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Preface 

This PhD thesis entitled “Multiple cenario eneration of ubsurface odels - 

Consistent ntegration of nformation from eophysical and eological ata through 

ombination of robabilistic nverse roblem heory and eostatistics” has been 

submitted as a partial fulfillment of the requirements for a Ph.D. degree at the 

Technical University of Denmark (DTU). The work is based on three years research 

carried out at DTU Informatics at the department of Scientific Computing, DTU Space 

at the department of Mathematical and Computational Geoscience, and DTU’s Center 

for Energy Resources Engineering (CERE). The work has been carried out under supervision 

of my main supervisor, Klaus Mosegaard and co-supervisor, Ida Lykke Fabricius. The project 

has been financed by DONG E&P. During the PhD project, I was four months at Stanford 

Center for Reservoir Forecasting (SCRF) at the Department of Energy Resources 

Engineering, Stanford University, USA. Here, I worked with associate professor, Jef Caers 

and other people from the department. 

The PhD thesis consists of a summary of the scientific developments within the field of 

probabilistic inverse problem theory and geostatistics until now and a collection of research 

papers. Especially, the focus is directed at the resent years of research related to the merging 

of these two, hitherto separated, fields of research. My point of departure for this summary is 

15 publications that have been published in or submitted to internationally peer-reviewed 

scientific journals or conference proceedings in the period 2010 – 2013. The collection of 

research papers consists of five published peer-reviewed journal articles (one first author and 

four co-authored), three papers submitted to peer-reviewed journals (two first author and 

one co-authored), and seven published conference proceedings/extended abstracts (four first 

author and three co-authored). These papers are found in the appendix of this thesis. Some of 

these papers will be referred to in the summary as paper A1, paper A2, etc. (e.g., Cordua 

et al., 2012 (paper A4)). 

 

Kongens Lyngby, September 14, 2013 

Knud Skou Cordua 
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Summary 

In geosciences, as well as in astrophysics, direct observations of a studied physical system and 

objects are not always accessible. Instead, indirect observations have to be used in order to 

obtain information about the unknown system, which leads to an inverse problem. Such 

geoscientific inverse problems face the challenge of determining a set of unknown model 

parameters based on a set of indirect observations of the subsurface.  

In a traditional least-squares formulation of the solution to an inverse problem, a 

subjectively chosen regularization parameter is used to obtain a unique solution to this 

problem, which leads to a smooth solution with no geological realism. Moreover, such a 

optimization-based framework does not allow introducing realistic geological prior 

information (due to a vectorial normed space structure).  

This thesis focuses on a more sophisticated approach based on a probabilistic 

formulation of the solution to the inverse problem. In this formulation, different sources of 

information about the subsurface can be weighted with regard to their relative quality and 

reliability (i.e., uncertainties) using probability distributions and subsequently integrated into 

a posterior probability distribution over the model parameters. The different sources of 

information are provided in form of a set of observed data, uncertainties related to the data, 

and geological prior information, which is established from, e.g., expert knowledge and old 

data sets.  

The prior information, when being informative and realistic, has a regulating effect on 

the solution to the inverse problem as geological and geophysical information are orthogonal 

in some ways, which allows reducing the underdetermination of the inverse problem. At the 

same time, such prior information also reduces the effective dimension of the inverse 

problem, which may considerably reduce the computationally cost related to such problems. 

Moreover, the probabilistic formulation of the inverse problem allows the use of geologically 

more realistic prior information that leads to solutions to the inverse problem with a higher 

degree of geological realism. Finally, the probabilistic formulation provides a means of 

analyzing uncertainties and potential multiple-scenario solutions to be used for risk 

assessments in relation to, e.g., reservoir characterization and forecasting.  

Prior models rely on information from old data sets or expert knowledge in form of, e.g., 

training images that expresses structural, lithological, or textural features. Statistics obtained 

from these types of observations will be referred to as sample models. Geostatistical sampling 

algorithms use a sample model as input and produce multiple realizations of the model 
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parameters that, to some degree, honor this information. Such algorithms can be used to 

define the prior information for probabilistic inverse problems. In this way, very informative 

and geologically more realistic prior information can be provided.  

This thesis provides an overview of the scientific developments within the fields of 

probabilistic inverse problem theory and geostatistics, with emphasis on the combination of 

these scientific disciplines. In particular, the focus will be on consistent probabilistic 

formulations of this problem, which means that a correct weighting of the different sources of 

information is obeyed such that no unknown assumptions and biases influence the solution to 

the inverse problem. This involves a definition of the probabilistically formulated inverse 

problem, a discussion about how prior models can be established based on statistical 

information from sample models, and an analysis of geostatistical algorithms in order to 

understand the implicit assumptions made by such “black box” algorithms.  

A description of the posterior distribution can be obtained by drawing a representative 

sample from this distribution. Methodologies to be used for this purpose are presented. An 

example of sampling the posterior probability distribution of a computationally hard full 

waveform inverse problem using prior information based on multiple-point statistics, 

obtained from a training image, is demonstrated. 

For some computationally challenging inverse problems, a sample from the posterior 

distribution might still be too laborious to be obtained. Instead, a set of model parameters 

with (near) maximum posterior probability can be obtained. In order to do this, a closed form 

mathematical formulation of the prior probability distribution has to be established, such that 

the posterior probability distribution can be evaluated. Different solutions to this problem are 

presented and discussed. 

The prior probability distribution that is sampled by geostatistical sampling algorithms is 

typically unknown or sometime only a part of or an approximation to the distribution is 

known. This thesis provides an analysis and a discussion of how these prior probability 

distributions can be established, such that it is consistent with information provided by a 

known sample model. It is described how assumptions about the distribution, in addition to 

the information provided by the sample model, have to be made in order to end up with a 

unique solution to this problem. It is shown that these sampling algorithms typically provide 

samples from a prior probability distribution that is not consistent with the sample model. 

However, examples of consistent algorithms are also provided.  
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A likelihood function is part of the probabilistic formulation of the inverse problem. This 

function is based on an uncertainty model that describes the uncertainties related to the 

observed data. In a similar way, a formulation of the prior probability distribution that takes 

into account uncertainties related to the sample model statistics is formulated.  

Prior models that are consistent with the statistics from a training image do not 

necessarily produce realizations with the same spatial patterns as seen in the training image 

because the local Markov properties that is satisfied in this way does not lead to a global 

reproduction of the pattern distribution from the training image. A prior probability 

distribution, with realizations that resemble the patterns as seen in the training image, is 

described and an efficient sampling algorithm that samples this distribution is provided. 

Moreover, an example of using this prior model for an inverse problem is demonstrated. 

The theoretical forward problem that describes the relation between data and model 

parameters is often associated with some degree of approximation. This approximation may 

have a great impact on the solution to the inverse problem because such approximate 

calculations of the data have an impact similar to observation uncertainties. We refer to the 

effect of these approximations as modeling errors. Examples that show how the modeling 

error is estimated are provided. Moreover, it is shown how these effects can be taken into 

account in the formulation of the posterior probability distribution.  

Common to the methods and strategies presented in this thesis is that they strive for a 

solution to the inverse problem that is consistent with the available information and to a less 

degree based on unconscious or subjective choices and implicit assumptions. Future studies 

related to theoretical developments of these strategies have to be provided. Moreover, 

applications of these strategies will reveal the practical implications of these consistent 

formulations. This will in particular be of great importance when it comes to assessments 

related cases of high risk such as human health or resources of high economical potentials.  
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1 Introduction to inverse problems and geostatistics 

Characterization of the properties and structures of the subsurface is of great importance in 

relation to 1) protection of drinking water resources, 2) exploration and exploitation of oil, 

gas, and water reservoirs, 3) reservoir production and forecasting, and 4) scientific research of 

geological processes and dynamics. Geoscientific inverse problems deal with the problem of 

inferring information about the subsurface based on some indirect observations of subsurface 

properties.  

Inverse problems occur in many aspects within geosciences. Examples of such problems 

are inversion of tomographic data such as ground penetrating radar (GPR) travel time data 

(Cordua et al., 2008), GPR amplitude data (Buursink et al., 2008), GPR full waveform data 

(Ernst et al., 2007; Cordua et al., 2012 (paper A4)), electricity data (Binley et al., 2002), seismic 

travel time data (Lange et al., 2012 (paper A9)), seismic full waveform data (Belina et al., 

2009). Other examples of typical problems are inversion of reflection seismic data (Gauthier et 

al., 1986; Buland and Omre, 2003; Barros et al., 2010), production data (Caers, 2003), and 

tracer concentration data (Irving and Singha, 2010). 

The common goal of inverse problems is to infer information about a set of model 

parameters 1 2, , ..., T
Nm m mm  that describe some property of the subsurface model 

being investigated based on a set of indirect observations 1 2, , ...,
Tobs obs obs obs

Md d dd  of the 

system. These model parameters are typically related to spatial positions in a regular grid of 

cells (or pixels) such that the values of these model parameters is an (1D, 2D, or 3D) image of 

the subsurface. This will also be the case throughout this thesis.  

 

1.1 Regularization based inversion strategies 

In linear or linearizable inverse problems, the relation between calculated data d  and a set of 

model parameters is given as 

d Gm ,          (1) 

where G  is a linear mapping operator. This relation often relies on a physical rule. If the 

problem of determining a set of unknown model parameters based on a set of observed data 

is underdetermined, the inverse of G  does not exist. A unique solution to this problem can 
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be obtained using regularization. A simple solution to this problem is given by Tikhonov (1963) 

as 

1T T obsm G G I G d ,        (2) 

where I  is an identity matrix and  is a positive regularization parameter.  

In this case, the solution to the inverse problem depends on the regularization 

parameter. Roughly speaking, the value of this parameter controls the smoothness of the 

solution to the inverse problem and the value is chosen subjectively such that the solution 

becomes visually acceptable.  

The regularization parameter imposes prior information into the inverse problem in a 

subjective way, which makes the information content and the relative weight between the 

observed data and the prior information opaque. Moreover, this formulation does not provide 

any uncertainty of the estimated solution.  

 

1.2 Pioneering work on probabilistically formulated inverse problems 

Tarantola (1982a) suggested a probabilistic formulation of the solution to the inverse 

problem. In this formulation, prior states of information about the model parameters 

( )M m  and the data ( )D d  are given as probability distributions and are assumed 

independent.  

Given a linear or non-linear forward relation between the calculated data and the model 

parameters 

( )gd m ,          (3) 

the solution to the probabilistically formulated inverse problem is given as the posterior 

probability distribution (Tarantola, 2005) 

( ) ( ) ( ( )) ( ) ( )M M D Mk g k Lm m m m m      (4) 

Here k  is a normalization constant, ( )L m  is the likelihood function that describes how well 

the observed data fits the calculated data. This function is based on an uncertainty model 

( )D d  that describes the uncertainties related to the observed data (i.e. the prior state of 

information on the data) and a forward relation between the data and the mode parameters. 

( )M m  contains the prior information of the model parameters and is often referred to as 
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the prior model. Using the probabilistic formulation, the relative weighting of the different 

sources of information stemming from the observed data and the prior information is defined 

in an explicit way through the individual probability distributions.  

This explicit formulation paves a way for defining a posterior probability distribution (i.e., 

a solution to the inverse problem) that is consistent with the observed data and prior states of 

information and not based on some subjectively chosen regularization parameter.  

Using the probabilistic formulation of the inverse problem, a better understanding of the 

Tikhonov regularization can be obtained. The Tikhonov regularization in equation 2 turns out 

to be a maximum posterior solution to the probabilistic formulation in equation 4 in the 

special case where the forward relation is linear (i.e., given by equation 1) and the prior states 

of information for both the model parameters and the data are described by a zero-mean 

isotropic Gaussian distribution. In this case the regularization parameter is given as 

2

2
d

m

,          (5) 

where d  is the standard deviation of the data uncertainties and m  is the a priori expected 

standard deviation of the model parameters (around an expectation of zero).  

 Tarantola and Valette (1982b) used the probabilistic formulation in equation 4 for linear 

and weakly non-linear inverse problems with Gaussian distributed noise and prior 

information, which leads to a Gaussian or close to Gaussian posterior distribution. For these 

cases, an expression for an iterative optimization procedure that searches for the set of model 

parameters with maximum posterior probability was provided.  

 A very challenging geophysical non-linear inverse problem is the inversion of full 

waveform data. Tarantola (1984) suggested combining the optimization procedure for the 

probabilistically formulated full waveform inverse problem with the adjoint-based method in 

order to obtain a computationally feasible inversion procedure for these kinds of problems. 

Tarantola (1986, 1988) further developed this approach for the elastic and viscoelastic wave 

equations. Developments and experiments based on these waveform inversion strategies are 

still going on (Barnes et al., 2008; Ernst et al., 2007; Yang et al., 2013).  

For the highly non-linear inverse problem of estimating the static errors in reflection 

seismic problems, Rothman (1985, 1986) found a set of model parameters with near 

maximum posterior probability using the stochastic optimization simulated annealing. 
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However, for these non-linear inverse problems only a set of model parameters with near 

maximum posterior probability without any uncertainty estimate was obtained. 

1.3 Sampling the solution to inverse problems 

For non-linear inverse problems, the posterior distribution typically becomes an (unknown) 

non-Gaussian distribution (Mosegaard, 2006), which may have several areas of models (i.e. 

sets of model parameters) with significant probability separated with areas of models with 

low posterior probability. In such a case, it may be insufficient to come up with just a single 

set of model parameters with high posterior probability. Therefore, Mosegaard and Tarantola 

(1995) suggested sampling the posterior distribution related to the probabilistic formulation 

of the inverse problem. In this way, not only a set of model parameters with (near) maximum 

posterior probability was obtained, but instead a characterization of the shape of the 

posterior distribution, in form of a representative sample, was the target.  

From such a sample, the uncertainty around the maximum posterior solution, or possibly 

around several considerably different solutions (in case of multimodal shaped posterior 

distributions), can be obtained (Mosegaard, 1998). Such ambiguities typically arise as a 

consequence of the inverse problem either being underdetermined (i.e. different sets of 

model parameters explain the same data set) and due to the uncertainties related to the 

observed data (described by the data error model). The degree of variability of a sample from 

the posterior distribution is influenced by the amount of information provided from the data, 

the uncertainty model, and the prior model.   

Mosegaard and Tarantola (1995) proposed to sample the posterior distribution of the 

probabilistically formulated inverse problem using an extended edition of the Metropolis 

algorithm (Metropolis et al., 1953). In this extended Metropolis algorithm, no closed form 

mathematical expression for the prior information is needed. An algorithm that is able to 

sample the prior distribution is sufficient. In this way, a sample from the posterior distribution 

of a general non-linear inverse problem with an arbitrary prior distribution can be obtained. 

Roughly speaking, the extended Metropolis algorithm has two phases (e.g. Mosegaard 

and Sambridge, 2002). In the first phase, known as the burn-in period, the algorithm searches 

for an “area of models” with significant posterior probability. In the second stage, after burn-

in, the algorithm starts to sample the area of significant posterior probability.  That is, the first 

part can be considered almost as a pure optimization procedure and the second part is the 

actual sampling. Hence, sampling of the posterior distribution will always be computationally 

harder than only searching for a set of model parameters with (near) maximum posterior 
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probability. For some problems, it might even be computationally prohibited to go for a 

sample of the posterior distribution. 

Examples of using the extended Metropolis algorithm to sample the posterior 

distribution of a probabilistically formulated inverse problem are seen in for example Dahl-

Jensen et al. (1998), Khan et al. (2000), and Voss et al. (2006). However, in these examples, as 

well as in earlier examples of using probabilistic inversion, only very simple prior models were 

applied.  

 During the last two decades, more complex and geologically more realistic prior models 

have been developed within the geostatistical society. Therefore, as noticed by Mosegaard 

(2006), recent advances in the geostatistical society may provide methods that could be 

integrated into the inversion.  

 

1.4 Geostatistically formulated prior information  

Geostatistical modeling basically rely on two different approaches: (1) the object-based 

approach, in which the geometrical shapes of geobodies are defined by stochastic parameters 

(e.g. Deutsch and Wang, 1996), and (2) the pixel-based approach, in which the earth model is 

characterized by an image where the pixel values are associated with stochastic parameters 

(e.g. Journel and Isaaks, 1984). In this thesis, only the pixel based geostatistical models will be 

considered.  

Geostatistics was traditionally developed for probabilistic predictions of ore grades 

(Krige, 1951). Later on, the methodology was used for understanding porous media 

(Matheron, 1967) and was further developed for uncertainty estimation in a reservoir 

(Delfiner and Chiles, 1977). Since then, various geostatistical algorithms, such as indicator 

simulation (Journel and Alabert, 1989), truncated Gaussian simulation (Matheron et al., 1987), 

sequential Gaussian simulation (SGSIM), direct sequential simulation (DSSIM) (Deutsch and 

Journel, 1998), and single normal equation simulation (SNESIM) have been developed and 

used for various purposes related to uncertainty estimation in the earth sciences related to, 

e.g., production data (Caers and Hoffman, 2006) and satellite data (Boucher et al., 2008). 

Like for the first applications of the probabilistically formulated inverse problems, the 

first geostatistical algorithms also relied on a covariance based formulation. This approach has 

later on been referred to as two-point statistics because it only considers pairs-wise 

correlations between the model parameters. Two-point statistical approaches are inadequate 
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when the geological prior information describes complex structures, such as bended and 

curved formations, which can only be captured if correlation between more than two model 

parameters is considered (Journel and Zhang, 2006).  

