlated at r2>0.5 with 103 SNPs in Europeans (including the GWAS index SNPs), this number was reduced to 28 SNPs in AA. Among rs56137030 and the 28 correlated SNPs, six were located within candidate intronic regulatory elements, including rs1421085, for which we predicted allele-specific binding affinity for the transcription factor CUX1, which has recently been implicated in the regulation of FTO. We did not find strong evidence for a second independent signal in the broader region. In summary, this large fine-mapping study in AA has substantially reduced the number of common alleles that are likely to be functional candidates of the known FTO locus. Importantly our study demonstrated that comprehensive fine-mapping in AA provides a powerful approach to narrow in on the functional candidate(s) underlying the initial GWAS findings in European populations
Recommended from our members
Consistent Directions of Effect for Established Type 2 Diabetes Risk Variants Across Populations: The Population Architecture using Genomics and Epidemiology (PAGE) Consortium
Common genetic risk variants for type 2 diabetes (T2D) have primarily been identified in populations of European and Asian ancestry. We tested whether the direction of association with 20 T2D risk variants generalizes across six major racial/ethnic groups in the U.S. as part of the Population Architecture using Genomics and Epidemiology Consortium (16,235 diabetes case and 46,122 control subjects of European American, African American, Hispanic, East Asian, American Indian, and Native Hawaiian ancestry). The percentage of positive (odds ratio [OR] >1 for putative risk allele) associations ranged from 69% in American Indians to 100% in European Americans. Of the nine variants where we observed significant heterogeneity of effect by racial/ethnic group (Pheterogeneity 1) in at least five groups. The marked directional consistency of association observed for most genetic variants across populations implies a shared functional common variant in each region. Fine-mapping of all loci will be required to reveal markers of risk that are important within and across populations
Recommended from our members
Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution.
Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF ≥5%) and nine low-frequency or rare (MAF <5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants
Recommended from our members
The Influence of Obesity-Related Single Nucleotide Polymorphisms on BMI Across the Life Course: The PAGE Study
Evidence is limited as to whether heritable risk of obesity varies throughout adulthood. Among >34,000 European Americans, aged 18–100 years, from multiple U.S. studies in the Population Architecture using Genomics and Epidemiology (PAGE) Consortium, we examined evidence for heterogeneity in the associations of five established obesity risk variants (near FTO, GNPDA2, MTCH2, TMEM18, and NEGR1) with BMI across four distinct epochs of adulthood: 1) young adulthood (ages 18–25 years), adulthood (ages 26–49 years), middle-age adulthood (ages 50–69 years), and older adulthood (ages ≥70 years); or 2) by menopausal status in women and stratification by age 50 years in men. Summary-effect estimates from each meta-analysis were compared for heterogeneity across the life epochs. We found heterogeneity in the association of the FTO (rs8050136) variant with BMI across the four adulthood epochs (P = 0.0006), with larger effects in young adults relative to older adults (β [SE] = 1.17 [0.45] vs. 0.09 [0.09] kg/m2, respectively, per A allele) and smaller intermediate effects. We found no evidence for heterogeneity in the association of GNPDA2, MTCH2, TMEM18, and NEGR1 with BMI across adulthood. Genetic predisposition to obesity may have greater effects on body weight in young compared with older adulthood for FTO, suggesting changes by age, generation, or secular trends. Future research should compare and contrast our findings with results using longitudinal data
New genetic loci link adipose and insulin biology to body fat distribution.
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
Methylome-wide association analyses of lipids and modifying effects of behavioral factors in diverse race and ethnicity participants.
