287 research outputs found

    Measuring odours in the environment vs. dispersion modelling: A review

    Get PDF
    Source characterization alone is not sufficient to account for the effective impact of odours on citizens, which would require to quantify odours directly at receptors. However, despite a certain simplicity of odour measurement at the emission source, odour measurement in the field is a quite more complicated task. This is one of the main reasons for the spreading of odour impact assessment approaches based on odour dispersion modelling. Currently, just a very limited number of reports discussing the use of tracer gas dispersion experiments both in the field and in wind tunnels for model validation purposes can be found in literature. However, when dealing with odour emissions, it is not always possible to identify a limited number of tracer compounds, nor to relate analytical concentrations to odour properties, thus giving that considering single odorous compounds might be insufficient to account for effective odour perception. For these reasons, the possibility of measuring of odours in the field, both as a way for directly assessing odour annoyance or for verifying that modelled odour concentrations correspond to the effective odour perception by humans, is still an important objective. The present work has the aim to review the techniques that can be adopted for measuring odours in the field, particularly discussing how such techniques can be used in alternative or in combination with odour dispersion models for odour impact assessment purposes, and how the results of field odour measurements and model outputs can be related and compared to each other

    Modeling ASR Ambiguity for Dialogue State Tracking Using Word Confusion Networks

    Full text link
    Spoken dialogue systems typically use a list of top-N ASR hypotheses for inferring the semantic meaning and tracking the state of the dialogue. However ASR graphs, such as confusion networks (confnets), provide a compact representation of a richer hypothesis space than a top-N ASR list. In this paper, we study the benefits of using confusion networks with a state-of-the-art neural dialogue state tracker (DST). We encode the 2-dimensional confnet into a 1-dimensional sequence of embeddings using an attentional confusion network encoder which can be used with any DST system. Our confnet encoder is plugged into the state-of-the-art 'Global-locally Self-Attentive Dialogue State Tacker' (GLAD) model for DST and obtains significant improvements in both accuracy and inference time compared to using top-N ASR hypotheses.Comment: Accepted at Interspeech-202

    Merkel Cell Polyomavirus in Cutaneous Swabs

    Get PDF
    To assess the usefulness of using cutaneous swabs to detect Merkel cell polyomavirus (MCPyV) DNA, we analyzed swabs from persons with Merkel cell carcinoma (MCC), others with skin diseases, and healthy volunteers. MCPyV was detected in at least 1 sample from virtually all participants. Viral loads were higher in samples from patients with MCC

    The SARS algorithm: detrending CoRoT light curves with Sysrem using simultaneous external parameters

    Full text link
    Surveys for exoplanetary transits are usually limited not by photon noise but rather by the amount of red noise in their data. In particular, although the CoRoT spacebased survey data are being carefully scrutinized, significant new sources of systematic noises are still being discovered. Recently, a magnitude-dependant systematic effect was discovered in the CoRoT data by Mazeh & Guterman et al. and a phenomenological correction was proposed. Here we tie the observed effect a particular type of effect, and in the process generalize the popular Sysrem algorithm to include external parameters in a simultaneous solution with the unknown effects. We show that a post-processing scheme based on this algorithm performs well and indeed allows for the detection of new transit-like signals that were not previously detected.Comment: MNRAS accepted. 5 pages, 3 figure

    Secondary Eclipse Photometry of WASP-4b with Warm Spitzer

    Get PDF
    We present photometry of the giant extrasolar planet WASP-4b at 3.6 and 4.5 micron taken with the Infrared Array Camera on board the Spitzer Space Telescope as part of Spitzer's extended warm mission. We find secondary eclipse depths of 0.319+/-0.031% and 0.343+/-0.027% for the 3.6 and 4.5 micron bands, respectively and show model emission spectra and pressure-temperature profiles for the planetary atmosphere. These eclipse depths are well fit by model emission spectra with water and other molecules in absorption, similar to those used for TrES-3 and HD 189733b. Depending on our choice of model, these results indicate that this planet has either a weak dayside temperature inversion or no inversion at all. The absence of a strong thermal inversion on this highly irradiated planet is contrary to the idea that highly irradiated planets are expected to have inversions, perhaps due the presence of an unknown absorber in the upper atmosphere. This result might be explained by the modestly enhanced activity level of WASP-4b's G7V host star, which could increase the amount of UV flux received by the planet, therefore reducing the abundance of the unknown stratospheric absorber in the planetary atmosphere as suggested in Knutson et al. (2010). We also find no evidence for an offset in the timing of the secondary eclipse and place a 2 sigma upper limit on |ecos(omega)| of 0.0024, which constrains the range of tidal heating models that could explain this planet's inflated radius.Comment: 8 pages, 7 figures (some in color), accepted for publication in Ap

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
    corecore