Therefore, more complex and geologically more realistic geostatistical prior models, 

based on multiple-point statistics, have been developed (Guardiano and Srivastava, 1993; 

Strebelle, 2002; Zhang et al., 2006). In this approach, the correlation between more than two 

model parameters is considered. Unlike the covariance based prior models, the prior models 

described by multiple-point based algorithms are non-parametric and based on multiple-point 

statistics obtained from a so-called training image (Wang, 1996). The training image is a 

conceptual image of the subsurface, potentially provided by a geologist who has some prior 

knowledge about the subsurface. 

Several pixel-based geostatistical sample algorithms that can be used to generate 

multiple realizations1 that, to some degree, honor the multiple-point statistics from a training 

image, have been developed. SNESIM (Stebelle, 2002) was the first example of a 

computationally fast implementation of a multiple-point based sequential simulation 

algorithm that was based on the original idea by Guardiano and Srivastava (1993). Other 

examples of such geostatistical algorithms are HOSIM (Mustapha and Dimitrakopoulos, 2010), 

The Direct Sampling Method (Mariethoz, 2010b), and DISTPAT (Honarkhah, 2011). Some 

multiple-point based sampling algorithms use graphic-based approaches where the patterns 

are patched together. Examples of such algorithms are SIMPAT (Arpat, 2005; Arpat and Caers, 

2007), CCSIM (Tahmasebi, 2012), and Filtersim (Zhang, 2006; Wu et al., 2007). 

 

 

 

 

 

 

 

 

1 Having defined a probability distribution over a set of model parameters, a realization refers to a 
realization of these model parameters from this distribution.  A set of multiple realizations of the model 
parameters constitute a representative sample from this probability distribution.  
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2 Bridging the gap between geostatistics and probabilistic 

inverse problem theory 

Geostatistical models are useful tools for quantifying geological information in a probabilistic 

manner. This provides the opportunity to use prior information described by such models in 

the probabilistically formulated inverse problem. Informative prior information typically 

implies a high degree of spatial autocorrelation among the model parameters, which is related 

to the expectations about the geological structures in the subsurface (Remy et al., 2009).  

Prior information may serve the inverse problem in two ways (Barnes et al., 1996):  

1) It provides geological prior information about the subsurface properties to be inverted 

for, which leads to more realistic solutions.  

2) It reduces the effective dimension of the inverse problem, which makes it 

computationally easier to solve, in particularly when using a Monte Carlo strategy for 

sampling the posterior distribution (Hansen et al., 2009). 

Moreover, incorporation of more information into the problem, either in form of more 

observations, less uncertain observations, or informative prior information, leads to less 

uncertainty in the solutions (i.e., less variation in a sample from the posterior distribution). 

 

2.1 Gradual deformation and probability perturbation method 

The gradual deformation method (GDM) is used to gradually move from one realization of a 

multi-Gaussian (prior) distribution to another realization (Hu, 2000; Hu, 2002). Le Ravalec-

Dupin and Noetinger (2002) used this method to perturb the Gaussian prior model until a set 

of calculated production data matched a set of observed data. In this way, they found a set of 

model parameters that jointly honored (i.e., was a realization from) the Gaussian prior model 

and the observed data. 

Another example of a prior perturbation strategy that is based on multiple-point statistics 

is the probability perturbation method (PPM) (Caers and Hoffman, 2006). This method uses 

the model (Journel, 2002) to obtain perturbations between two realizations from a 

multiple-point based sampling algorithm. This method has been used to optimize for a set of 
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model parameters that jointly honor the multiple-point statistics from a training image and a 

production data set (Caers, 2003; Hoffman and Caers, 2004).  

The essential part of both GDM and PPM is the possibility of performing a controllable 

degree of perturbation (i.e., step-length) between two successive realizations from the prior 

model. This perturbation strategy is used to design a stochastic optimization procedure where 

the forward (e.g., flow) simulator is evaluated for each prior realization. This procedure 

continues in an iterative way until a satisfying data fit is obtained.  

In order to make this optimization procedure efficient, an appropriate perturbation (i.e., 

step-length) between the individual prior realizations has to be chosen. If the step-length is 

too small, too many forward simulations have to be evaluated and the algorithm will perform 

very inefficient. A too large step-length may result in a lot of iterations that do not lead to an 

improved data fit. 

The applications of the GDM and PPM are some of the first attempts of combining 

geostatistically based prior information with inverse problems.  

 

2.2 Lack of consistency  

A set of model parameters that are optimized using for example GDM or PPM will somehow 

honor both the prior model and the observed data. However, such a set of model parameters 

will not have maximum posterior probability (as it is formulated in equation 4), but instead be 

a realization of the prior model with highest possible likelihood.  

Caers and Hoffmann (2006) and Suzuki and Caers (2008) suggest running multiple 

optimizations with different initial guesses using these methods in order to obtain a sample 

from the posterior distribution. However, even though multiple realizations obtained in this 

way will honor both the prior statistics and the observed data, they will not be consistent with 

the posterior distribution (i.e., not be distributed according to the posterior distribution).  

Mariethoz et al. (2010a) formulate, in a probabilistic way, an inverse problem with prior 

information based on multiple-point statistics described by a geostatistical algorithm. They 

suggest using the extended Metropolis algorithm for optimization for high posterior 

probability with respect to the model parameters by only accepting improvements in the 

likelihood values. However, like in the case of GDM and PPM, this strategy will not search 

toward maximum posterior solutions, but instead prior realizations with maximum likelihood.  
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Moreover, Mariethoz et al. (2010a) suggested approximating a sample from the posterior 

distribution by running multiple optimizations using their extended Metropolis approach. A 

somehow optimized set of model parameters that are also a realization of the prior 

distribution is used as an input prior realization for the rejection sampler. The realizations 

accepted in this process are considered as realizations from the posterior distribution. 

However, as it is also noticed by the authors, this strategy only leads to an approximation to 

the posterior sample because the input “prior realizations” that are evaluated by the rejection 

sampler are not realizations from the data independent prior distribution, but influenced by 

the observed data. A pure application of the rejection sampler, in which the prior realizations 

were not dependent on the data, would have been computationally impossible (Hansen et al., 

2013 (paper A14)).   

 

2.3 Bridging the gap in a consistent way 

A consistent combination of probabilistic inverse problem theory and geostatistics for 

covariance based linear inverse problems was first described by Hansen et al. (2006). This 

formulation relies on the probabilistic formulation as defined in equation 4. In this work, both 

a sample from and an optimum of the posterior distribution can be obtained (Hansen et al., 

2008b). See Cordua et al. (2009) for an example of using this inversion strategy to sample the 

posterior distribution for a linearized cross-borehole tomographic inverse problem 

conditioned by travel time data.  

Many geophysical inverse problems deal with a non-linear forward relation (equation 3), 

which was also the case for the application of the GDM and PPM (Le Ravalec-Dupin and 

Noetinger, 2002; Hoffman and Caers, 2004). Moreover, as already discussed, it is of great 

interest to use complex non-Gaussian prior models that are capable of describing geologically 

more realistic prior information.   

Hansen et al. (2008a) were the first to suggest a way of obtaining realizations from the 

posterior distribution of non-linear probabilistically formulated inverse problems with both 

Gaussian and non-Gaussian prior information. In their work, they suggest to use the extended 

Metropolis algorithm with prior information defined by a geostatistical algorithm. The 

geostatistical algorithm serves a “black box” prior sampler (Mosegaard, 2006) and the 

Metropolis rule is used to decide if a proposed realization is rejected or accepted as a 

realization from the posterior distribution. The examples demonstrated by Hansen et al. 

(2008a) involved both prior models based on two-point and multiple-point statistics. 
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2.4 Gradual perturbation strategies 

The essential part of the inversion strategies based on GDM and PPM is the perturbation 

strategies provided by these methods. Likewise, a crucial part of using the extended 

Metropolis algorithm is to find a way of gradually perturbing the proposed prior realizations in 

order to make the algorithm perform in an efficient way. The geostatistical prior models used 

in the work by Hansen et al. (2008a) were based on sequential simulation that was able to 

perform conditional sequential simulation. Therefore, Hansen et al. (2008a) suggested 

perturbing the realizations by randomly choosing a subset of the model parameters and re-

simulating these model parameters conditionally to the rest of the model parameters. In this 

way, a new realization that is a perturbation of the previous realization is obtained. The step-

length of the perturbation is then controlled by the size of the subset of model parameters 

that is re-simulated.  

A similar re-simulation strategy has later on been suggested by Irving and Singha (2010) 

and Mariethoz (2010a). In both of these cases, this perturbation strategy is used in 

conjunction with the extended Metropolis algorithm for inversion of tracer data and hydraulic 

heads.  

Cordua et al. (2010 (paper A12)) demonstrates an example of using the GDM as the 

perturbation strategy for the extended Metropolis algorithm for a probabilistic formulation of 

an amplitude vs. off-set reflection seismic inverse problem. An application of PPM as the prior 

perturbation strategy for the extended Metropolis algorithm might be straight forward, but 

has not yet been presented. Hansen et al. (2013 (paper A14)) provide a software package with 

a variety of different prior models that can be used with different perturbation strategies in 

conjunction with the extended Metropolis algorithm.  

In order for a geostatistical sampling algorithm to serve as a valid way of formulating 

prior information for a probabilistic inverse problem, the output realizations from the 

algorithm have to be realizations from a certain (not necessarily known) target distribution. 

One approximate way of verifying if the sampling algorithm converges to and continues 

sampling a certain target distribution, is to produce a large set of prior realizations and verify 

(either visually or quantitatively) if the statistical properties (variance, mean, covariance, 

multiple-point statistics) are preserved in the individual realizations.  
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2.5 Sequential Gibbs sampling 

A joint probability distribution can be expressed as a product of conditional probability 

distributions by using the product rule  

1 1 1 1 1

1 1 1 2 1 2 1

1 1 2 1 1
3

( , ..., ) ( | , ..., ) ( , ..., )
( | , ..., ) ( | , ..., ) ( , ..., )

( | , ..., ) ... ( | ) ( )

N N N N

N N N N N

N

k k
k

p m m p m m m p m m
p m m m p m m m p m m

m m m p m m p m

.  (6) 

This equation is the backbone of sequential simulation. Using this formulation, a 

realization of the joint probability distribution can be obtained by sequentially simulating one 

model parameter at a time conditional to the previously simulated model parameters (see e.g. 

Gómez-Hernández and Cassiraga, 2000). 

Having obtained a realization of the joint probability distribution, the Gibbs sampler 

(Geman and Geman, 1984) can be used to perturb this realization into a new realization by 

simulating a value from  

1 2 1 1( | , , ..., , , ..., )i i i Np m m m m m m        (7) 

for one model parameter at a time. However, as already discussed, it is important to be able 

to control the size of such a perturbation if it has to be used as a prior sampler for an inverse 

problem. Moreover, perturbing one model parameter at a time may be a very inefficient 

perturbation strategy.  

Hansen et al. (2012 (paper A2)) suggest a Gibbs sampler that in each step simulates 

values from several model parameters by obtaining a realization of a subset U of model 

parameters i Um  from the distribution ( | )i U i Up m m  conditional to the rest of the model 

parameters not belonging to this subset i Um . A realization of this condition distribution can 

be obtained through sequential simulation using equation 6. This sampling strategy that 

combines the Gibbs sampler with sequential simulation is named sequential Gibbs sampling 

(Hansen et al., 2012 (paper A2)). 

Figure 1 below shows an example where the sequential Gibbs sampler is applied. The 

conditional probabilities used in this example are based on multiple-point statistics obtained 

from the training image seen in figure 2. A gradual perturbation, as a result of simulating the 

model parameters related to the gray area, using the sequential Gibbs sampler, is seen 

between the individual realizations.  
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Figure 1. An example of applying the sequential Gibbs sampler. The dark gray field covers the 

model parameters that are going to be re-simulated, which is seen by the new structures that 

occur at this location in the next realization (from Hansen et al., 2012 (paper A2)).  

 

 

Figure 2. Training image used to obtain multiple-point statistics (from Hansen et al., 2012 

(paper A2)). 

 

2.5.1 Detailed balance, aperiodicity, and irreducibility 

In order to ensure that the sequential Gibbs sampler will continue sampling the same joint 

probability distribution over time, the sampling algorithm has to satisfy detailed balance, 

namely that the probability of a transition from one realization of model parameters im  to 
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another realization jm ( i jm m ) is the same as the probability of a transition j im m

(Mosegaard and Sambridge, 2002). This will be the case if the number of model parameters 

that are re-simulated at iteration i  is the same as the number of model parameters that are 

re-simulated in iteration j (see Hansen et al., 2012 (paper A2)). Moreover, the transition 

probabilities have to remain constant.  

Aperiodicity is satisfied if the trivial transition property j jm m  of staying in the same 

realization is always non-zero. Irreducibility is satisfied if it is always possible to move from 

any realization jm  to any other realization im  during a sufficient number of re-simulations. If 

the transition probability ( ) ( | )j i i jp pm m m m  of moving between two realizations 

satisfies aperiodicity and irreducibility, in addition to detailed balance, then the joint 

distribution in equation 6 will be the only equilibrium distribution and the algorithm will 

converge towards this distribution independent of the starting realization (Mosegaard and 

Sambridge, 2002).  
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3 Sampling the solution to inverse problems with geostatistical 

prior models 

Having defined a probabilistic formulation to the inverse problem, a suitable geostatistical 

prior model, and a perturbation strategy for the prior model, it is now possible to set up an 

algorithm that samples the posterior distribution of the inverse problem. 

  

3.1 Combining the extended Metropolis algorithm with the sequential 

Gibbs sampler  

Consider a probabilistic inverse problem formulated using equation 4. Moreover, consider 

that the prior information is described by a geostatistical sampling algorithm that is based on 

sequential simulation as defined in equation 6. The geostatistical prior model is assumed to 

sample from an unknown prior probability distribution ( )M m . The posterior distribution of 

such an inverse problem can be sampled by the extended Metropolis algorithm used in 

conjunction with the sequential Gibbs sampler. This algorithm has the following steps: 

1. A starting model is obtained by simulating a full unconditional realization startm  from 

( )M m   using the geostatistically defined prior model (i.e., an outcome realization from the 

sampling algorithm). This set of model parameters is becomes a current set of model 

parameters start currentm m .  

2. A subset U of the model parameters i Um  from currentm  are re-simulated by drawing a 

realization from the distribution ( | )M i U i Um m . This leads to a new (proposed) realization, 

which is also a realization from ( )M m .   

3. The proposed model is accepted with the probability 

( )
min 1,

( )
propose

accept
current

L
P

L
m
m

,       (8) 

where ( )proposeL m  and ( )currentL m  are evaluations of the likelihood function for the 

proposed and current sets of model parameters, respectively. If accepted, the proposed set of 

model parameters becomes the current model current proposem m  and is a realization from 

the posterior distribution. If not accepted, the proposed set of model parameters is discarded 
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and the current model is repeated and counts again as a realization from posterior 

distribution.  

4. Step 2 and 3 are repeated in order to obtain multiple realizations that constitute a sample 

from the posterior distribution. 

Note that the size of the subset of model parameters U controls the step-length of the 

sequential Gibbs sampler, which controls the overall computational performance of this 

algorithm. Using too small step-lengths lead to too many computationally expensive forward 

calculations (i.e., evaluations of the likelihood function). On the other hand, too large step-

lengths lead to too many rejections (i.e., wasted forward calculations).  

 

3.2 Sampling the solution to large scale non-linear inverse problems 

Since his seminal work on the full-waveform inverse problem (Tarantola, 1984, 1986, 1988), 

Albert Tarantola had the vision that geologically realistic prior information for inversion could 

be learned through a training image of the subsurface (Mosegaard, 2011). Ideally, such a 

problem should be solved in such a way that not only a single set of model parameters with 

(near) maximum posterior probability is obtained, but a full characterization (sample) of the 

posterior distribution should be provided.  

In principle, the extended Metropolis algorithm can be used for this. However, if only 

very little prior information, described by, e.g., an uncorrelated Gaussian distribution, exist, 

even the best choice of step-length used by the sequential Gibbs sampler will lead to a very 

inefficient sampling (Hansen et al., 2009). For high-dimensional problems it might even lead to 

a computationally prohibited inversion, because the probability that the sequential Gibbs 

sampler will suggest a set of model parameters that is accepted by the Metropolis rule in 

equation (8) becomes extremely low. In order to compensate for this, a very small step-length 

can be used, which further contribute to the inefficiency of the sampling.   

The effective degree of freedom of the inverse problem is considerably reduced when 

informative prior information about the model parameters exists. Hansen et al. (2009) 

showed an example where multiple-point based prior information seemed to be superior with 

regards to reducing the effective degree of freedom as compared to prior models based on 

two-point statistics. Such a reduction of the degree of freedom improves the efficiency of the 

sampling algorithm, which in turn reduces the computational cost of sampling the solution to 

the inverse problem (Hansen et al., 2009). 
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Cordua et al. (2012 (paper A4)) demonstrate an example of sampling the posterior 

distribution of a large scale non-linear tomographic full waveform inverse problem with prior 

information based on multiple-point statistics. In this study, the prior information was 

described by multiple-point statistics obtained from a training image. For this purpose, the 

SNESIM algorithm was used as the geostatistical based prior model. The algorithm presented 

above, that combines the extended Metropolis algorithm with the sequential Gibbs sampler, 

was used to sample the posterior distribution of this problem. 

The results demonstrate that a sample from the posterior distribution for a high-

dimensional (6240 model parameters) full waveform inverse problem with very informative 

prior information could be obtained in this way. Within reasonable time (45 days on a 

standard desktop computer with an Intel Core i7 processor) the authors were able to obtain 

45 independent realizations from the posterior distribution. Approximately three of these 

days were spent on the burn-in period, which might have been reduced using a more 

appropriate optimization procedure during this phase of the algorithm. 

