10 research outputs found
Table ronde
Ariane Hudelet : Merci beaucoup aux organisatrices de m’avoir conviée à animer cette table ronde professionnelle. Nous allons aborder quatre approches différentes et des projets très divers. Je vais vous faire une brève présentation de nos intervenants et ensuite on passera en revue les grandes thématiques liées au traitement du paysage, dans une approche plus professionnelle, en les écoutant les uns après les autres. Je vais commencer avec Grant Montgomery. Il est chef décorateur en Angleter..
Rotating spherical Couette flow in a dipolar magnetic field: Experimental study of magneto-inertial waves
This paper has been accepted for publication in Journal of Fluid Mechanics published by Cambridge University PressInternational audienceThe magnetostrophic regime, in which Lorentz and Coriolis forces are in balance, has been investigated in a rapidly rotating spherical Couette flow experiment. The spherical shell is filled with liquid sodium and permeated by a strong imposed dipolar magnetic field. Azimuthally travelling hydromagnetic waves have been put in evidence through a detailed analysis of electric potential differences measured on the outer sphere, and their properties have been determined. Several types of waves have been identified depending on the relative rotation rates of the inner and outer spheres: they differ by their dispersion relation and by their selection of azimuthal wavenumbers. In addition, these waves constitute the largest contribution to the observed fluctuations, and all of them travel in the retrograde direction in the frame of reference bound to the fluid. We identify these waves as magneto-inertial waves by virtue of the close proximity of the magnetic and inertial characteristic time scales of relevance in our experiment
A multidrug ABC transporter with a taste for GTP
Abstract During the evolution of cellular bioenergetics, many protein families have been fashioned to match the availability and replenishment in energy supply. Molecular motors and primary transporters essentially need ATP to function while proteins involved in cell signaling or translation consume GTP. ATP-Binding Cassette (ABC) transporters are one of the largest families of membrane proteins gathering several medically relevant members that are typically powered by ATP hydrolysis. Here, a Streptococcus pneumoniae ABC transporter responsible for fluoroquinolones resistance in clinical settings, PatA/PatB, is shown to challenge this concept. It clearly favors GTP as the energy supply to expel drugs. This preference is correlated to its ability to hydrolyze GTP more efficiently than ATP, as found with PatA/PatB reconstituted in proteoliposomes or nanodiscs. Importantly, the ATP and GTP concentrations are similar in S. pneumoniae supporting the physiological relevance of GTP as the energy source of this bacterial transporter
Identification of a two-component regulatory system involved in antimicrobial peptide resistance in Streptococcus pneumoniae
International audienceTwo-component regulatory systems (TCS) are among the most widespread mechanisms that bacteria use to sense and respond to environmental changes. In the human pathogen Streptococcus pneumoniae , a total of 13 TCS have been identified and many of them have been linked to pathogenicity. Notably, TCS01 strongly contributes to pneumococcal virulence in several infection models. However, it remains one of the least studied TCS in pneumococci and its functional role is still unclear. In this study, we demonstrate that TCS01 cooperates with a BceAB-type ABC transporter to sense and induce resistance to structurally-unrelated antimicrobial peptides of bacterial origin that all target undecaprenyl-pyrophosphate or lipid II, which are essential precursors of cell wall biosynthesis. Even though tcs01 and bceAB genes do not locate in the same gene cluster, disruption of either of them equally sensitized the bacterium to the same set of antimicrobial peptides. We show that the key function of TCS01 is to upregulate the expression of the transporter, while the latter appears the main actor in resistance. Electrophoretic mobility shift assays further demonstrated that the response regulator of TCS01 binds to the promoter region of the bceAB genes, implying a direct control of these genes. The BceAB transporter was overexpressed and purified from E . coli . After reconstitution in liposomes, it displayed substantial ATPase and GTPase activities that were stimulated by antimicrobial peptides to which it confers resistance to, revealing new functional features of a BceAB-type transporter. Altogether, this inducible defense mechanism likely contributes to the survival of the opportunistic microorganism in the human host, in which competition among commensal microorganisms is a key determinant for effective host colonization and invasive path
Inducer-Modulated Cooperative Binding of the Tetrameric CggR Repressor to Operator DNA
The central glycolytic genes repressor (CggR) controls the transcription of the gapA operon encoding five key glycolytic enzymes in Bacillus subtilis. CggR recognizes a unique DNA target sequence comprising two direct repeats and fructose-1,6-bisphosphate (FBP) is the inducer that negatively controls this interaction. We present here analytical ultracentrifugation and fluorescence anisotropy experiments that demonstrate that CggR binds as a tetramer to the full-length operator DNA in a highly cooperative manner. We also show that CggR binds as a dimer to each direct repeat, the affinity being ∼100-fold higher for the 3′ repeat. In addition, our studies reveal a bimodal effect of FBP on the repressor/operator interaction. At micromolar concentrations, FBP leads to a change in the conformational dynamics of the complex. In the millimolar range, without altering the stoichiometry, FBP leads to a drastic reduction in the affinity and cooperativity of the complex. This bimodal response suggests the existence of two sugar-binding sites in the repressor, a high affinity site at which FBP acts as a structural co-factor and a low affinity site underlying the molecular mechanism of gapA induction
Rilpivirine in HIV-1-positive women initiating pregnancy: to switch or not to switch?
International audienceBackgroundSafety data about rilpivirine use during pregnancy remain scarce, and rilpivirine plasma concentrations are reduced during second/third trimesters, with a potential risk of viral breakthroughs. Thus, French guidelines recommend switching to rilpivirine-free combinations (RFCs) during pregnancy.ObjectivesTo describe the characteristics of women initiating pregnancy while on rilpivirine and to compare the outcomes for virologically suppressed subjects continuing rilpivirine until delivery versus switching to an RFC.MethodsIn the ANRS-EPF French Perinatal cohort, we included women on rilpivirine at conception in 2010–18. Pregnancy outcomes were compared between patients continuing versus interrupting rilpivirine. In women with documented viral suppression (<50 copies/mL) before 14 weeks of gestation (WG) while on rilpivirine, we compared the probability of viral rebound (≥50 copies/mL) during pregnancy between subjects continuing rilpivirine versus those switching to RFC.ResultsAmong 247 women included, 88.7% had viral suppression at the beginning of pregnancy. Overall, 184 women (74.5%) switched to an RFC (mostly PI/ritonavir-based regimens) at a median gestational age of 8.0 WG. Plasma HIV-1 RNA nearest delivery was <50 copies/mL in 95.6% of women. Among 69 women with documented viral suppression before 14 WG, the risk of viral rebound was higher when switching to RFCs than when continuing rilpivirine (20.0% versus 0.0%, P = 0.046). Delivery outcomes were similar between groups (overall birth defects, 3.8/100 live births; pregnancy losses, 2.0%; preterm deliveries, 10.6%). No HIV transmission occurred.ConclusionsIn virologically suppressed women initiating pregnancy, continuing rilpivirine was associated with better virological outcome than changing regimen. We did not observe a higher risk of adverse pregnancy outcomes