86 research outputs found

    Predictive Markers of Honey Bee Colony Collapse

    Get PDF
    Across the Northern hemisphere, managed honey bee colonies, Apis mellifera, are currently affected by abrupt depopulation during winter and many factors are suspected to be involved, either alone or in combination. Parasites and pathogens are considered as principal actors, in particular the ectoparasitic mite Varroa destructor, associated viruses and the microsporidian Nosema ceranae. Here we used long term monitoring of colonies and screening for eleven disease agents and genes involved in bee immunity and physiology to identify predictive markers of honeybee colony losses during winter. The data show that DWV, Nosema ceranae, Varroa destructor and Vitellogenin can be predictive markers for winter colony losses, but their predictive power strongly depends on the season. In particular, the data support that V. destructor is a key player for losses, arguably in line with its specific impact on the health of individual bees and colonies

    Crop pests and predators exhibit inconsistent responses to surrounding landscape composition

    Get PDF
    The idea that noncrop habitat enhances pest control and represents a win–win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win–win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies

    Americans, Marketers, and the Internet: 1999-2012

    Full text link

    Novel Approaches for Treating Cardiac Disease

    No full text

    Impact of the controlled release of a connexin 43 peptide on corneal wound closure in an STZ model of type I diabetes.

    Get PDF
    The alpha-carboxy terminus 1 (αCT1) peptide is a synthetically produced mimetic modified from the DDLEI C-terminus sequence of connexin 43 (Cx43). Previous research using various wound healing models have found promising therapeutic effects when applying the drug, resulting in increased wound healing rates and reduced scarring. Previous data suggested a rapid metabolism rate in vitro, creating an interest in long term release. Using a streptozotocin (STZ) type I diabetic rat model with a surgically induced corneal injury, we delivered αCT1 both directly, in a pluronic gel solution, and in a sustained system, using polymeric alginate-poly-l-ornithine (A-PLO) microcapsules (MC). Fluorescent staining of wound area over a 5 day period indicated a significant increase in wound closure rates for both αCT1 and αCT1 MC treated groups, withαCT1 MC groups showing the most rapid wound closure overall. Analysis of inflammatory reaction to the treatment groups indicated significantly lower levels of both Interferon Inducible T-Cell Alpha Chemoattractant (ITAC) and Tumor Necrosis Factor Alpha (TNFα) markers using confocal quantification and ELISA assays. Additional analysis examining genes selected from the EMT pathway using RT-PCR and Western blotting suggested αCT1 modification of Transforming Growth Factor Beta 2 (TGFβ2), Keratin 8 (Krt8), Estrogen Receptor 1 (Esr1), and Glucose Transporter 4 (Glut4) over a 14 day period. Combined, this data indicated a possible suppression of the inflammatory response by αCT1, leading to increased wound healing rates
    • …
    corecore