14 research outputs found

    Financing of U.S. Biomedical Research and New Drug Approvals across Therapeutic Areas

    Get PDF
    We estimated U.S. biomedical research funding across therapeutic areas, determined the association with disease burden, and evaluated new drug approvals that resulted from this investment.We calculated funding from 1995 to 2005 and totaled Food and Drug Administration approvals in eight therapeutic areas (cardiovascular, endocrine, gastrointestinal, genitourinary, HIV/AIDS, infectious disease excluding HIV, oncology, and respiratory) primarily using public data. We then calculated correlations between funding, published estimates of disease burden, and drug approvals. Financial support for biomedical research from 1995 to 2005 increased across all therapeutic areas between 43% and 369%. Industry was the principal funder of all areas except HIV/AIDS, infectious disease, and oncology, which were chiefly sponsored by the National Institutes of Health (NIH). Total (rho = 0.70; P = .03) and industry funding (rho = 0.69; P = .04) were correlated with projected disease burden in high income countries while NIH support (rho = 0.80; P = .01) was correlated with projected disease burden globally. From 1995 to 2005 the number of new approvals was flat or declined across therapeutic areas, and over an 8-year lag period, neither total nor industry funding was correlated with future approvals.Across therapeutic areas, biomedical research funding increased substantially, appears aligned with disease burden in high income countries, but is not linked to new drug approvals. The translational gap between funding and new therapies is affecting all of medicine, and remedies must include changes beyond additional financial investment

    Climate control of terrestrial carbon exchange across biomes and continents

    Get PDF
    Peer reviewe

    Multiple Scenario Generation of Subsurface Models:Consistent Integration of Information from Geophysical and Geological Data throuh Combination of Probabilistic Inverse Problem Theory and Geostatistics

    Get PDF
    Neutrinos with energies above 1017 eV are detectable with the Surface Detector Array of the Pierre Auger Observatory. The identification is efficiently performed for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for Earth-skimming \u3c4 neutrinos with nearly tangential trajectories relative to the Earth. No neutrino candidates were found in 3c 14.7 years of data taken up to 31 August 2018. This leads to restrictive upper bounds on their flux. The 90% C.L. single-flavor limit to the diffuse flux of ultra-high-energy neutrinos with an E\u3bd-2 spectrum in the energy range 1.0 7 1017 eV -2.5 7 1019 eV is E2 dN\u3bd/dE\u3bd < 4.4 7 10-9 GeV cm-2 s-1 sr-1, placing strong constraints on several models of neutrino production at EeV energies and on the properties of the sources of ultra-high-energy cosmic rays
    corecore