In this example, a Gaussian distributed noise component is assumed. The likelihood 

function takes on the form 

11( ) exp ( ) ( )
2

obs obs
DL c g gm m d C m d ,    (9) 

where obsd is a vector of observed data, DC  is the covariance matrix that describes the 

(co)variances of the data uncertainties, and c is a normalization constant. 

The figures 3 and 4 show independent realizations from the prior and posterior 

distributions, respectively. The multiple-point statistics that is used for the prior information is 

obtained from the training image seen in figure 2. A comparison between the prior 

realizations and the posterior realizations reveals the additional information provided by the 

observed data (and their uncertainties) as compared to the prior information. The synthetic 

observed data that are used for this inversion have been obtained from the reference model 

seen in figure 5. A comparison between figure 3, 4, and 5 reveals that the prior information 

provides the general structural information about the subsurface, and that the observed data 

provide localized information about where these structures are actually located at this specific 

site. Moreover, due to the uncertainty related to the observed data, the structures in the 

posterior realizations are fluctuating around the reference structures seen in figure 5. In this 

way, an uncertainty estimate (i.e., resolution analysis (Mosegaard, 1998)) of the solution to 

the inverse problem is obtained. The results do not show any significantly different posterior 
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realizations, which indicate that multiple considerably different scenarios do not exist for this 

problem. Alternatively, the algorithm may not yet have located such scenarios. 

 

 

Figure 3. Eight statistically independent realizations from the prior distribution (from Cordua 

et al., 2012 (paper A4)). 

 

 

Figure 4. Eight statistically independent realizations from the posterior distribution (from 

Cordua et al., 2012 (paper A4)). 

 

 

Figure 5. Synthetic reference model. Green asterisks show transmitter positions and the red 

dots show receiver positions (from Cordua et al., 2012 (paper A4)). 

 

In order to obtain an efficient sampling of the posterior probability distribution, an 

appropriate degree of perturbation between the prior realizations has to be chosen. Cordua 

et al. (2012 (paper A4)) suggest a way to determine the degree of perturbation used by the 
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sequential Gibbs sampler in order to obtain a certain accept probability of the extended 

Metropolis algorithm.  

A sample from the posterior distribution obtained using the extended Metropolis 

algorithm consists of a set of dependent realizations of the model parameters. All of these 

realizations can be used for subsequent statistical analysis, such as calculating the mean, 

variance, or the probability that a certain lithological unit is connected between two points in 

the subsurface. However, each of these realizations does not contribute with independent 

information to the statistics. Therefore, the number of statistically independent realizations in 

the sample should be calculated in order to determine the effective size of the sample. For 

example, the statistics of 1000 realizations is not worth much if only two statistically 

independent realizations can be obtained from this sample. In order to calculate this number, 

autocorrelation between the realizations from the posterior sample can be calculated. In this 

way, the separation between the posterior realizations that is necessary in order to guarantee 

that these realizations are statistically independent can be determined (Cordua et al., 2012 

(paper A4)). 

Figure 6 shows the autocorrelation between a realization from the posterior distribution 

and its correlation to the next 150000 sets of model parameters obtained from the posterior 

distribution. These models are not statistically independent because any proposed model in 

the Metropolis algorithm is a perturbation of a current model or when a proposed model is 

rejected the current model counts again. Therefore, the autocorrelation analysis of the 

posterior sample shows some correlation length between successive models. In the example 

shown in figure 6, statistical independence is obtained after approximately 5800 iterations. 

This point is approximated as the point at which the autocorrelation curve intercepts the 

average level of the correlation curve after it is converged to a constant level (marked my a 

dotted line in figure 6). 
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Figure 6. Autocorrelation analysis of the posterior sample, from the full waveform inverse 

problem, used to determine the number of iterations needed to obtain statistically 

independent realizations (from Cordua et al., 2012 (paper A4)). 

 

3.3 Algorithm-based prior information 

A sample obtained with the extended Metropolis algorithm that uses an algorithm-based prior 

model (potentially sampled by the sequential Gibbs sampler) has been proven, by Mosegaard 

and Tarantola (1995) to be consistent with a posterior distribution that is defined as a product 

between the likelihood function and the unknown prior distribution that is sampled by a  prior 

sampling algorithm.   

In the above described example, the prior information is provided by a “black box” 

geostatistical sampling algorithm, which means that we do not know the prior distribution 

that is actually sampled by this algorithm. Apart for the input training image (in the case of an 

algorithm based on multiple-point statistics), such algorithms typically have several input 

parameters that all influence the output of the algorithm. Therefore, in order to understand 

the prior information described by a “black box” algorithm, the user of such algorithms should 

always start out by running the prior sampler with the desired input parameters and/or 

training image and display these output realizations. For example, this could be done by 

displaying sequence of prior realizations (i.e., a prior movie) as seen in figure 3. The relative 

occurrences of different features in the prior movie will reflect the weighting of these features 

in the prior information. This procedure is necessary because the realizations reflect the prior 

information about the subsurface, which should reflect the actually prior beliefs about the 

subsurface. The choice of prior information has enormous impact on the posterior distribution 
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(i.e., the solution to the inverse problem) and should therefore be chosen wisely and carefully. 

Even if a mathematical formulation that describe the prior probability distribution exists, the 

movie strategy should still be applied because it might not be easy to translate the form and 

parameters of such a formulation into the actual prior information described by such a 

probability distribution.  

As soon as the user of the algorithm agrees that the displayed movie of realizations 

actually reflects his/hers prior expectations, this prior sampler can be used for the inverse 

problem and the prior inspection does not have to be performed for inversion of other data if 

the prior expectations remain the same. Moreover, it should be noted that the choice of a 

certain perturbation strategy and step-length may influence the outcome of the algorithm-

based prior information. Therefore, the realizations used for the movie to be inspected should 

be based on the desired perturbation strategy and step-length that will be used for the 

inversion. 

If no closed-form mathematical expression exists for the algorithm-based formulation of 

the prior information, only sampling of the posterior distribution (e.g., through the extended 

Metropolis algorithm (see Mosegaard and Tarantola, 1995; Mosegaard, 2006)) can be 

obtained. No optimization for a set of model parameters with maximum posterior probability 

can be achieved, because in order to do this an evaluation of the posterior probability of any 

set of model parameters is necessary. This demands that a mathematical expression for both 

the likelihood function and the prior distribution can be established.  

Having obtained these expressions the optimization problem to be solved takes on the 

following form 

arg max ( ) arg min log ( ) log ( )M M L
m m

m m m ,   (10) 

which is an optimization of equation 4 with respect to the model parameters.  

 

3.4 Improving the pattern reproduction 

State-of-the-art geostatistical sampling algorithms strive at producing output realizations with 

spatial correlations between the model parameters that reflect geological realism. Most of 

these algorithms use a training image as input and try to produce output realizations that 

resemble the patterns seen in the input training image. However, this task has proven to be 

challenging. 
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Different sampling strategies, such as the direct simulation method (Mariethoz, 2010b) or 

the cross-correlation simulation strategy (Thamasebi, 2012), have succeeded in obtaining a 

close match between the input and output patterns of the sampling algorithms.  

Cordua et al. (2012 (paper 4)) observed that the patterns seen in the output realizations 

from the algorithm-based prior model SNESIM do not resemble the patterns seen in the input 

training image. In particular, when the SNESIM algorithm is used in conjunction with 

sequential Gibbs sampling, this resemblance was considerably reduced.  

In the particular case where the user wishes that the prior information described by the 

algorithm has high resemblance with patterns seen in the training image, the above 

observations are not satisfying. It should, however, be noted that this might not always be the 

desire. All kinds of outputs from such an algorithm-based prior model are satisfying if the 

output movie of realizations reflects the prior beliefs of the user.  

The frequency matching method (Lange et al., 2011 (paper A8)) is a way of quantifying 

the degree of match between the training image patterns and the patterns in the output 

realizations. This quantification provides a means of controlling to what degree the patterns in 

output realizations resembles the patterns seen in the training image. The frequency 

matching method defines the degree of match between the pattern frequency distribution of 

a set of model parameters m  (related to the pixels in an image of the subsurface) and the 

training image TI . This measure is described by a probability distribution ( , )FMM TIm  

where the best achievable match has the highest probability. ( , )FMM TIm  can be defined 

using different formulations. Examples are the Chi-square dissimilarity measure (Lange et al., 

2011 (paper A8)) or the Dirichlet probability distribution (Cordua et al., submitted1 (paper 

A6)). 

Using the Chi-square dissimilarity measure, the frequency matching based prior 

probability distribution is given as 

2 2( ) ( ) ( )
( )

( ) ( )

TI TI
i i i i

FMM TI
i I i Ii i

m m m
m

m m
,    (11) 

where I  is the number of possible pattern combinations given a template and the number of 

categories used in the training image. TI  is the pattern frequency distribution obtained from 

the training image and is the pattern frequency distribution obtained from a set of model 
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parameters m . i  and TI
i  denote the expected number of counts of the i’th pattern 

obtained from m  and the training image, respectively. These components are defined as 

( )( )
TI

i i
i Z

Z TI

n
n n
mm         (12) 

( )( )
TI

TI i i
i TI

Z TI

n
n n
mm ,        (13) 

where Zn  and TIn  are the total number of counts in the pattern frequency distribution 

related to m  and the training image, respectively. 

 Using instead the Dirichlet distribution, the frequency matching based prior distribution 

is given as 

prior

1 prior

( )
!( )

( )!,..., ( )!

iTI
i iZ

FMM
i II TI

n
n n

m
m

m m
    (14) 

where prior
i  is the number of counts in i’th bin of the prior frequency distribution, which 

represents the prior expectation of the pattern frequency distribution before the training 

image histogram is observed. For high values of prior
i  a mismatch between the frequency 

distributions of a set of model parameters m  and the training image has higher probability 

than for lower values of prior
i . For practical implementations of these formulations (equation 

11 and 14), see Cordua et al. (submitted1 (paper A6)) and Lange et al. (2012 (paper A9)).   

An algorithm that combines the frequency matching method, the sequential Gibbs 

sampler, and the extended Metropolis algorithm can be used to sample a definition of the 

prior probability distribution that combines the algorithm-based prior information ( )M m  

with a prior probability distribution defined by the frequency matching method  

( , )FMM TIm . The combined prior probability distribution that is sampled by this algorithm is 

formulated as: 

( ) ( , ) ( )combined FMM MTIm m m ,      (15) 

Using this formulation of the prior probability distribution, the degree of match between 

the input and output patterns can be controlled and potentially lead to realizations with a 

high degree of resemblance with the training image patterns (Cordua et al., submitted1 

(paper A6)). The algorithm that samples the prior model in equation 15 will be referred to as 
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the frequency matching sequential Gibbs sampler (FRESEQ sampler). This algorithm has the 

following steps:  

1. A starting model is obtained by simulating a full unconditional realization startm  from 

( )M m   using the geostatistically defined prior model (i.e., an outcome realization from the 

sampling algorithm). This set of model parameters is becomes a current set of model 

parameters start currentm m .  

2. A subset U of the model parameters i Um  from currentm  are re-simulated by drawing a 

realization from the distribution ( | )M i U i Um m . This leads to a new (proposed) realization, 

which is also a realization from ( )M m .   

3. The proposed model is accepted with the probability 

( , )
min 1,

( , )
FMM propose

accept
FMM current

TI
P

TI
m
m

,      (16) 

where ( , )FMM propose TIm  and ( , )FMM current TIm  are evaluations of the prior probability 

distribution based on the frequency matching method (see equations 11 and 14) for the 

proposed and current sets of model parameters, respectively. If accepted, the proposed set of 

model parameters becomes the current model current proposem m  and is a realization from 

the prior distribution in equation 15. If not accepted, the proposed set of model parameters is 

discarded and the current set of model parameters currentm  is repeated and counts again as a 

realization from the combined prior distribution.  

4. Step 2 and 3 are repeated in order to obtain multiple realizations which constitute a sample 

from the combined prior distribution ( ) ( , ) ( )combined FMM MTIm m m . 

The combination of the sequential Gibbs sampler, the frequency matching method, and 

the extended Metropolis algorithm leads to a prior sample strategy that, roughly speaking, 

rejects prior realizations that have an insufficient match (i.e., fit) with the multiple-point 

statistics from the training image.   

Figure 7 provides a numerical example of using the SNESIM algorithm in conjunction with 

the sequential Gibbs sampler as prior sampler. The algorithm uses multiple-point statistics 

from the training image seen in figure 2 as input. Five statistically independent output 

realizations (from ( )M m ) are seen in figure 7. An example of using the prior model sampled 
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by the FRESEQ sampler instead is seen in figure 8, which shows 5 independent realizations 

from the distribution ( , ) ( )FMM MTIm m . A comparison between the realizations in figure 7 

and figure 8 reveals that FRESEQ sampler provides realizations that have a higher degree of 

resemblance with the patterns seen in the training image in figure 2 than using the algorithm-

based prior model that do not include the frequency matching.  

 

 

Figure 7. Prior realizations obtained using the SNESIM algoritmh in conjunction with the 

sequntial Gibbs sampler (from Cordua et al., submitted1 (paper A6)).  

 

 

Figure 8. Prior realizations obtained using the FRESEQ sampler (from Cordua et al., submitted 

(paper A6)). 

 

3.4.1 Sampling of the posterior distribution using a prior model based on the 

FRESEQ sampler 

The FRESEQ sampler can be used as prior sampler for the extended Metropolis algorithm. This 

leads to an algorithm that uses the Metropolis rule twice, which is also known as using the 
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Metropolis algorithm in cascade (Mosegaard and Tarantola, 1995). However, cascaded 

Metropolis has previously only been used in relation to different data sets leading to different 

likelihood functions. Here, the cascaded Metropolis is instead used for two prior models. This 

algorithm takes the following steps: 

1. A starting model is obtained by simulating a full unconditional realization startm  from 

( )M m   using the geostatistically defined prior model (i.e., an outcome realization from a 

sampling algorithm). This set of model parameters becomes a current set of model 

parameters start currentm m .  

2. A subset U of the model parameters i Um  from currentm  are re-simulated by drawing a 

realization from the distribution ( | )M i U i Um m . This leads to a new (proposed) realization, 

which is also a realization from ( )M m .   

3. The proposed model is accepted with the probability 

( , )
min 1,

( , )
FMM propose

accept
FMM current

TI
P

TI
m
m

,      (17) 

where ( , )FMM propose TIm  and ( , )FMM current TIm  are evaluations of the frequency matching 

based prior distribution (see equations 11 and 14) for the proposed and current sets of model 

parameters, respectively. If accepted, the algorithm proceeds to the next step (step 4). If not 

accepted, the proposed set of model parameters is discarded and the algorithm jumps back to 

step 2.  

4. Accepted the proposed set of model parameters with the probability 

( )
min 1,

( )
propose

accept
current

L
P

L
m
m

,       (18) 

where ( )proposeL m  and ( )currentL m  are evaluations of the likelihood function for the 

proposed and current sets of model parameters, respectively. If accepted, the proposed set of 

model parameters becomes the current model current proposem m  and is a realization from 

the posterior distribution. If not accepted, the proposed set of model parameters is discarded 

and the current model is repeated and counts again as a realization from the posterior 

distribution. 
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5. Step 2, 3, and 4 are repeated in order to obtain multiple realizations that constitute a 

sample from the posterior distribution with a prior model defined by equation 15. 

Figure 9 shows a synthetic reference model with red curves indicating the transmitter 

and receiver geometry from where travel times are obtained from this model. Uncorrelated 

zero-mean Gaussian distributed noise is added to the synthetic data. These travel time data 

are used as observed data in a probabilistic inversion with a SNESIM based prior using 

multiple-point statistics from the training image seen in figure 2. The likelihood function that 

takes into account the Gaussian noise is given in equation 9.  

Figure 10 shows realizations from the posterior distribution of this problem, where the 

SNESIM algorithm is used in conjunction with the sequential Gibbs sampler to describe the 

prior information. Figure 11 shows realizations from the posterior distribution, where the 

combined FRESEQ prior sampler is used to describe the prior information. Hence, the prior 

information used for the posterior realizations in figure 10 and 11 is seen in the prior movies 

in figures 7 and 8. A comparison between figure 10 and 11 demonstrate that the variability 

between the individual realizations is reduced when using combined prior model. This 

confirms that the prior information described by the FRESEQ sampler introduces more 

information into the posterior distribution than compared to a sample algorithm not based on 

frequency matching, which leads to an improved resolution (i.e., reduced posterior variability 

(Mosegaard, 1998)).   

 

 

Figure 9. Reference model used to obtain a synthetic data set (from Cordua et al., submitted1 

(paper A6)). 
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Figure 10. Realizations from the posterior distribution obtained using the SNESIM algorithm in 

conjunction with the sequential Gibbs sampler as prior sampler (from Cordua et al., 

submitted1 (paper A6)). 

 

 

Figure 11. Realizations from the posterior distribution obtained using the FRESEQ sampler as 

prior sampler (from Cordua et al., submitted1 (paper A6)).  
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4 From sample models to prior probability distributions  

In the previous examples, algorithm-based prior information has been considered. As already 

discussed, such algorithms produce multiple realizations (i.e., a sample) from some unknown 

prior probability distribution ( )M m  or an approximation to a known distribution is sampled. 

Examples of such algorithms are SNESIM and SGSIM using a neighborhood.  

As discussed above, in order to understand the prior information defined by such 

algorithms, the user has to inspect a movie of output realizations. However, if we wish to be 

able to optimize for a set of model parameters with (near) maximum posterior probability, we 

also need a mathematical expression such that the prior probability of a set of model 

parameters can be evaluated. Moreover, a closed form mathematical expression allows us to 

quantify the information content of our prior information, which can be useful in order to 

quantify the relative influence and information content of different prior models on the 

posterior distribution (Cordua et al., submitted2 (paper A7)). 

