37 research outputs found

    Combining an EKF soil analysis with a 3D-Var upper-air assimilation in a limited-area NWP model

    Get PDF
    In recent years, the Extended Kalman Filter (EKF) has been gaining more attention in the surface data assimilation (DA) community and has already replaced the older Optimal Interpolation (OI) scheme for the vertical component of the land surface DA system in a number of meteorological institutes. An EKF has been developed within the standalone land-surface modelling platform SURFace Externalisee (SURFEX) for the initialisation of soil temperature and soil water content based on screen-level temperature and relative humidity. In this article we present a new combination of the EKF with a basic (using conventional observations only) three-dimensional variational (3D-Var) upper-air assimilation for the limited-area model ALARO coupled to SURFEX. This new combination is compared to an Open Loop experiment where all initial conditions are interpolated from an analysis of the global numerical weather prediction model Action de Recherche Petite Echelle Grande Echelle (ARPEGE) and to an experiment where the surface is initialised using the EKF, while the upper-air initial conditions are interpolated from the ARPEGE analysis. The aim of this article is to examine whether the EKF surface assimilation coupled or not with a basic 3D-Var upper-air assimilation has an added value compared to the Open Loop, in which the more advanced upper-air data assimilation of ARPEGE with more observations used is interpolated onto the limited-area model grid. All set-ups are verified during a 1-year period 2013 against soil measurements, screen-level observations, radiosoundings and merged radar-rain-gauge precipitation observations. Results indicate that the EKF surface assimilation has positive effects on humidity scores and is able to produce similar or improved scores compared to the Open Loop. While the upper-air 3D-Var DA system of ALARO still needs improvements, the potential benefits of the combination of upper-air and surface assimilation are demonstrated through soil moisture and screen-level relative humidity verifications

    Land surface albedo from MSG/SEVIRI: retrieval method, validation, and application for weather forecast

    No full text
    The European Meteorological Satellite Organization (EUMETSAT) maintains a number of decentralized processing centers dedicated to different scientific themes. The Portuguese Meteorological Institute hosts the Satellite Application Facility on Land Surface Analysis (LSA-SAF). The primary objective of the LSA-SAF is to provide added-value products for the meteorological and environmental science communities with main applications in the fields of climate modeling, environmental management, natural hazards management, and climate change detection. Since 2005 data from Meteosat Second Generation satellite are routinely processed in near real time by the LSA-SAF operational system in Lisbon. Presently, the delivered operational products comprise land surface albedo and temperature, shortwave and long-wave downwelling radiation fluxes, vegetation parameters and snow cover. After more than ten years (1999-2010) of research, development, and progressive operational activities, a summary of the surface albedo product characteristics and performances is presented. The relevance of LSA-SAF albedo product is analyzed through a weather forecast model (ALADIN) in order to account for the inter-annual spatial and temporal variability. Results clearly show a positive impact on the 12-hour forecast of 2m temperatures

    The Necrotic Signal Induced by Mycophenolic Acid Overcomes Apoptosis-Resistance in Tumor Cells

    Get PDF
    The amount of inosine monophosphate dehydrogenase (IMPDH), a pivotal enzyme for the biosynthesis of the guanosine tri-phosphate (GTP), is frequently increased in tumor cells. The anti-viral agent ribavirin and the immunosuppressant mycophenolic acid (MPA) are potent inhibitors of IMPDH. We recently showed that IMPDH inhibition led to a necrotic signal requiring the activation of Cdc42.Herein, we strengthened the essential role played by this small GTPase in the necrotic signal by silencing Cdc42 and by the ectopic expression of a constitutive active mutant of Cdc42. Since resistance to apoptosis is an essential step for the tumorigenesis process, we next examined the effect of the MPA–mediated necrotic signal on different tumor cells demonstrating various mechanisms of resistance to apoptosis (Bcl2-, HSP70-, Lyn-, BCR-ABL–overexpressing cells). All tested cells remained sensitive to MPA–mediated necrotic signal. Furthermore, inhibition of IMPDH activity in Chronic Lymphocytic Leukemia cells was significantly more efficient at eliminating malignant cells than apoptotic inducers.These findings indicate that necrosis and apoptosis are split signals that share few if any common hub of signaling. In addition, the necrotic signaling pathway induced by depletion of the cellular amount of GTP/GDP would be of great interest to eliminate apoptotic-resistant tumor cells