Circulating lipid concentrations are clinically associated with cardiometabolic diseases. The phenotypic variance explained by identified genetic variants remains limited, highlighting the importance of searching for additional factors beyond genetic sequence variants. DNA methylation has been linked to lipid concentrations in previous studies, although most of the studies harbored moderate sample sizes and exhibited underrepresentation of non-European ancestry populations. In addition, knowledge of nongenetic factors on lipid profiles is extremely limited. In the Population Architecture Using Genomics and Epidemiology (PAGE) Study, we performed methylome-wide association analysis on 9,561 participants from diverse race and ethnicity backgrounds for HDL-c, LDL-c, TC, and TG levels, and also tested interactions between smoking or alcohol intake and methylation in their association with lipid levels. We identified novel CpG sites at 16 loci (P < 1.18E-7) with successful replication on 3,215 participants. One additional novel locus was identified in the self-reported White participants (P = 4.66E-8). Although no additional CpG sites were identified in the genome-wide interaction analysis, 13 reported CpG sites showed significant heterogeneous association across smoking or alcohol intake strata. By mapping novel and reported CpG sites to genes, we identified enriched pathways directly linked to lipid metabolism as well as ones spanning various biological functions. These findings provide new insights into the regulation of lipid concentrations
Genotype Imputation of MetabochipSNPs Using a Study-Specific Reference Panel of ∼4,000 Haplotypes in African Americans From the Women's Health Initiative: Imputation of Metabochip SNPs in African Americans
Genetic imputation has become standard practice in modern genetic studies. However, several important issues have not been adequately addressed including the utility of study-specific reference, performance in admixed populations, and quality for less common (minor allele frequency [MAF] 0.005–0.05) and rare (MAF 0.05 (0.03–0.05, 0.01–0.03, 0.005–0.01, and 0.001–0.005) passed the post-imputation filter. The average dosage r2 for these SNPs is 94.7%, 92.1%, 89.0%, 83.1%, and 79.7%, respectively. These results suggest that for African Americans imputation of Metabochip SNPs from GWAS data, including low frequency SNPs with MAF 0.005–0.05, is feasible and worthwhile for power increase in downstream association analysis provided a sizable reference panel is available
Analysis of Metabolic Syndrome Components in >15 000 African Americans Identifies Pleiotropic Variants: Results From the Population Architecture Using Genomics and Epidemiology Study
Metabolic syndrome (MetS) refers to the clustering of cardio-metabolic risk factors including dyslipidemia, central adiposity, hypertension and hyperglycemia in individuals. Identification of pleiotropic genetic factors associated with MetS traits may shed light on key pathways or mediators underlying MetS
Methylation patterns associated with C-reactive protein in racially and ethnically diverse populations
Systemic low-grade inflammation is a feature of chronic disease. C-reactive protein (CRP) is a common biomarker of inflammation and used as an indicator of disease risk; however, the role of inflammation in disease is not completely understood. Methylation is an epigenetic modification in the DNA which plays a pivotal role in gene expression. In this study we evaluated differential DNA methylation patterns associated with blood CRP level to elucidate biological pathways and genetic regulatory mechanisms to improve the understanding of chronic inflammation. The racially and ethnically diverse participants in this study were included as 50% White, 41% Black or African American, 7% Hispanic or Latino/a, and 2% Native Hawaiian, Asian American, American Indian, or Alaska Native (total n = 13,433) individuals. We replicated 113 CpG sites from 87 unique loci, of which five were novel (CADM3, NALCN, NLRC5, ZNF792, and cg03282312), across a discovery set of 1,150 CpG sites associated with CRP level (p < 1.2E-7). The downstream pathways affected by DNA methylation included the identification of IFI16 and IRF7 CpG-gene transcript pairs which contributed to the innate immune response gene enrichment pathway along with NLRC5, NOD2, and AIM2. Gene enrichment analysis also identified the nuclear factor-kappaB transcription pathway. Using two-sample Mendelian randomization (MR) we inferred methylation at three CpG sites as causal for CRP levels using both White and Black or African American MR instrument variables. Overall, we identified novel CpG sites and gene transcripts that could be valuable in understanding the specific cellular processes and pathogenic mechanisms involved in inflammation
- …