In a probabilistic formulation of the inverse problem, the prior information is defined by 

a prior probability distribution ( )M m . This definition of the prior information is typically 

based on some observations in form of old data sets, previous inversion results, expert 

knowledge in form of a training image, or borehole information. A set of such observations 

can be considered as a sample from the prior probability distribution. Therefore, we choose to 

refer to this type of observations as a sample model.  

An example of such a sample model is a training image as seen in figure 12A. In this case, 

the problem is to establish a (unknown) prior probability distribution that is consistent with 

the statistics from the training image, such that the training image statistics is a representative 

outcome from this prior distribution.  

One way of attacking this problem is to assume that the unknown prior probability 

distribution represents a stationary process. This means that the prior probability distribution 

over a subset of model parameters that are related to a given configuration of pixels 

(hereafter denoted a “template”) is invariant under a spatial translation of the template. 

Statistics from the training image is obtained by scanning the training with the template (see, 

e.g., figure 12B) and the number of different patterns in the training image with this pixel 

configuration is counted. These counts are stored as a high-dimensional histogram (with 

dimensions equal to the number of pixels in the template). The concept of extracting a 

pattern histogram (or frequency distribution) based on two- or multiple-point statistics from a 

 
 

41



training image is illustrated in figure 12. Figure 12C shows the non-zero pattern probabilities 

extracted from the training image in figure 12A using the template in figure 12B.  

 

 

Figure 12. A) Example of a training image. B) Template that defines the pixel configuration 

used to extract the patterns from the training image. C) Non-zero multiple-point probabilities 

(patterns that are not shown in this list have zero probability in the training image) (from 

Cordua et al., submitted2 (paper A7)). 

 

 Due to the assumption of stationarity and the assumption that the training image 

statistics represents a sample from the unknown joint probability distribution, the multiple-

point histogram obtained from the training image is an approximation to all marginal 

probability distributions defined over model parameters in ( )M m  related to the template 

configuration. In other words, these marginal probability distributions (over model 

parameters related to pixels with a relative configuration defined by the template) will all be 

the same (due to the assumption of stationarity) and the multiple-point histogram will be an 

approximation to the marginal probability distribution. That this only leads to an 

approximation to the marginal distribution is because of the finite size of the sample obtained 

through the training image. Only an infinitely large sample contains the full information about 

a probability distribution.   
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Assume that the pixel values are discrete. Denote by the vector  jointp  the unknown 

(joint) prior probability distribution, and assume that the vector p  is the known marginal 

probability distribution obtained from the training image. Since the marginal probability 

distributions are obtained simply by summations over the probabilities in the joint probability 

distribution, the problem of determining a joint probability based on a set of its known 

marginal distributions can be formulated as (Cordua et al., submitted2 (paper A7)) 

jointAp p ,         (19) 

where the matrix A  describes the summations in the joint distribution that leads to the 

marginal distributions. Moreover, this system also includes an additional equation that 

describes that the probabilities of the joint probability distribution have to sum up to one. This 

problem turns out to be underdetermined (Cordua et al., submitted2 (paper A7)) and 

additional constraints have to be added in order to reduce the degree of freedom in order to 

end up with a unique solution to this problem.  

An example of adding additional assumptions with the purpose of uniquely determining 

the joint probability distribution is seen when the joint probability distribution is assumed to 

be Gaussian. In that case, all two-dimensional marginal distributions from the Gaussian 

distribution completely describe the joint Gaussian distribution. All the two-dimensional 

marginal distributions are determined by means, variances, and covariances, which can be 

obtained through semivariogram analysis (i.e., a pattern histogram based on two-point 

statistics) of a training image. Hence, in this example the Gaussian assumption provides the 

additional necessary constraint in order to determine a unique joint probability distribution 

that is consistent with a set of known two-dimensional marginal probability distribution 

obtained from training image (two-point) statistics (Cordua et al., submitted2 (paper A7)).  

The problem of establishing a probability distribution based on a set of known marginal 

probability distributions does not only appear in relation to the prior model. A similar 

problem, which we typically do not pay much attention to, comes up when we establish the 

data uncertainty model ( )D d , which is further used to establish the likelihood function (see 

equation 4 and 9). In this case, we have a set of observed data and some uncertainty related 

to these observations described by variances and covariances (even though the covariances 

are often assumed zero). In order to establish a joint probability distribution (i.e., an 

uncertainty model) that is consistent with these observations and (co)variances, the 

distribution is assumed to be Gaussian (because a noise process is typically Gaussian 
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distributed (e.g., Mosegaard et al. (1997) and Voss et al. (2006)). All two-dimensional marginal 

probability distributions from the joint Gaussian probability distribution can be determined 

based on the observations, which represent the mean values of these marginal distributions, 

and the (co)variances. Hence, in this case the additional constraints needed in order to 

uniquely determine a joint probability distribution that is consistent with the observations and 

(co)variances is the Gaussian assumption. With this assumption, all two-dimensional marginal 

distribution from the joint Gaussian distribution can be determined based on a set of means 

and (co)variances.  

Examples of additional constraints (not necessarily mutually exclusive) that are used in 

order to establish a unique joint (prior) probability distribution are (cf. Cordua et al., 

submitted2 (paper A7)):  1) Assuming the joint distribution to be represented by a parametric 

distribution, such as a Gaussian, 2) assuming stationarity, 3) assuming Markov properties, and 

4) assuming maximum entropy. 

From the above discussion, it is seen that the problem of establishing a prior probability 

distribution in case of using two- or multiple-point statistics is highly related. In fact, prior 

probability distributions based on multiple-point statistics, where correlations between more 

than two parameters can be considered, are basically extensions from the mathematically 

more convenient covariance based formulation where only pair-wise correlations are 

considered. 

 

4.1 Analysis of geostatistical sampling algorithms 

Geostatistical sampling algorithms based on sequential simulation typically use a limited set of 

marginal probability distributions (related to neighborhood or template) obtained either 

directly from a training image (as depicted in figure 12) or indirectly through a Gaussian 

assumption with means and (co)variances obtained from a sample model. From these inputs, 

such sampling algorithms are able to simulate new realizations that are, to some (often 

unknown) degree, consistent with these marginal distributions (Strebelle, 2002; Mariethoz, 

2010b; Deutsch and Journel, 1998). 

A general formulation of the joint probability distribution that is sampled by such 

algorithms can be formulated as (e.g., Whittaker, 1990)  

1

( ) ( | ( ))
N

M i i
i

p m pa mm        (20) 
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where ( )ipa m  are the so-called parents to im  (using a term from the theory of directed 

graphs), which includes all previously simulated model parameters that im  depends on 

(Cordua et al., submitted2 (paper A7)). N is the number of model parameters. The marginal 

probability distributions used to obtain the conditional probabilities p  used in equation 20 

are either obtained directly or indirectly from a sample model as described above (i.e., a non-

parametric or parametric distribution). If im  always depends on all other model parameters, 

equation 20 is equal to the formulation used for sequential simulation in equation 6.  

The joint probability distribution in equation 20 is also known as a Markov mesh model if 

the simulation sequence of the model parameters is related to a unilateral path in the image 

(Kjønsberg et al., 2012; Daly, 2004).  

 The formulation in equation 20 depends on the simulation sequence (i.e., the order by 

which the model parameters are simulated). That means that the formulation of the joint 

probability distribution occurs every time a new simulation sequence is used (Cordua et al., 

submitted2 (paper A7)). This is not the case for the general formulation of sequential 

simulation in equation 6 because in this formulation a dependency between all model 

parameters exists. Moreover, it turns out that the joint probability distribution formulated 

using equation 20 is not consistent with the known marginal probability distribution obtained 

from the sample model (Cordua et al., submitted2 (paper A7)). This is not satisfactory with 

regard to obtaining a consistent prior model. 

The joint probability distribution given in equation 20 (based on some set of marginal 

probability distributions and a certain choice of simulation sequence) is uniquely determined 

due to the (additional) assumption of Markov properties (i.e., assuming that im  is only 

dependent on model parameters related to pixels that are within a certain neighborhood 

around the pixel related to im ). However, due to the missing consistency with the known 

marginal probability distributions this joint probability distribution does not necessarily satisfy 

equation 19.  

The theory of Markov random fields (Castillo et al., 1997) provides a way of describing 

and sampling a Markovian joint probability distribution that is invariant with respect to the 

simulation sequence and consistent with the known marginal probabilities. In this 

formulation, the model parameters from the known marginal probability distributions are 

associated with nodes in a clique. A clique has the same configuration as the template used to 

obtain the statistics from the training image. The set of cliques, related to all the known 
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marginal distributions, will be overlapping (due to the equal overlapping marginal 

distributions in the stationary joint probability distribution) and form a chain of cliques (see 

figure 13 for an example). The joint probability distribution defined over such a chain of 

cliques is given as (Castillo et al., 1997) 

1

( ) ( | )
L

M k k
k

p r sm ,        (21) 

where  is a vector of model parameters associated with the k’th residual in the chain of 

cliques and  is a vector of model parameters related to the k’th separator in the chain of 

cliques (see figure 13 for an example). L is the total number of cliques in the chain of cliques. A 

simulation of this probability distribution can be done by a simulation that starts in a random 

clique and proceeds along the chain of cliques (possibly in more than one direction) such that 

one clique is simulated at a time (Cordua et al., submitted2 (paper A7)). The model 

parameters within the individual cliques can be simulated using sequential simulation 

(equation 6). The numbers in figure 13(II) show an example of the order by which the model 

parameters can be simulated in order to adhere to the chain of cliques. However, other 

simulation sequences will also satisfy the chain of cliques. The simulation sequence with the 

individual cliques can be random (e.g. the order by which the nodes marked by ones can be 

simulated in a random order). 
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Figure 13. (I) An example of an undirected graph formed by a chain of cliques with the 

individual cliques defined by the nodes (A,B,D,E), (B,C,E,F), (D,E,G,H), and (E,F,H,I). These 

cliques are related to a continuous template of 2 x 2 nodes as seen in figure 12. The edges 

(i.e., connections) in the cliques describe the dependencies between the model parameters 

related to the nodes. (II) The four residuals related to this chain of cliques are marked by the 

numbers. Thus, the set of residuals is given as (A,B,D,E), (C,F), (G,H), and (I). The associated 

separators are given by the sets , (B,E), (D,E), and (E,F,H) (from Cordua et al., submitted2 

(paper A7)).  

 

 A realization obtained using equation 21 is seen in figure 14. The marginal probabilities 

that are used to obtained the conditional probabilities p  in equation 21 are obtained by 

scanning a training image that is a result of using only every third pixel from the training 

image seen in figure 2 (i.e., a lower resolution image). A continuous template of 3 x 3 pixels 

(i.e., nodes) is used to obtain the multiple-point statistics from the training image. The 

realizations are obtained by simulating one clique at a time starting in the upper left corner 

and simulating one row of cliques at a time (in a raster scan manner). Five realizations 

obtained in this way are seen in figure 14. The patterns from the training image are, to some 

degree, recovered. However, a directional “diagonal” effect, which is not seen in the training 

image in figure 2, is observed in the realizations. This is a well-known effect in realizations 

obtained from Markov mesh models (Gray et al., 1994), which are very similar to the 

realizations obtained from equation 21 using this particular simulation sequence. This effect is 

a result of the order (i.e., direction) by which the model parameters are simulated (Gray et al., 

1994).  

The directional effects seen in figure 14 are not seen in the results obtained using the 

SNESIM algorithm as seen in figure 3. Realizations from the SNESIM algorithm are obtained 

from a distribution given in equation 20 using a random simulation sequence. In this way, no 
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directional effects are seen. However, using a random simulation sequence while maintaining 

consistency with the sample model statistics, a conditional probability distribution that 

describes the dependency to all other model parameters has to be established (see equation 

6). In practice, this may not be possible for a non-parametric probability distribution that is 

based on statistics from a training image, because that number of counts in the statistics 

decreases when the size of the template increases. Using equation 20, a random simulation 

sequence can be used within the individual cliques (Cordua et al., submitted2 (paper A7)). 

Therefore, the directional effects may at least drop with increasing size of the 

template/clique.  

 

 

Figure 14. Five realizations obtained from the Markovian joint probability distribution defined 

in equation 21. 

 

4.2 Accounting for statistical uncertainties and prior expectations of 

the sample model 

As described in the previous sections, a sample model is considered to be based on 

examples/observations from the field. Similar to other observations, these 

examples/observations are subject to uncertainty. For example, the marginal probability 

distribution estimated from the multiple-point statistics obtained from a training image will be 

an approximation unless an infinitely large training image (i.e., an infinitely large sample) can 

be provided. Therefore, in order to establish a posterior distribution that is consistent with all 

information at hand, this statistical uncertainty should be taken into account in the 

formulation of the prior probability distribution.  

This uncertainty can be quantified through the Dirichlet distribution with the observed 

normalized frequency (i.e., marginal) distribution being the expectation of the distribution and 
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the variability of the distribution being related to the number of pattern counts obtained from 

the training image. Hence, the more counts (i.e., the larger a sample) the less uncertainty and 

the more reliable becomes the estimated marginal distribution.  

Moreover, using the Dirichlet distribution as defined in equation 14, a prior frequency 

distribution prior  can be defined. This distribution represents the prior expectation of the 

pattern frequency distribution before the frequency distribution of the training image is 

observed. This means that before the pattern histogram is observed some small frequency 

(i.e., probability) can be assigned to all possible patterns. Hence, after the pattern frequency 

distribution has been obtained from the training image, patterns with zero-probability in the 

training image will still have a (small) non-zero probability in the Dirichlet distribution. 

Moreover, if the observed pattern frequency (from the training image) is expected to be very 

uncertain, the prior frequency distribution can be chosen accordingly. High values (i.e., prior 

counts) in the frequency distribution express an expectation of high uncertainty related to the 

observed frequency distribution and vice versa.       

A manifold that combines the joint (prior) probability distribution (such as for example 

the formulation in equation 21 above) and the uncertainty distribution of the marginal 

probability distribution (as described by the Dirichlet distribution) can be expressed as 

(Cordua et al., submitted2 (paper A7)) 

.        (22) 

Here, ( | )p m  is the joint prior probability distribution given a set of known marginal 

probability distributions . ( )p  represents a probability distribution over the marginal 

probability distribution that describes the statistical and observational uncertainties related to 

the marginal probability distributions.  

Once the joint manifold over the model parameters and the marginal probability 

distribution in equation 18 have been defined, the consistent prior probability distribution 

over the model parameters that takes into account the uncertainty related to the marginal 

probability distribution is given as the marginal distribution (Cordua et al., submitted2 (paper 

A7)) 

( ) ( | ) ( )p p pm m         (23) 

Having obtained this result, it is possible to formulate a mathematical expression of a 

prior probability distribution that is explicitly formulated and is consistent with the statistics 

( , ) ( | ) ( )p p pm
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(and its uncertainties) obtained from a sample model. Realization from this distribution can be 

obtained using the following algorithm: 

1. Draw a realization  from the distribution ( )p . 

2. Given a realization , a realization of the i’th model parameter im  can then be obtained 

from the distribution ( | , )i j Jp m m , where j Jm  is the set of previously simulated model 

parameters. This is an application of sequential simulation.  

3. Repeat step 1 and 2 in order to obtain a full realization from equation 23.  

All realizations of  obtained in this way will then be realizations from ( )p m  as defined in 

equation 23. 

The formulation in equation 23 can be used for sequential simulation such that it can be 

used for sequential Gibbs sampling. This, in turn, makes it possible to use it in conjunction 

with the extended Metropolis algorithm for sampling of the posterior distribution. Finally, it 

can be substituted into equation 10 to be used for optimization with respect to a set of model 

parameters that have (near) maximum posterior probability.  

Having established and/or identified the joint (prior) probability distribution, entropy of 

the joint probability distribution can be calculated in order to quantify the loss or gain of 

information between two different joint probability distributions. An example of this is seen in 

Cordua et al. (submitted2 (paper A7)). 
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5 Maximum posterior solutions using training image based priors 

For computationally very hard problems it may be practically impossible to strive for a sample 

from the posterior probability distribution. In such cases, one may instead hope to find a 

solution with maximum or at least high posterior probability. As already mentioned, this can 

only be achieved if a closed form mathematical expression for both the prior probability 

distribution and the likelihood function can be evaluated.   

When dealing with prior information based on multiple-point statistics obtained from a 

training image, no mathematical expression for such a prior probability distribution has 

hitherto existed. This makes it impossible to search for maximum posterior solutions when 

such prior information is used for the inverse problem. Different approaches have been 

suggested for a mathematical formulation of such a prior probability distribution.  

One way of doing this is to use a formulation such as the Markovian joint distribution as 

formulated in equation 21 above, which can also include the uncertainty of the marginal 

probabilities as expressed in equation 23. Another formulation is the frequency matching 

method (Lange et al., 2012 (paper A9)), which was used in the formulation of the FRESEQ 

sampler.  

The frequency matching method is a probability distribution that has its maximum 

probabilities in models (i.e., sets of model parameters) with a pattern distribution that has the 

best possible match with the pattern distribution observed in the sample model (e.g. a 

training image). The frequency matching method can be formulated using for example a Chi-

square dissimilarity measure (Lange et al., 2012 (paper A9)) or a Dirichlet probability 

distribution (Cordua et al., submitted1 (paper A6)).  