    Satellite and in situ observations for advancing global Earth surface modelling: a review

    Get PDF
    In this paper, we review the use of satellite-based remote sensing in combination with in situ data to inform Earth surface modelling. This involves verification and optimization methods that can handle both random and systematic errors and result in effective model improvement for both surface monitoring and prediction applications. The reasons for diverse remote sensing data and products include (i) their complementary areal and temporal coverage, (ii) their diverse and covariant information content, and (iii) their ability to complement in situ observations, which are often sparse and only locally representative. To improve our understanding of the complex behavior of the Earth system at the surface and sub-surface, we need large volumes of data from high-resolution modelling and remote sensing, since the Earth surface exhibits a high degree of heterogeneity and discontinuities in space and time. The spatial and temporal variability of the biosphere, hydrosphere, cryosphere and anthroposphere calls for an increased use of Earth observation (EO) data attaining volumes previously considered prohibitive. We review data availability and discuss recent examples where satellite remote sensing is used to infer observable surface quantities directly or indirectly, with particular emphasis on key parameters necessary for weather and climate prediction. Coordinated high-resolution remote-sensing and modelling/assimilation capabilities for the Earth surface are required to support an international application-focused effort

    Analyse variationnelle des paramètres de surface

    No full text
    TOULOUSE3-BU Sciences (315552104) / SudocSudocFranceF

    Definition of the Moist-Air Exergy Norm: A Comparison with Existing “Moist Energy Norms”

    No full text
    International audienceThis study presents a new formulation for the norms and scalar products used in tangent linear or adjoint models to determine forecast errors and sensitivity to observations and to calculate singular vectors. The new norm is derived from the concept of moist-air available enthalpy, which is one of the availability functions referred to as exergy in general thermodynamics. It is shown that the sum of the kinetic energy and the moist-air available enthalpy can be used to define a new moist-air squared norm which is quadratic in: 1) wind components; 2) temperature; 3) surface pressure; and 4) water vapor content. Preliminary numerical applications are performed to show that the new weighting factors for temperature and water vapor are significantly different from those used in observation impact studies, and are in better agreement with observed analysis increments. These numerical applications confirm that the weighting factors for water vapor and temperature exhibit a large increase with height (by several orders of magnitude) and a minimum in the middle troposphere, respectively

    Towards the assimilation of all-sky microwave radiances from the SAPHIR humidity sounder in a limited area NWP model over tropical regions

    No full text
    Microwave radiances from the humidity sounder SAPHIR at 183GHz onboard the MEGHA-TROPIQUES satellite are simulated in cloudy and rainy conditions (all-sky radiances) using short-range forecasts from the operational limited area model ALADIN-RĂ©union over the Indian Ocean. The simulation of SAPHIR radiances uses cloud and precipitation profiles from the moist physical parameterizations of ALADIN-RĂ©union describing deep convection and large-scale precipitation, that are coupled to the fast radiative transfer model RTTOV-SCATT accounting for scattering by hydrometeors. Sensitivity studies show that within cloud systems the SAPHIR sounder is particularly sensitive to solid precipitating hydrometeors. An optimal choice of scattering properties for snow particles is undertaken by a systematic comparison of simulated and observed SAPHIR radiances over a 1-month period in February 2012. This choice has required defining a criterion for rain occurrence from SAPHIR radiances that has been calibrated with the TMPA 3B40RT surface precipitation rate product. Finally, a retrieval technique based on Bayesian inversion is proposed to derive atmospheric profiles within clouds to be assimilated in the ALADIN 3D-Var system in a forthcoming study. The retrieved profiles are evaluated through the simulation of radiances from the microwave imager MADRAS that also flew on MEGHA-TROPIQUES

    Comments on Issues Regarding the Assimilation of Cloud and Precipitation Data

    No full text
    RĂ©ponseInternational audienceThis is a reply to a set of criticisms regarding a previously published work. It briefly addresses the main criticisms. In particular, it explains why some papers identified as having some fundamental flaws were referenced in the original work without detailed exposition of those flaws. It also explains why parts of the conclusions criticized as being contradictory are, in fact, not. It further highlights the need for more publishing of scientific criticisms
    corecore