In Lange et al. (2012 (paper A9)), the authors use the Chi-square formulation of the 

frequency matching method to define a prior probability distribution that was used to 

optimize for a set of model parameters with high posterior probability. This was done for a 

cross-borehole tomographic travel time inverse problem with prior information based on 

multiple-point statistics from the training image seen in figure 2. Figure 15 shows the 

synthetic reference model and one optimized solution for this inverse problem. The synthetic 

data obtained from the synthetic model are added with uncorrelated zero-mean Gaussian 

distributed noise. The likelihood function used to formulate the posterior distribution of this 

problem is given in equation 9. It is clear that this solution honors both the observed data due 

to the resemblance with the reference model, and the prior information due to the 

resemblance with the training image.  
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The prior probability distribution defined by the Chi-square dissimilarity formulation 

relies on a subjective weighting factor, which is not related to a probabilistic formulation, but 

found through a regularization strategy (Lange et al., 2012 (paper A9)). Therefore, a purely 

probabilistic formulation of the frequency matching method based on the Dirichlet 

distribution was suggested (Cordua et al., submitted1 (paper A6)).  

 

 

Figure 15. A) Reference model used to obtain travel time data that are used as observed data 

for the inversion. B) Optimized solution (i.e., set of model parameters) with high posterior 

probability (from Lange et al., 2012 (paper A9)).  

 

Having established a mathematical expression of the prior probability distribution, 

simulated annealing can be used to search for the set of model parameters with (near) 

maximum posterior probability.  

 For any prior model, algorithm-based or prior models based on a closed form 

mathematical expression, a movie of output realizations from the prior model should always 

be used to verify which prior information that is expressed by the prior model. In this way, any 

arbitrary weighting factor can be calibrated. However, in order to do this in an efficient way, 

the prior model needs to be formulated in such a way that it is suitable for relatively fast 

sampling, such as sequential simulation. In this context, the formulation in equation 23 is 

appealing because it allows performing relatively fast sampling of a formulation of the prior 

probability distribution that is very similar to the frequency matching method. 
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5.1 Smooth optimization with the frequency matching method 

Most multiple-point based sampling algorithms use a training image that is based on 

categorical variables. In such a case, the optimization problem for a set of model parameters 

with maximum posterior probability becomes a combinatorial optimization problem (e.g., as 

seen in Lange et al., 2012 (paper A9)). Such a problem may be computationally very hard in 

particular when dealing with high-dimensional inverse problems with computationally intense 

forward simulators such as full waveform simulation or flow simulation (Cordua et al., 2012 

(paper A4); Melnikova et al., 2012 (paper A10)).  

An example of getting around this problem is addressed in Melnikova et al. (2012 (paper 

A10)). Here, a smooth formulation of such a categorical optimization problem in which the 

model parameters are considered as continuous during the optimization is suggested. The 

starting model may either consist of categorical or continuous variables. However, due to the 

prior information based on categorical variables the optimized set of model parameters end 

up being (almost) categorical. This leads to a shortcut in the optimization, such that the 

combinatorial optimization is avoided. In this way, the optimization problem can be solved 

considerably faster than compared to the combinatorial optimization problem. 

As it was mentioned in section 2.2, some time is spent on the optimization stage (i.e., 

burn-in) of the extended Metropolis algorithm. Therefore, an efficient optimization may also 

save time when searching for a starting model to be used for the subsequent Monte Carlo 

sampling. For example, in the Monte Carlo sampling of the full waveform inverse problem 

described earlier, the burn-in period constituted 1/15 of the total computational time. 

Therefore, it is of interest to obtain a formulation of the prior probability distribution that can 

be used both for the optimization part and the sampling part, and preferably be used for a 

smooth optimization. This might be the case for the formulation of the prior probability 

distribution as described in equation 23.  
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6 Accounting for imperfect forward models 

Typically, the likelihood function (in equation 4) is formulated such that it only takes into 

account the uncertainties related to the observed data. However, errors related to the 

forward relation in equations 1 or 3 may also have a significant impact on the solution to the 

inverse problem. Such errors should also be accounted for in the likelihood function in order 

to end up with a posterior distribution that is consistent with all the information at hand. 

Based on the theory of Tarantola (2005), errors related to the forward relation, referred 

to as modeling errors, can be taken into account in the likelihood function when this error is 

assumed Gaussian. Through numerical examples, based on tomographic ground penetrating 

radar travel time data, Hansen et al. (submitted (paper A11)) demonstrate the effect of such 

error when using different formulations of the forward relation.  

Hansen et al. (submitted (paper A11)) also show that when the modelization error is 

taken into account the apparent resolution drops, as compared to the case where this error is 

not taken into account. On the contrary, however, if this error is not accounted for, an 

erroneously low resolution is obtained, which leads to over optimistic and unrealistic solutions 

to the inverse problem. 
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7 Discussion and future research 

This section provides a discussion of the research presented so far along with perspectives to 

future research within this field. 

   

7.1 Mathematical formulations of the prior probability distribution 

As we have seen in this thesis, the frequency matching method has been formulated in two 

different ways. However, recent research in our group has found that it can be demonstrated 

that the Chi-square dissimilarity measure is an approximation of the Dirichlet distribution. This 

means that there is a way to relate the weighting factor of the Chi-square dissimilarity 

formulation of the prior model to a pure probabilistic formulation such that this weighting 

factor can be formulated using probabilistic reasoning rather than some subjectively chosen 

weighting factor.  

 

7.2 Optimization of computationally hard inverse problems with 

multiple-point based prior information 

Having obtained a mathematical expression for the prior probability distribution based on 

multiple-point statistics, it is now possible to use an optimization approach to search for a set 

of model parameters with high posterior probability. This might be useful either as a fast 

alternative when sampling of the posterior distribution is computationally prohibited or as a 

starting point for a sampling algorithm. It would be of interest to test this approach for the 

tomographic full waveform inverse problem as described in section 3.2.  

Tarantola and Valette (1982b) developed an optimization procedure for weakly non-

linear inverse problems. This methodology was later on applied to full waveform inverse 

problems (Tarantola, 1984). This method was based on Gaussian statistics and was a first step 

away from the regularization based methods where the prior information was wrapped inside 

a subjectively chosen regularization parameter. The introduction of a mathematical 

formulation of prior probability distributions based on multiple-point statistics is a further 

step on the scientific path away from the traditional covariance based approaches towards 

geologically more realistic prior information. Future research should focus on demonstrating 

the applicability of such prior model to both optimization and sampling of the solution to large 

scale inverse problems. It should be remembered that the alternative to not choosing realistic 
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prior information is some other, potentially smooth Gaussian, prior model, which is known to 

be geologically unrealistic. Some sort of prior information will always exist in inversion 

algorithm. Therefore, if you do not choose a prior model, the algorithm will choose for you.   

 

7.3 Quantifying the degree of freedom in an inverse problem  

The time needed to obtain a solution to an inverse problem increases with the number of 

model parameters. For the so-called hard inverse problems, this time increases exponentially 

with the number of model parameters (Mosegaard, 2006). One way to overcome this is to 

reduce the effective number of model parameters (i.e., the degree of freedom) by imposing 

some correlation between the model parameters through the prior information. It can be 

demonstrated that general algorithms that are not designed for a certain problem will, on 

average, have the same performance when used for various problems (Mosegaard, 2012). 

Therefore, prior information about the specific problem turns out to be the only way to 

improve the performance of the algorithm. Alternatively, an approximation to the inverse 

problem can instead be solved and the uncertainties related to this approximation can be 

accounted for in the formulation of the problem (Hansen et al., submitted (paper A11)). 

Hansen et al. (2009) demonstrated some examples of how the most informative prior 

models (i.e., those imposing the highest degree of correlation between the model 

parameters) resulted in the most computationally efficient sampling of the posterior 

distribution. The effective degree of freedom was quantified for a Gaussian prior model, 

which confirmed that the effective degree of freedom was reduced when the degree of 

autocorrelation among the model parameters was increased. However, in order to do this for 

prior models based on multiple-point statistics, a mathematical expression for the prior 

probability distribution is necessary, which has only recently been born. Therefore, this might 

be a challenge for future research.  

 

7.4 Prior models consistent with a training image 

State-of-the-art multiple-point-based geostatistical algorithms strive at reproducing the 

patterns that are seen in the training image. The FRESEQ prior sampling algorithm that was 

presented in section 3.4 also aims at reproducing the training image patterns. In section 4 it is 

described how a prior probability distribution can be established such that it is consistent with 

the multiple-point statistics from the training image. This approach may not guarantee that 
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prior realizations from such a distribution resemble the patterns as seen in the training image. 

On the other hand, such realizations are guaranteed to be consistent with the known 

multiple-point statistics. 

 Which form of consistency is the true consistency? In a probabilistic formulation, a 

formulation that is consistent with the observed statistics from the sample model (e.g., a 

training image) is the right solution. In this way, no unnecessary additional non-observed 

information in included. However, an algorithm that strives at reproducing the patterns of the 

training image is typically a “black box” algorithm, which is also the case for the prior 

distribution that is sampled by FRESEQ sampler. Additional information may have been built 

into the geostatistical sampling algorithm (consciously or unconsciously) with the goal of 

reproducing these patterns. This additional information may lead to a reproduction of the 

training image patterns, which is fine if this is actually the prior beliefs. On the other hand, 

such prior information may be too optimistic in that the patterns seen in a single or few 

image(s) may be too narrow a (prior) view on the possible geological structures at the site 

under investigation.  

 

7.5 Sampling or optimization? 

Figure 16 shows an example of seven realizations (see figure 16a – g) from a posterior 

distribution related to a linearized travel time based cross-borehole tomographic inverse 

problem. A Gaussian prior model is used in this case (for more details see Cordua et al. 

(2009)). The reference model (i.e., set of model parameters) of this synthetic inverse problem 

is seen to the left in figure 16 (Ref). It is clear that the crispness (variability of the model 

parameters) in the reference model is, to a high degree, recovered in the posterior 

realizations. 

Figure 16 (Mean) (see right solution in figure 16) shows the solution with maximum 

posterior probability, which can also be seen as the mean of an infinitely number of posterior 

realization (in the Gaussian case). It is seen that this set of model parameters provides a much 

more smooth solution and do not have the same crispness as seen in the reference model and 

the posterior realizations. It might be computationally convenient to calculate the maximum 

posterior solution instead of sampling the posterior solution. However, the maximum 

posterior solution provides a solution that, at least in the Gaussian case, does not honor the 

prior statistics, and leads to smooth solutions which are unlike the typical realizations from 

the prior model.  
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This problem should also be considered when dealing with other prior models. An 

example is the Markovian joint probability distribution defined in equation 21. The maximum 

of this probability distribution is the particular case where all the conditional probability 

distributions in the product all have maximum probability. In such a case, a realization from 

this probability distribution may not adhere to the multiple-point statistics from a sample 

model, but be biased towards the most probable patterns. Consequently, a maximum 

posterior distribution based on such a prior model may lead to overly smooth solutions or 

solutions that do not honor the prior statistics from the sample model. 

         

 

Figure 16. Ref) Reference model used to obtain synthetic travel time data. a – g) Posterior 

realizations from the posterior distribution. Mean) The mean of infinitely many posterior 

realizations, which corresponds to the solution with maximum posterior probability (from 

Cordua et al., 2009). 

  

 Instead of searching for a maximum posterior solution it might instead be of interest to 

search for a most probable posterior realization. In the Gaussian case, the posterior 

realizations are distributed according to the Chi-square distribution as a function of the 

distance from the mean of the Gaussian distribution (see section 6.8 in Tarantola (2005)). This 

means that for high-dimensional distributions (e.g., more than 20 model parameters), the 

probability of having a realization close to the mean (i.e., near the maximum posterior 

probability) is extremely low. Hence, the posterior mean solution is in this case an extremely 

unlikely realization. The highest density of realizations in a Gaussian distribution is located 

near a sphere with a radius equal to the degree of freedom of the Gaussian distribution. 

Hence, if a single solution to the inverse problem should be considered, a solution that is 

located near this sphere should be chosen, which is a solution with most likely statistical 

properties. Such a solution may be more interesting than the solution with maximum 

posterior probability, which is an extremely unlikely posterior realization that does not adhere 

to the prior information (such as the crispness seen in the example in figure 16).  
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7.6 Stationary and non-stationary prior models 

When a training image is assumed to be a realization from a stationary process and at the 

same time do not contain any directional information, the statistics used to approximate the 

marginal probability distribution can be obtained not only from the original training image, 

but also from the image that results from flipping the training image upside down and left 

right. Hence, in this way four training image can be used to obtain slightly better statistics, 

even though these images are statistically dependent. 

 A Markovian joint probability distribution is based on a set of conditional probability 

distributions (see equation 21). If a prior probability distribution, based on this formulation, 

has to be non-stationary, the individual conditional probability distributions can no longer be 

assumed to be equal and an estimate for each of these conditional distributions has to be 

determined. This is very local information, which might only rarely be accessible.  

 The training image might not look stationary. However, this can be considered as a scale 

dependent problem, which means that if a much larger training is provided such a training 

image could appear stationary. Hence, all training images can ideally be assumed to be a 

realization from a stationary process. On the other hand, a non-stationary process can in 

principle not be verified from a single training image. 

  

7.7 Geologically realistic prior models         

Outputs from state-of-the-art geostatistical prior models do not yet completely resemble the 

real world geological structures. Thus, more research needs to be put into this field in order to 

further approach geological realism. Promising examples within object based geostatistical 

modeling indicate that this may be possible.  

Developments with fractal geometry may be a way of describing geological structures. In 

particular, this might be useful in order to capture structures at various scales within the same 

prior model. 

  However, very detailed and highly informative prior information may rarely be achievable 

because such information demands local and specific information about the subsurface, which 

is notoriously unknown since we are dealing with an inverse problem related to an unknown 

subsurface.  
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8 Conclusions 

Probability theory provides a framework for formulating a solution to inverse problems that 

are consistent with all conceivable information about the subsurface in form of indirect 

observed geophysical data and geological prior information. The sources of information are 

provided in form of probability distributions that need to be established in order to obtain the 

posterior probability distribution. Given that trustworthy sources of information about the 

subsurface are provided, the probabilistic formulation of the inverse problem provide an 

explicit solution to the inverse problem that is consistent with the available information. 

 Moreover, a combination of probabilistic inverse problem theory and geostatistics 

provides a means of solving inverse problems with prior information that is founded on 

geological knowledge, which is a considerably development compared to the early inversion 

strategies based on subjectively chosen regularization parameters. In addition, the 

probabilistic formulation provides a means of determining uncertainties and ambiguities in 

the solution to the inverse problem. 

 Algorithms exist that are able to obtain a sample from the posterior distribution. This is 

typically necessary in the case of non-linear inverse problems, non-Gaussian prior 

information, or if the prior information can only be provided through a sampling algorithm. An 

example of using the sequential Gibbs sampler in conjunction with the extended Metropolis 

algorithm for sampling the posterior distribution of a full waveform inverse problem with 

multiple-point based prior information has been provided. In this case, the prior information 

was described by a geostatistical sampling algorithm. 

 Geostatistical sampling algorithms based on multiple-point statistics typically use a 

training image as input and the output is multiple realizations that to some degree honor the 

multiple-point statistics from the training image. One approach is to strive for an algorithm 

that is capable of reproducing the patterns that are seen in the training image. Such an 

algorithm (i.e., the FRESEQ sampler) that can be used to describe prior information for an 

inverse problem has been presented.  

Another approach to this problem is to establish a prior probability distribution that is 

consistent with the multiple-point statistics from the sample model such as a training image. 

In this case, the goal is to obtain prior realizations that are consistent with the training image 

statistics. However, these realizations do not necessarily reproduce the patterns seen in the 

training image. An analysis of how to establish such a consistent prior probability distribution 

has been provided. The findings demonstrate that some assumptions about the probability 
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distribution have to be made in order to obtain a unique probability distribution that is 

consistent with the statistics from the training image. 

Geostatistical sampling algorithms that are based on sequential simulation have been 

investigated. It is found that prior probability distributions that are sampled by such 

algorithms are not necessarily consistent with the training image statistics. However, from 

Markov random field theory an example of a consistent prior probability distribution is 

provided. Moreover, an example of an algorithm that is consistent with the observed statistics 

from the training image and at the same time takes into account the uncertainty related to 

this statistics has been proposed. 

Another example of inconsistency that sneaks into the solution of the inverse problem is 

through approximate forward relations. Approximations to the forward relation are typically 

used in order to obtain computationally efficiency in the solution to the inverse problem. The 

uncertainty related to such approximations can be accounted for through the uncertainty 

model. In this way, a consistent posterior distribution that leads to a correct and unbiased 

resolution analysis of the solution to the inverse problem can be obtained.  

Different approaches for establishing a closed form mathematical expression for the prior 

probability distribution for multiple-point based prior information have been suggested. One 

of these methods is frequency matching method, which has been used to obtain a set of 

model parameters with (near) maximum posterior probability for a tomographic travel time 

inverse problem with prior information obtained from a training image.  
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Populært dansk resumé  

Her følger et dansk resumé af PhD afhandlingen med den oversatte titel ”Multi-scenarie 

generering af undergrundsmodeller – Konsistent integration af information fra geofysiske og 

geologiske data gennem kombination af sandsynlighedsbaseret invers problem teori og 

geostatistik”:  

Karakterisering af undergrundens egenskaber og strukturer har stor betydning i 

forbindelse med 1) vurdering af drikkevandsressourcers beskyttelse, 2) udbredelses- og 

volumenbestemmelse af olie-, gas- og vandreservoirer, 3) forudsigelser af produktionsdata fra 

reservoirer og 4) forståelse af geologiske processer og dynamikker. Geovidenskabelige inverse 

problemer beskæftiger sig med bestemmelsen af undergrundens egenskaber ud fra indirekte 

observationer af undergrunden. Eksempler på sådanne observationer er seismiske, 

elektromagnetiske eller tyngdemålinger.  

Denne afhandling beskæftiger sig med sådanne inverse problemer. Der bruges her en 

sandsynlighedsteoretisk formulering af problemet, hvilket giver mulighed for at kombinere de 

forskellige stumper af information om undergrunden, der er til rådighed. Sådanne 

informationer kommer fra 1) de fysiske målinger af undergrunden og deres usikkerheder og 2) 

prior information (dvs. før-viden eller forhåndsviden) om undergrunden. En sådan prior 

information stammer fra ekspertviden i form af træningsbilleder, som repræsenterer 

konceptuelle strukturer af undergrunden, eller fra andre målinger i et tilsvarende område. I en 

sandsynlighedsteoretisk formulering er disse forskellige stumper af information givet som 

sandsynlighedsfordelinger, der kan kombineres til en posterior information (dvs. efter-viden) i 

form af en sandsynlighedsfordeling.  

Geologisk ekspertviden kan kvantificeres ved hjælp af geostatistiske algoritmer. Disse 

algoritmer kan generere mange undergrundsmodeller (dvs. et sample), som er konsistente 

med prior sandsynlighedsfordelinger, der baserer sig på information fra f.eks. 

træningsbilleder. I denne afhandlingen beskrives det, hvordan prior information beskrevet 

med geostatistiske algoritmer, kan integreres med sandsynlighedsbaserede inverse 

problemer. Ligeledes beskrives en algoritme som kan bruges til at generere mange 

undergrundmodeller, som er konsistente med posterior sandsynlighedsfordelingen for sådan 

et inverst problem. De mange undergrundsmodeller kan bruges til at beregne usikkerheder og 

undersøge, om der eksisterer flere scenarier af løsninger, som tilfredsstiller den information 

der er til rådighed. Samtidig giver integration af ekspertviden løsninger til det inverse 

problem, som er mere geologisk realistiske. Endeligt viser det sig at prior information om 
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undergrunden har den ekstra egenskab, at den reducerer det inverse problem sådan at det 

bliver nemmere at løse.  

Geostatistiske algoritmer fungerer som ”sorte bokse”, hvilket skal forstås på den måde at 

den prior sandsynlighedsfordeling, som samples af disse algoritmer, er ukendt. Kun outputtet 

fra disse algoritmer giver et indblik i denne fordeling. Ulempen ved en sådan ”sort boks” 

algoritme er, for det første, at relationen mellem prior sandsynligheden og den tilgængelige 

ekspertviden er ukendt, hvilket kan føre til inkonsistens mellem den tilgængelige ekspertviden 

og den prior viden, der er indeholdt i prior sandsynlighedsfordelingen. Denne prior viden 

påvirker posterior sandsynlighedsfordelingen (dvs. løsning til det inverse problem), som derfor 

kan risikere at blive ukorrekt.  For det andet, kan det inverse problem ikke formuleres som et 

optimeringsproblem når prior sandsynlighedsfordelingen er ukendt, hvilket kan være et 

nødvendigt alternativ til sampling i tilfældet af højdimensionale og beregningstunge 

problemer. 

I denne afhandlingen analyseres nogle af disse geostatistiske algoritmer og det beskrives, 

hvordan en konsistent prior sandsynlighedsfordeling kan etableres. Ekspertviden, i form af 

f.eks. et træningsbillede, er på samme måde som de indirekte observerede data, behæftede 

med usikkerheder. En metode, der kan tage højde for denne usikkerhed, er beskrevet.  

En alternativ anvendelse af træningsbilleder handler om at opnå et output fra de 

geostatistiske algoritmer, som har strukturer med høj grad af lighed med de strukturer som 

ses i træningsbilledet. En algoritme der efterstræber dette og som kan bruges til at beskrive 

prior information til det inverse problem bliver foreslået. 

Afslutningsvis beskrives en metode, der kan tage højde for inkonsistens som relaterer sig 

til de fysiske modeller som bruges til at kvantificere sammenhængen mellem undergrundens 

egenskaber og de observerede data. I de tilfælde hvor der anvendes en approksimation til 

denne model, vil det påvirke løsningen til det inverse problem, medmindre der tages højde for 

denne fejl. Eksempler på både at tage højde for og ignorere denne fejl bliver beskrevet. 

Fælles for de metoder og stratgier, der er beskrevet i denne afhandling er at de alle 

stræber efter af opnå en løsning til det inverse problem, som er konsistent med den 

information der er til rådighed, og ikke basere sig på subjektive eller ukendte valg. Fremtidige 

studier vil, gennem anvendelser, vise de praktiske betydningen af denne fremgangsmåde.  
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Appendices 

Scientific contributions found in the appendices 

The scientific contributions of this thesis have been submitted to and published in 

international journals and conference proceedings and can all be found in this appendix. The 

contributions are as follows: 

 

Main contributions 

The papers in appendix A1 and A2 introduce the Sequential Gibbs sampler. This sampler 

makes it possible to sample, in an efficient way, the posterior distribution of a probabilistically 

formulated inverse problem that combines information from geophysical data with geological 

(prior) information described by a geostatistical algorithm.  

Appendix A3 and A4 provide examples of using the sequential Gibbs sampler in 

conjunction with the extended Metropolis algorithm to sample the posterior distribution of a 

computationally hard tomographic full waveform inverse problem.  

The papers found in appendix A5 and A6 suggest a methodology that improves the 

degree of resemblance between the patterns in the input training image and the output 

realizations of multiple-point geostatistical algorithms that are based on sequential 

simulation. In particular, this improvement is significant when the prior is sampled by the 

sequential Gibbs sampler, which, in turn, improves the information content (i.e., resolution) of 

the posterior distribution.  

Appendix A7 is a review and an analysis of existing geostatistical algorithms that are 

based on sequential simulation. The paper investigates how that probability distribution, 

which is sampled by such algorithms, is established through marginal probability distributions 

obtained from a training image. Moreover, it is discussed and investigated how additional 

assumptions about the distribution are necessary in order to uniquely determine the 

distribution to be sampled. It is found that typical algorithms based on sequential simulation 

are not consistent with the marginal distributions obtained from the training image. An 

alternative formulation for a consistent algorithm is described. 
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Other contributions  

Appendix A8, A9, and A10 concern the development of the frequency matching method, 

which leads to a closed form mathematical expression of a prior probability distribution based 

on multiple-point statistics from a training image. The method is further developed such that 

categorical variables are treated as continuous variables during the inversion, which makes 

this optimization procedure perform much more efficient. The frequency matching method is 

tested on a tomographic travel time inverse problem and a history matching (inverse) 

problem. 

The paper in appendix A11 addresses the problem of taking into account the uncertainty 

related to the forward problem in an inverse problem. Examples are provided that 

demonstrate how different forward calculations lead to different degrees of uncertainty. 

Numerical examples show how the uncertainties related to the forward calculations, if 

ignored, make artifacts appear as well resolved features. 

The papers in appendix A12 and A13 are examples of sampling the posterior distributions 

of an amplitude-versus-offset (AVO) reflection seismic inverse problem. 

A software page, named “Sampling the solution to an Inverse Problem with complex Prior 

Information” (SIPPI), is documented and applied in appendix A14 and A15. SIPPI provides an 

implementation of the Sequential Gibbs sampler for a variety of prior models. This 

implementation can be used together with the extended Metropolis algorithm or the 

rejection sampler to obtain a sample from the posterior distribution of inverse problems with 

different complex geostatistical based prior information. 
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Abstract 

Markov chain Monte Carlo methods such as the Gibbs sampler and the Metropolis algorithm 
can be used to sample the solutions to non-linear inverse problems. In principle these 
methods allow incorporation of arbitrarily complex a priori information, but in practice current 
methods allow only relatively simple priors to be used. We demonstrate how sequential 
simulation can be seen as an application of the Gibbs sampler, and how such a Gibbs 
sampler assisted by sequential simulation can be used to perform a random walk that 
generates realizations of a relatively complex random function. We propose to combine this 
algorithm with the Metropolis algorithm in order to obtain an efficient method for sampling 
posterior probability densities for non-linear inverse problems. 

Keywords: Monte Carlo, prior, sequential simulation, inverse problem. 

 

1. INTRODUCTION 
Consider a typical forward problem  
 

(1)  
 
where a function g relates a subsurface model m to observational data d. Inverse problem 
theory deals with the problem of inferring properties of m from a specific dataset d, using eqn. 
(1) and some prior information on m. Tarantola (2005) and Mosegaard (2006) formulated a 
probabilistic approach to solving inverse problems where a priori information is described by 
an a priori probability density function (pdf), , and the data fit associated to a given 
model is given by a likelihood function, . The solution to such an inverse problem is the a 
posteriori probability density, which is proportional to the product of the prior and the likelihood:  
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(2)  , 
 
where k is a normalization factor. Hansen et al. (2006) propose an efficient, non-iterative 
approach using sequential simulation to generate samples of the a posteriori pdf in case g is a 
linear function and both  and  can be described by Gaussian statistics. Hansen 
and Mosegaard (2008) relax the Gaussian assumption of this approach, which allows for non-
Gaussian a priori distributions.  
In practice, g is often a nonlinear operator, and  and  are non-Gaussian, which 
results in an non-Gaussian a posteriori pdf. Mosegaard and Sambridge (2002) summarize and 
discuss a number of Monte Carlo based methods for sampling the solution to such problems. 
Among these we find the rejection sampler, the Gibbs sampler, and the Metropolis algorithm. 
Each of these methods is guaranteed to sample the a posteriori pdf asymptotically, although 
the computational efficiency may differ significantly. 
They allow an arbitrarily complex noise model and arbitrarily complex a priori information to be 
used, but they differ in the way the content of the a priori model is presented to the algorithm. 
A short description of each of these methods, and their demands on the a priori model, is 
given here. 
 
Rejection sampler 
The rejection sampler is perhaps the simplest method for sampling the posterior probability 
density function, ( eqn. (2)). It allows inclusion of complex a priori information, and any 
black box that generates independent realizations from the a priori probability density function 
can be used. Rejection sampling works by filtering a list of independent realizations of the a 
priori model. Each proposed model is accepted with probability  
 
 (3)    
 
where M is larger than (or equal to) the maximum likelihood of all the proposed models. In 
many cases the maximum likelihood is not known, and one must set M to a large value. For 
large-dimensional problems this typically causes the acceptance probability  to be very 
small, and hence the algorithm to be very inefficient. 
 
Metropolis algorithm 
The Metropolis algorithm is a Monte Carlo sampling method based on Markov chains 
(Metropolis & Ulam, 1949). Mosegaard and Tarantola (1995) describe a generalized 
Metropolis algorithm that allows analysis of non-linear inverse problems with complex a priori 
information. The prior information must be quantified in such a way that samples of the a priori 
probability density, which are (often) a perturbation of the previous sample, can be obtained. 
Furthermore, one must be able to control the exploratory nature of the prior sampler ( i.e. the 
step length between two successive prior samples) in order to control the efficiency of the 
algorithm. 
Each iteration of the Metropolis algorithm, starting in model mn consists of two stages: a) 
exploration and b) exploitation. In the exploration stage, one step of a random walk, sampling 
the prior, is performed. In other words, an unconditional realization mn+1 of the a priori pdf 

 in the vicinity of mn is generated. This is followed by the exploitation stage where the 
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likelihood of the proposed model is evaluated. If L(mn) and L(mn+1) is the likelihood of mn and 
mn+1 , respectively, mn+1 is accepted with probability:  
 

(4)  

 
If mn+1 is accepted, mn+1 becomes the current model. Otherwise mn remains the current model. 
Performed iteratively this algorithm will sample the a posteriori pdf, in the sense that output 
models occur with a frequency proportional to their a posteriori probability. 
The computational efficiency of the Metropolis algorithm depends on the structure of the 
posterior distribution to be sampled. In addition, it is strongly dependent on the exploratory 
nature (i.e. step length) of the prior sampler. No theoretically correct step length can be found, 
but Gelman et al. (1996) suggest that a step length giving rise to an acceptance ratio of the 
Metropolis sampler of about 25-50% is reasonable. In any case, one must be able to adjust 
the step length in order to successfully apply a specific method to sample the prior.  
 
Gibbs sampler 
In each step of the Gibbs sampler (Geman and Geman, 1984), a model parameter mi is 
selected at random. Then the conditional probability distribution of mi , given that the rest of the 
model parameters are held constant, is computed. Finally, a realization of mi is drawn from the 
conditional distribution.  
An important property of the Gibbs sampler is that no models are rejected, as is the case for 
the Metropolis sampler. In most implementations, the main computational task of applying the 
Gibbs sampler is to compute and draw realization from the conditional pdf. However, it is 
important to note that computing the local conditional distribution is not a requirement. Any 
method that is able to generate realizations from the conditional distribution will suffice.  
A number of conditions must be satisfied in order to ensure that the Metropolis algorithm and 
the Gibbs sampler sample the desired distribution. First, aperiodicity and irreducibility must be 
satisfied to ensure that the algorithm has a unique equilibrium distribution (Mosegaard and 
Sambridge, 2002). In addition, the desired distribution must be the equilibrium distribution of 
the algorithm. This is satisfied in a simple way if each pair of neighboring sample points are in 
detailed balance: The probability that a jump takes place from model mk, to ml must be equal 
to the probability that a jump takes place from model ml to mk :  
 
 (5) P(mk  ml | mk) (mk) = P(ml  mk | ml)  (ml)  
 
In this manuscript we will focus on ways to quantify complex a priori information such that it 
can be used with the rejection sampler, the Metropolis algorithm, and the Gibbs sampler. We 
will demonstrate how geostatistical algorithms, based on sequential simulation, are capable of 
simulating geological reasonable structures and therefore are suitable for quantifying complex 
a prior information. These algorithms can be used directly with the rejection sampler. We will 
show that the Gibbs sampler and sequential simulation are closely related. Specifically we will 
demonstrate an application of the Gibbs sampler that will enable generating realizations from 
any stochastic model that can be simulated using sequential simulation. Further we will 
demonstrate that this sampling algorithm honors detailed balance, such that it will actually 
sample the stochastic model intended. We suggest using this method, which we refer to as 
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sequential Gibbs sampling, to control the exploratory nature (i.e. step length) of the Metropolis 
algorithm. This strategy not only leads to the formulation and solution of inverse problems with 
complex a priori information, but can also have dramatic effect on the computational efficiency 
of the Metropolis sampling algorithm. 

2  QUANTIFYING PRIOR INFORMATION USING  
GEOSTATISTICS 
Generally speaking geostatistics is an application of random functions to describe spatial 
phenomena, typically in form of spatial variability in earth models. Geostatistical simulation 
algorithms have been developed to efficiently generate realization of a number of random 
function models. Geostatistical simulation algorithms can be divided into two groups, where 
the underlying random function model is based on 2-point and multiple-point statistics, 
(Guardiano and Srivastava,1993, Strebelle, 2002). 2-point based geostatistical algorithms take 
into account spatial variability between sets of two data locations. In case the distribution of the 
model parameters is Gaussian, one can completely define the underlying random function 
model using a Gaussian pdf: 
 
 (6)  ,  

where mprior is the a priori mean and is the a priori covariance model.  

Multiple-point-based geostatistical models have no parametric description. Instead multiple 
point statistics is inferred from training images. The methodology was initially proposed by 
Guardiano and Srivastava (1993). Strebelle (2002) developed the first computationally feasible 
algorithm for categorical training images. Zhang et al. (2006) and Wu et al. (2008) suggested 
another multiple point based algorithm where patterns from a continuous or categorical 
training image are used to generate stochastic realizations with features from the training 
image. Using these techniques one can generate realization of random function models that 
reproduce geologically realistic spatial variability. State of the art implementations of these 
algorithms are available through SGeMS (Remy et al., 2008).  

2.1  Sequential simulation 

Consider N points u1, u2, … uN and a random field Z(u) describing the interdependence 
between values of a physical or geological property measured at points ui. Then, one 
realization z(u) of the vector  
 

(7) Z(u) = (Z(u1), Z(u2), ... , Z(un), Z(un+1), ... Z(uN)) 
 
can be simulated using sequential simulation as follows: In step i, visit location ui and draw a 
random value zi = z(ui) from Z(ui), using the conditional probability density function  
 
 (8)   fZ (zi |z1…zi 1) , 
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where fZ (z1…zN ) is the joint probability density of the components of Z(u). That the above 
procedure will actually sample   fZ (z1…zN ) follows from the identity , which 
(in the general multivariate case) yields  
 

 (9) 

  

fZ (zn+1…zN |z1…zn ) = fZ (zn+1 |z1…zn )

fZ (zn+2 |z1…zn+1)

fZ (zN |z1…zN 1)

 

 
When all locations have been visited once, a realization of Z(u) is generated. Thus to apply 
sequential simulation one must a) build a local conditional pdf (conditional to the previously 
simulated data), and b) draw a realization of this local pdf. Considerable effort has been made 
in the geostatistical community to efficiently compute conditional probability density functions 
based on the 2-point and multiple-point stochastic models as described above.  

2.2  Sequential Gibbs sampling 

Consider a known realization z(u) of the random function Z(u) obtained using sequential 
simulation. If we now, at random, select a model parameter, zi = z(ui), compute the local 
conditional pdf  
 

(10) , 
 
and draw a value from it, we get a new realization of the random field Z(u). If this is repeated 
iteratively, this will be an application of the Gibbs sampler (Geman and Geman, 1984). The 
cost of using the Gibbs sampler is that one must be able to generate a realization of the local 
conditional pdf, which can be done very effectively using methods developed for sequential 
simulation. We refer to this combination of sequential simulation and Gibbs sampling as 
sequential Gibbs sampling. 
The sequential Gibbs sampler can be used as a prior sampler for the generalized Metropolis 
algorithm (Mosegaard and Tarantola, 2005). However, in order to control the computational 
efficiency of this algorithm, some flexibility of the amount of perturbation (i.e. some control of 
the ’step-length’ of the prior sampler) is needed. We suggest considering not just one model 
parameter at each step of the Gibbs sampler, but a subset U of model parameters. Assuming 
that the model parameters we wish to update belong to such a subset, we need to generate a 
realization of the conditional pdf  
 
 (11)  
 
Recall that we do not need to explicitly calculate the complete conditional distribution in eqn. 
(11), but only to generate a realization from it. In order to do this we can make use of the 
sequential simulation approach of eqn. (9), which involves computing only the conditional 
probability density function for each model parameter in U in random order.  
In this way we have designed a Gibbs sampler that efficiently samples a prior pdf by utilizing 
the technique of sequential simulation to draw values from the local conditional pdf. At the 
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same time this technique provides a means of controlling the step length of the prior sampling 
by varying the number of model parameters in the subset  
 
Detailed Balance 
Mosegaard and Sambridge (2002) demonstrate that the Gibbs sampler satisfies detailed 
balance. As the Sequential Gibbs sampler is an application of the Gibbs sampler, this property 
is also ensured for the sequential Gibbs sampler. This means that the random walk performed 
by running the sequential Gibbs sampler will asymptotically sample the same random function 
as a traditional sequential simulation. 
 
Algorithm for sequential Gibbs sampling 
Implementing the sequential Gibbs sampler amounts to implementing a Gibbs sampler which, 
in each iteration, calculates a realization of the conditional probability density function 
associated to a specific subset of model parameters using sequential simulation:  
 
1. Select a region (i.e. subset) in the physical space and regard all model parameters 

associated to this area as unknowns. The rest of the model parameters are considered 
known (and fixed).  

2. Perform sequential simulation of the unknown parameters conditioned to the known 
parameters. This generates a new model, which is also a realization of the prior model. 
This step is identical to drawing a value from the conditional probability density function in 
eqn. (11).  

3. Use the new model as the starting model and go to 1.  
 
Such an algorithm was proposed by Hansen et al. (2008). They did, however, not make the 
link to the Gibbs sampler, and they provided no proof that the resulting algorithm samples an 
equilibrium distribution, nor that such an equilibrium distribution would in fact be the requested 
a priori model.  
As already mentioned, the size of the region of model parameters that is regarded as unknown 
(in step 1 in the sequence above) can be used to control the step length of the sequential 
Gibbs sampler. By regarding only a single model parameter as unknown results in a model 
mi+1 which is highly related to the original model mi . On the contrary, by regarding all model 
parameters as unknowns leads to mi+1 which is statistically independent of mi .  

2.3  Gradual deformation 

Techniques that allow a gradual deformation between two realizations of random function 
have been developed for both 2-point based Gaussian random function models (the Gradual 
Deformation Method( GDM) by Hu, 2000; Le Ravalec et al., 2000) and multiple-point based 
random function models (the Probability Perturbation Method ( PPM) by Caers and Hoffman, 
2006). The use of Gradual Deformation has mainly been as part of an optimization algorithm 
for data calibration, where iterative gradual deformation have been used to gradually change a 
starting model until the forward response from the model matches observed data to some 
satisfactory degree (Caers and Hoffman, 2006). It has been suggested that running such an 
application several times, generating a set of models that all fit the data, can be used to 
describe posterior uncertainty. This is however not the case. The resulting model variability of 
such an approach reflects the choice of optimization algorithm and the level chosen for 
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acceptable data fit. An effort to address this issue was made by Le Ravalec-Dupin and 
Noetinger (2002). 
If GDM and PPM honors microscopic reversibility they could, however, be used to sample the 
prior.  

3  CONCLUSIONS 
We have demonstrated that the Gibbs sampler and the method of sequential simulation are 
closely related. We have proposed an efficient sampling algorithm - sequential Gibbs sampling 
combining these two methods. Sequential Gibbs sampling can sample random function 
models based on 2-point as well as multiple-point based statistics. We have shown that this 
algorithm satisfies microscopic reversibility and that the equilibrium distribution is in fact the 
prior probability density. The sequential Gibbs sampler can be run with arbitrary 'step lengths'. 
The longest step length (where all parameters are updated in one step) result in a new 
realization from the a prior distribution which in statistically independent to the previous model. 
A step length of zero returns the same realization as the previous model. This makes the 
sequential Gibbs sampler well suited as a method for sampling a complex prior in connection 
with the Metropolis sampler. 
Utilization of the sequential Gibbs sampler will allow relatively efficient analysis of the solution 
to nonlinear inverse problems with complex a priori information. 
 

ACKNOWLEDGEMENT 
The present work was sponsored by DONG Energy as part of the research project 'Risk 
assessment and multiple scenario generation from seismic and geological data'. 

REFERENCES 
Caers, J. & Hoffman, T., 2006. The probability perturbation method: A new look at bayesian 
inverse modeling, Mathematical Geology, 38(1), 81 – 100. 
Gelman, A., Roberts, G., & Gilks, W., 1996. Efficient metropolis jumping hules, in Bayesian 
Statistics 5,, pp. 599–608, Clarendon press, Oxford. 
Geman, S. & Geman, D., 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian 
restoration of images, IEEE Trans. Pattern Anal. Machine Intell, 6, 721–741. 
Guardiano, F. & Srivastava, R., 1993. Multivariate geostatistics: beyond bivariate moments, 
Geostatistics-Troia, 1, 133–144. 
Hansen, T. & Mosegaard, K., 2008. VISIM: Sequential simulation for linear inverse problems, 
Computers and Geosciences, 34(1), 53–76. 
Hansen, T. M., Journel, A. G., Tarantola, A., & Mosegaard, K., 2006. Linear inverse Gaussian 
theory and geostatistics, Geophysics, 71(6), R101–R111. 
Hansen, T. M., Mosegaard, K., & Cordua, K. C., 2008. Using geostatistics to describe complex 
a priori information for inverse problems, in VIII International Geostatistics Congress, vol. 1, pp. 
329–338, Mining Engineering Department, University of Chile. 
Hu, L. Y., 2000. Gradual deformation and iterative calibration of gaussian-related stochastic 
models, Mathematical Geology, 32(1), 87–108. 
Metropolis, N. & Ulam, S., 1949. The Monte Carlo Method, Journal of the American Statistical 
Association, 44(247), 335–341. 

86



I A M G 2 0 1 0  B U D A P E S T  2 9  A U G U S T — 2  S E P T E M B E R ,  2 0 1 0  

 88 

Mosegaard, K., 2006. Monte Carlo Analysis of Inverse Problems, University of Copenhagen. 
Mosegaard, K. & Sambridge, M., 2002. Monte carlo analysis of inverse problems, Inverse 
Problems, 18(3), 29–54. 
Mosegaard, K. & Tarantola, A., 1995. Monte Carlo sampling of solutions to inverse problems, 
Journal of Geophysical Research, 100(B7), 12431–12447. 
Ravalec, M. L., Noetinger, B., & Hu, L. Y., 2000. The fft moving average (fft-ma) generator: An 
efficient numerical method for generating and conditioning gaussian simulations, Mathematical 
Geology, 32(6), 701–723. 
Remy, N., Boucher, A., & Wu, J., 2008. Applied Geostatistics with SGeMS: A User’s Guide, 
Cambridge Univ Pr. 
Strebelle, S., 2002. Conditional simulation of complex geological structures using multiple-
point statistics, Math. Geol, 34(1), 1–20. 
Tarantola, A., 2005. Inverse Problem Theory and Methods for Model Parameter Estimation, 
SIAM. 
Wu, J., Boucher, A., & Zhang, T., 2008. A SGeMS code for pattern simulation of continuous 
and categorical variables: FILTERSIM, Computers and Geosciences, 34(12), 1863–1876. 
Zhang, T., Switzer, P., & Journel, A., 2006. Filter-based classification of training image 
patterns for spatial simulation, Mathematical Geology, 38(1), 63–80. 
 
 

87



Appendix A2:  

Inverse problems with non-trivial priors: efficient solution through 

sequential Gibbs sampling 
 

 

 

Authors: 

Thomas Mejer Hansen, Knud Skou Cordua, and Klaus Mosegaard 

 

Published in: 

Computational Geosciences 

 

88



Comput Geosci (2012) 16:593–611
DOI 10.1007/s10596-011-9271-1

ORIGINAL PAPER

Inverse problems with non-trivial priors: efficient solution
through sequential Gibbs sampling

Thomas Mejer Hansen · Knud Skou Cordua ·
Klaus Mosegaard

Received: 10 May 2011 / Accepted: 12 December 2011 / Published online: 4 January 2012
© Springer Science+Business Media B.V. 2012

Abstract Markov chain Monte Carlo methods such as
the Gibbs sampler and the Metropolis algorithm can
be used to sample solutions to non-linear inverse prob-
lems. In principle, these methods allow incorporation
of prior information of arbitrary complexity. If an ana-
lytical closed form description of the prior is available,
which is the case when the prior can be described by
a multidimensional Gaussian distribution, such prior
information can easily be considered. In reality, prior
information is often more complex than can be de-
scribed by the Gaussian model, and no closed form
expression of the prior can be given. We propose an
algorithm, called sequential Gibbs sampling, allow-
ing the Metropolis algorithm to efficiently incorporate
complex priors into the solution of an inverse problem,
also for the case where no closed form description
of the prior exists. First, we lay out the theoretical
background for applying the sequential Gibbs sam-
pler and illustrate how it works. Through two case
studies, we demonstrate the application of the method
to a linear image restoration problem and to a non-
linear cross-borehole inversion problem. We demon-
strate how prior information can reduce the complexity
of an inverse problem and that a prior with little
information leads to a hard inverse problem, practi-
cally unsolvable except when the number of model
parameters is very small. Considering more com-

T. M. Hansen (B) · K. S. Cordua · K. Mosegaard
Center for Energy Resources Engineering,
DTU Informatics, Technical University of Denmark,
Lyngby, Denmark
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plex and realistic prior information thus not only
makes realizations from the posterior look more re-
alistic but it can also reduce the computation time
for the inversion dramatically. The method works
for any statistical model for which sequential simu-
lation can be used to generate realizations. This ap-
plies to most algorithms developed in the geostatistical
community.

Keywords Inverse problem theory ·Geostatistics ·
Geology · Prior information

1 Introduction

Consider a forward problem

d = f(m) (1)

where a function f relates a subsurface model m to
observational data d. Inverse problem theory deals
with the problem of inferring properties of m from a
specific data set d, using Eq. 1 and possibly some prior
information on m.
Tarantola andValette [47] formulated a probabilistic

approach to solving inverse problems where all avail-
able states of information is described by probability
density functions (pdfs). The solution to the inverse
problem is the probability distribution obtained com-
bining all the known states of information. In a typical
inverse problem, the states of information can be de-
scribed by the prior pdf and the likelihood function. The
prior pdf, ρM(m), describes the data-independent prior
knowledge of the model parameters. The likelihood
function, L(m), is a probabilistic measure of how well
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the data associated to a given model match a given
model of data uncertainty. The solution to such an
inverse problem is then the posterior pdf, which is pro-
portional to the product of the prior and the likelihood:

σM(m) = k ρM(m) L(m) , (2)

where k is a normalization factor. The posterior pdf
describes all models consistent with both prior informa-
tion and data. For some inverse problems, the complete
posterior pdf can be obtained analytically (such as,
for example, linear inverse Gaussian problems). For
other inverse problems, the only way to characterize
the posterior pdf is by sampling it [33]. A sample of
the posterior is a set of models (realizations of the
posterior) where each model occurs with a frequency
proportional to its posterior likelihood. The frequency
by which a particular feature of a model appears in
the posterior sample is a measure of the probability
of that feature existing, according to prior information
and data. Sampling the posterior thus allows relatively
sophisticated analysis of the posterior pdf [32]. The
movie strategy, advocated by Tarantola [46], proposes
to visualize samples from the prior and the posterior as
movies. The “prior movie” will make it apparent what
prior choices have been made. The difference between
the prior and the posterior movie will highlight the
effect of using data.
In principle, prior information of arbitrary complex-

ity can be included in the solution of the probabilis-
tically framed inverse problem of Eq. 2. In practice
though, the application of inverse problems with, for
example, geologically realistic prior information has
been limited [46] (page 52). There may be several
reasons for this.
One reason is that the use of prior information itself

has been the source of a heated debate [22, 34, 41].
Some authors suggest that the use of prior information
may bias the solution of an inverse problem in an un-
wanted way. Others adopt the probabilistic viewpoint
of Tarantola and Valette [47] but propose to keep
prior information to a minimum in order to solve the
problem without biasing the inversion result, see, e.g.,
Buland and Omre [5] and Khan and Mosegaard [27].
This corresponds to the idea of using a “noninforma-
tive” prior model [3, 42]. Jaynes and Bretthorst [23]
advocate using a prior based on maximum entropy,
which contains the least information consistent with
prior constraints.
In this paper, we will stress and exemplify one im-

portant aspect of this discussion: When prior informa-
tion ρM(m) is consistent with information contained in
the data, that is, when regions of significant probabil-

ity/likelihood of ρM(m) and L(m) clearly overlap, the
hardness of the inverse problem tends to decrease. On
the other hand, the use of in-consistent prior infor-
mation may render an otherwise easy inverse problem
hard and in practice unsolvable.
Another reason for the use of relatively simple prior

models is that, until recently, algorithms have not been
available to efficiently and accurately quantify complex
prior information, such as, for example, geologically re-
alistical patterns, in a probabilistic form. An exception
is the case where both the prior and the model of data
noise can be described by Gaussian statistics, and the
inverse problem is linear (or linearizable). In this case,
the posterior pdf can be described by a Gaussian pdf
fully characterized by a mean model and a covariance.
A sample from the posterior pdf (and the a prior pdf
as well) can be generated using, for example, Cholesky
decomposition, or sequential simulation [17]. Thus, for
the linear inverse Gaussian case, the movie strategy is
today practically feasible. See, for example, Buland and
Omre [5] for an example of probabilistic-based linear
Gaussian inversion.
The linear and Gaussian assumptions are conve-

nient as they lead to computationally feasible inver-
sion algorithms. In reality though, most geophysical
inverse problems are non-linear, and the prior choice
of Gaussian statistics to describe both the noise model
and the prior model distribution is extremely limited.
Sampling methods such as the Metropolis algorithm

[20, 31] can be use to sample any probability density
function, hence also the posterior pdf. In its original
form, the Metropolis algorithm can be implemented in
the following way in order to the sample the posterior:

The Metropolis algorithm

If we have a way of evaluating the values of both
L(m) and ρM(m) at any point m in model spaceM
and an algorithm A (a proposal generator) that is
able to sample M at random, the following algo-
rithm will sample the posterior Eq. 2:

– Starting in the current model mc, perform one
step with the uniform sampler A.

– Accept the new pointmt only with probability

Paccept = min (1, (L(mt)ρM(mt))/(L(mc)ρM(mc))).

(3)

– If mt is rejected, re-use mc in the next step.
– In case mt is accepted, let mc = mt in the next

step.

90



Comput Geosci (2012) 16:593–611 595

This classical Metropolis sampler requires that both
(L(m) and ρM(m) can be evaluated. While this algo-
rithm in principle is easy to implement, it may not be
trivial to compute ρM(m) from complex prior models.
The Metropolis algorithm may also be computationally
demanding when the prior model is far from a uniform.
Mosegaard and Tarantola [37] propose a Markov

chain algorithm based on the Metropolis algorithm
[20, 31] that we will refer to as the extended Metropolis
algorithm and that can be implemented in the following
way:

Extended Metropolis algorithm

If we have a way of evaluating the values of L(m)

and an algorithm B (a prior generator) that is able
to sample ρM(m) directly (without necessarily eval-
uating ρM(m) anywhere), the following algorithm
will sample the posterior Eq. 2:

– Starting in the current model mc, perform one
step with the prior sampler B.

– Accept the new pointmt only with probability

Paccept = min(1, L(mt)/L(mc). (4)

– Ifmt is rejected here, re-usemc in the next step.
– In case mt is accepted, let mc = mt in the next

step.

The extended Metropolis sampler allows sampling the
posterior pdf for non-linear inverse problems in the
presence of an arbitrarily complex prior model consid-
ering any noise model for the data.
Algorithms based on the classical Metropolis sam-

pler are the easiest to implement because it is simple
to sample M uniformly and because it is simple to
evaluate ρM(m) when a formula for ρM is available.
In contrast to this, algorithms based on the extended
Metropolis sampler may be more difficult to implement
because knowledge of ρM(m)must be built directly into
the sampler B [36]. However, because knowledge of
ρM(m) is built directly into the sampler B, algorithms
based on the extended Metropolis sampler can be
dramatically more computationally efficient than algo-
rithms based on the classical Metropolis algorithm [37]
The extended Metropolis algorithm is, in principle,

simple to use and its versatility appealing. Yet it has
mostly been applied to sample the posterior of non-
linear inverse problem with relatively simple prior
models. One reason could be that until recently few
methods have existed allowing sampling of complex
prior models. Khan and Mosegaard [27] and Voss
et al. [49] use the extended Metropolis algorithm us-
ing uniform Gaussian priors, with no spatial correla-

tion between model parameters. Bosch [2] consider a
Gaussian prior model with spatially correlated model
parameters.
More complex priors based on Markov random

fields have been developed for Bayesian image analysis,
see, e.g., Besag [1] and Tjelmeland and Besag [48].
These algorithms tend to be iterative and relatively
computationally demanding.
One of the most promising ways of using the ex-

tended Metropolis algorithms will undoubtedly be to
incorporate geostatistical information into the solution
of geophysical inverse problems.
Geostatistics is an application of random function

theory to characterize natural phenomena [26] (page
1). For several decades, the geostatistical community
has been developing algorithms and methods that are
able to model increasingly complex geological features.
Most of these methods are based on random func-
tion theory [8, 14, 16, 25, 38, 43–45], and most are
available through the SGeMS software package [40].
These methods can all in principle be used to quantify
prior beliefs of the spatial variability of the subsurface
in a statistical sound manner in form of probability
densities. Realizations of the various models can be
generated using sequential simulation [14].
Hansen et al. [19] suggest a simple algorithm that

allows using any random function model that can be
sampled using sequential simulation to quantify the
prior information. We shall show that it can be used
with the extended Metropolis algorithm.
Here we will develop the theory behind the algo-

rithm and show that it can be seen as an application
of a combination of the Gibbs sampler and sequential
simulation. Hence, we propose to refer to the algorithm
as “sequential Gibbs sampling.”
We will lay out the theoretical background for ap-

plying the sequential Gibbs sampler, proving that it will
sample the random function model intended, and illus-
trate how it works, as part of the extended Metropolis
sampler. Through two case studies, we demonstrate the
application of the method to a linear image restoration
problem and to a non-linear cross-borehole inversion
problem.

2 Quantifying prior information using geostatistics

Geostatistical random function models can be di-
vided into two groups based on two-point statistics
and multiple-point statistics. Traditional geostatistical
random function models rely on two-point statistics,
where spatial variability is only described between
pairs of two data locations, typically quantified by a
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covariance model. The simplest two-point-based geo-
statistical model is the Gaussian model which can be
completely described by a mean and a covariance
model, with an implicit assumption of a Gaussian dis-
tribution of model parameters. Realizations of such
a Gaussian model can be generated using sequential
Gaussian simulation [14]. Realizations from random
function models based on a two-point statistical model
defined by a mean and a covariance, but with an arbi-
trary distribution of model parameters, can be obtained
using direct sequential simulation [8, 25, 43].
While somewhat complex structures can be quan-

tified using the two-point-based simulation algorithms,
geological realistically features such as channels cannot.
To model more complex features, higher-order statis-
tical moments must be considered [24]. Such higher-
order statistical models are typically referred to as
models based on multiple-point statistics. Guardiano
and Srivastava [16] propose an algorithm that can sim-
ulate spatial features consistent with a higher-order
statistical model inferred from a training image. The
algorithm was, however, not computationally feasi-
ble, and it was not until Strebelle [44, 45] pro-
posed the single normal equation simulation algorithm
(SNESIM) that the method became practical to use.
Lately, Mustapha and Dimitrakopoulos [38] proposed
a multiple-point-based algorithm allowing reproducing
a number of higher-order cumulants as observed from
data, or from a training image. All these methods can in
principle be used to quantify prior beliefs of the spatial
variability of the subsurface in a statistical sound man-
ner in form of probability densities, and realizations of
the various models can be generated using sequential
simulation.

2.1 Sequential simulation

Consider an image of the subsurface, consisting of N
pixels (voxels), each characterized by a physical or
geological parameter mi. A joint probability density
fM(m1 . . . mN) defines a random field describing the
correlations between parameters. A realization from
the random field can be simulated using a technique
knows as “sequential simulation” as follows: In N steps,
visit each parameter (pixel) sequentially. In step i, visit
parametermi and generate a realization of mi from the
conditional probability density function

fM(mi|m1 . . . mi−1), (5)

That the above procedure will actually generate a re-
alization from fM(m1 . . . mN) follows from the identity

f (s|t) f (t) = f (s, t), which (in the general multivariate
case) yields

fM(mn+1 . . . mN|m1 . . . mn) = fM(mn+1|m1 . . . mn)

fM(mn+2|m1 . . . mn+1)

...

fM(mN|m1 . . . mN−1). (6)

When all locations have been visited, one realization
is generated. Thus, to apply sequential simulation, one
must (a) build a local conditional pdf (conditional to the
previously simulated data) and (b) draw a realization of
this local pdf.
More detailed descriptions of the theory and appli-

cation of sequential simulation can be found in, e.g.,
Gómez-Hernández and Journel [14] and Goovaerts,
chapter 8.2 [15]. Considerable efforts have been made
in the geostatistical community to efficiently compute
conditional probability density functions, as in Eq. 5,
based on two-point [14, 39, 43] and multiple-point sto-
chastic models [40, 45, 50].

2.2 Gibbs sampling

Consider a known realizationm of the random field de-
scribed by the probability distribution fM(m1 . . . mN).
If we randomly select a model parameter, mi = m(ui),
compute the local conditional pdf

ρM(mi | m1, m2, . . . , mi−1, mi+1, . . . , mN). (7)

and draw a value from it, we get a new realization
of the random field defined by fM(m1 . . . mN). If this
is repeated iteratively, it will be an application of
the Gibbs sampler [13] and thus allow sampling from
fM(m1 . . . mN). Note that the Gibbs sampler only re-
quires that a sample from ρM can be generated. The full
conditional pdf of Eq. 7 need not be computed.

2.3 Sequential Gibbs sampling

The cost of using the Gibbs sampler is that one must be
able to generate a realization of the local conditional
pdf, Eq. 7, which can be done very effectively using
methods developed for sequential simulation, Eqs. 5–6.
We therefore suggest to combine sequential simulation
and Gibbs sampling and refer to this combination as
Sequential Gibbs sampling. Using the sequential Gibbs
sampler, we will be able to sample realizations of the
probability distribution fM(m1 . . . mN).
The sequential Gibbs sampler can be used as a

prior sampler for the extended Metropolis algorithm
[37]. However, in order to control the computational
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efficiency the algorithm, some flexibility in the degree
of perturbation (the “step length”) is needed. A step
length leading to a frequency of acceptance rates of
about 25% to 50% is considered to provide a computa-
tional efficient Metropolis sampler [11, 33]. We suggest
considering not just one model parameter at each step
of the Gibbs sampler but a subset U of all model
parameters. Assuming that mi∈U contains the selected
parameters to be perturbed and that mi/∈U contains
the remaining parameters, we now draw a realization
of mi∈U from ρM( mi∈U | mi/∈U ). In the Appendix, it is
demonstrated that this procedure, if applied iteratively,
will sample the distribution ρM(m).
To draw a realization from ρM( mi∈U | mi/∈U ) we

could compute ρM( mi∈U | mi/∈U ) ofmi∈U explicitly. This
is, however, extremely inefficient and fortunately not
necessary, as we only need to be able to generate a
realization of ρM( mi∈U | mi/∈U ) not the full conditional
pdf itself. Instead, we can use the sequential simulation
approach of Eq. 5, which involves computing only the
conditional probability density function for each model
parameter in U in random order. In this way, we have
designed an efficient Gibbs sampler that is able to
incorporate complex prior information and at the same
time allows us to control the “step length” and hence
the efficiency of the sampling.

2.4 An algorithm for sequential Gibbs sampling

Implementing the sequential Gibbs sampler amounts to
implementing a Gibbs sampler which, in each iteration,

calculates a realization of the conditional probability
density function associated to a specific subset of model
parameters using sequential simulation:

1. Select a subset of the model parameters, U , and
regard these as unknowns. The rest of the model
parameters are considered known (and fixed).

2. Perform sequential simulation of the unknown pa-
rameters conditioned to the known parameters.
This generates a new model, which is also a real-
ization of the prior model. This step is identical to
drawing a value from the conditional probability
density function in Eq. 5.

3. Use the new model as the starting model and go
to (i).

As already mentioned, the number of model parame-
ters (size of U) to be resimulated (in step 1 in the se-
quence above) can be used to control the “step length”
of the sequential Gibbs sampler, which is essential to
computational efficiency if the method is used as part
of a Metropolis sampling algorithm. Resimulating only
a single model parameter results in a modelmi+1 that is
highly related to the original model mi. On the other
hand, resimulating all model parameters leads to an
mi+1 that is statistically independent ofmi.
Figure 2 illustrates three examples of using a random

walk to generate realizations of a prior model defined
by the spatial statistics of the training images in Fig. 1.
We make use of the SNESIM algorithm to compute a
realization of the conditional distribution Eq. 7 [45].

Fig. 1 Two different training images, reflecting a prior model based on higher-order spatial moments. a Channel-based training image
from Strebelle (2002). b Pattern, used with permission from Ian Lynman
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Figure 2a, b makes use of the channel-based training
image of Fig. 1a, using a resimulation area, U , of 12 ×
12 and 4 × 4 cells, respectively. Note that U does not
need to take any specific shape. Any subset of model
parameters can be considered. Figure 2c is based on
the prior model associated with to the training image
in Fig. 1b. Progress of the sequential Gibbs sampling
is from left to right, where the initial realization is to
the left. The area in gray colors indicates the model
parameter that is to be resimulated. In the following
realization (to the right), the data within the gray area

have been resimulated, and new area is selected for
conditional resimulation. The final realization after six
iterations of the sequential Gibbs sampler is the model
to the right.
The training images of Fig. 2 are but two examples of

a categorical two-facies training image. For numerous
examples of algorithms and associated training images,
see Remy et al. [40].
A crucial step for applying simulation based on train-

ing images and hence the use of the sequential Gibbs
sampling is the existence of realistic training images.

Fig. 2 Sequential Gibbs sampling using different areas of res-
imulation. a 12 × 12 cell resimulation using the training image
in Fig. 1a. b 4 × 4 cell resimulation using the training image
in Fig. 1a. c 4 × 4 cell resimulation using the training image in

Fig. 1b. The left column is the starting model. The right column
is the realization of the prior model after six iterations using the
sequential Gibbs sampler
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For geophysical inverse problems, prior information is
often available as a conceptual geological model. See,
for example, Zhang [52] for an example on how to
quantify such a geological conceptual model by training
images. Using a different approach, Zhang et al. [53]
demonstrate how a 3D training image of sandstone can
be computed from 2D sections.

Related work

As mentioned earlier, the “resampling” algorithm pre-
sented above was originally proposed by Hansen et al.
[19], and subsequently, an almost identical method was
proposed by Mariethoz et al. [30]. Neither of these
works present a theoretical background for using the
method and provide no proof that the resulting al-
gorithm samples an equilibrium distribution nor that
such an equilibrium distribution would in fact be the
requested prior model.
Mariethoz et al. [30] essentially describe an optimiza-

tion application of the resampling technique used to-
gether with a version of the Metropolis sampler, where
only models that increase the likelihood are accepted.
Fu and Gómez-Hernández [9, 10] propose a “blocking”
Markov chain Monte Carlo method, related to multi-
Gaussian conditional simulation. In each step of the
Metropolis algorithm, a “block” of coherent model
parameters is selected. Model parameters at the edge
of the chosen block is retained as conditioning data, and
the rest of the data in the block is simulated conditional
to the edge data.
Without describing it in detail, Bosch [2] also seems

to have made use of a technique similar to resimulation
of one data point at a time as given in Eq. 5 for a
Gaussian probability distribution. Irving and Singha
[21] make use of resimulation to sample the prior using
the sequential indicator simulation algorithm.
Here we have provided the formal proof that such an

approach is valid for any probability distribution that
can be sampled using sequential simulation. We shall
further investigate how the use (and lack of) prior infor-
mation affect the computational complexity of inverse
problems.

3 Application examples

Sequential Gibbs sampling has the potential to allow
the Metropolis algorithm to sample solutions to inverse
problems with relatively complex prior models. We
will demonstrate the applicability of the method using
two classical inverse problems: image de-blurring and
tomography.

3.1 Image de-blurring

Consider the 41 × 41-pixel gray-scale image of Fig. 3
as a reference image. It has been generated using sin-
gle normal equation simulation [45] using the training
image in Fig. 1a. A Gaussian kernel with a horizontal
range of 15 grid cells and a vertical range of six grid
cells, see Fig. 3b, is used as a smoothing kernel to obtain
a smoothed version of the reference gray-scale image in
Fig. 3a, as seen in Fig. 3c. Then uncorrelated Gaussian
noise with a standard deviation of 0.045 (reflecting a
signal to noise ratio of 0.1) is added to the data (Fig. 3d).
We now consider the 5 × 5 pixels indicated by circles in
Fig. 3d as observed data.
Reconstructing the 41 × 41 gray-scale image (Fig. 3a)

from the 5 × 5 pixel data can now be seen as a simple
linear inverse problem, where the forward problem is
described by

d = Gm (8)

where G describes the smoothing kernel. A model of
the noise can be described by a data covariance, CD,
which is the matrix with a constant value of 0.045 in the
diagonal. We consider three choices of prior models of
the spatial distribution of the model parameters, ρTIM ,
ρuncorrM , and ρcorrM defined as

• ρTIM
The statistical model described by the reference
training image (Fig. 1a). This may be the ideal
choice of prior model to use, as we know that the
reference image we try to reconstruct is a realiza-
tion of ρTIM .• ρuncorrM → N(m0, Cmuncorr)

A Gaussian prior model with no spatial correla-
tions. From the reference model, we compute the
mean value for all pixels asm0 = 0.28. As no spatial
correlation is assumed, the model covariance ma-
trix can be described by the identity matrix times
the variance of the original pixel data, Cmuncorr =
I 0.452.

• ρcorrM → N(m0, Cmcorr)

From the reference image of Fig. 3a, we estimate an
apparent covariance model,Cmcorr , as an anisotropic
spherical covariance model with a horizontal range
of 18 pixels and a vertical range of 6 pixels. The
prior mean is as for ρuncorrM , m0=0.28.

All three considered prior models are consistent with
the spatial statistics of the reference image up to a
certain order. ρuncorrM is the least informed prior model,
reflecting only the lower-order mean and variance,
while ρcorrM also reflect the correct covariance. ρTIM is the
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Fig. 3 a Reference image.
b Gaussian smoothing kernel.
c Smoothed reference image.
d Smoothed reference image
with noise. The 25-pixel
values in the circles are used
as data in the image
reconstruction inversion

most informed prior model, reflecting higher-order spa-
tial statistical features, such as the channels observed in
the training image.
Note that using the training image-based prior model

implies a prior assumption that the pixel values can only
attain the values 0 and 1. Assume that Gaussian-type
prior models imply a prior assumption that the pixel
values are continuous values and normally distributed
according to the prior covariance model.

3.1.1 Linear least squares inversion

For Gaussian-type prior models, the inverse problem
can be directly solved using least squares inversion.
As the forward problem is linear and both data and
model covariance is given byGaussian statistics, the full
posterior distribution is a Gaussian probability density
function, fully characterized by the posterior mean and
covariance, N(m̃, C̃M) (from [46]):

m̃ = m0 + CM Gt (G CM G′ + CD)−1 (d0 − G m0) (9)

C̃M = CM − CM Gt (G CM G′ + CD)−1 G CM (10)

To obtain actual realizations of the posterior, we use
Cholesky decomposition of C̃M. In this way, four in-

dependent realizations have been generated, using the
prior models of ρuncorrM and ρcorrM , respectively, as seen in
Fig. 4a, b.
Perhaps not surprisingly the prior assumption of no

spatial correlation results in posterior realizations with
very little spatial structure and certainly no channel-
like structures. Assuming the spatially correlated co-
variance model, which is in fact consistent with the
two-point statistical properties of the reference training
image, some channel-like structures appear, but the ap-
parent look of the realizations is far from the channel-
like structures of the reference image and the training
image. This is probably related to the fact that Gaussian
simulation is a maximum entropy algorithm that will
lead to maximum disorder for higher-order moments.
Therefore, Gaussian simulation should not be expected
to reproduce spatial features that can only be described
by higher-order statistical moments [24].

3.1.2 Non-Gaussian prior information

Considering now the prior model defined by the train-
ing image, ρTIM , least squares inversion cannot be
used, as the model covariance cannot be described
by Gaussian statistics. Instead, we use the extended
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Fig. 4 Posterior samples using a ρuncorrM , a Gaussian spatially
uncorrelated prior model, b ρcorrM , a Gaussian spatially correlated
prior model (an exponential covariance model with a horizontal

range of 15 pixels and a vertical range of 6 pixels). c Initial model
(leftmost) and three posterior realizations using the training
image in Fig. 1a as prior model (ρTIM )

Metropolis algorithm to sample the posterior proba-
bility distribution. The sequential Gibbs sampler, as
described previously, is used to sample the prior model.
As a starting model, we use the smoothed noisy gray-

scale image of Fig. 3d where all pixel values below
0.28 is set to 0 and all pixel values above 0.28 is set
to 1. This provides a starting model consistent with
the prior choice of only ones and zeros, but where the
spatial distribution is not a realization consistent with
the higher-order statistics from the training image (see
Fig. 4c, first model).
The extended Metropolis algorithm is run for 10,000

iterations producing approximately 100 independent
realizations of the posterior probability distribution.
Three of these are shown in Fig. 4c. Note how all these
realizations contain channel-like structures, with chan-
nel thicknesses as expected from the prior model. It is
evident comparing the posterior realizations in Fig. 4a–
c that realizations based on the training image are
superior to the realizations based on Gaussian statistics
in terms of reproducing the structures of the reference
image (Fig. 3a).

3.1.3 Posterior probability of a channel

An alternative to showing realizations of the posterior
is to show, for example, the average of all possible
models, which in the least squares case coincide with
the model of maximum posterior probability, m̃. For
the Gaussian-based prior models, Fig. 5a, b shows this
model with maximum posterior probability. Compared
to the reference image of Fig. 3a, it is clear that using
the spatially correlated prior covariance model results
in a mean estimate model identifying the location of the
channel structures, although the channels themselves
have been blurred.
For the posterior realizations based on the training

image-based prior model, ρTIM , we can compute, for
example, the probability that a channel exists in each
pixel (Fig. 5c). Coincidentally, this is the same as com-
puting the point-wise average of all realizations from
the posterior. This is, however, only the case because
the prior model allows for only 0 and 1 values. Note
from Fig. 5c how the location of the channel is relatively
sharply outlined, even though it is based on averaging

97



602 Comput Geosci (2012) 16:593–611

Fig. 5 Posterior statistics. a Posterior mean estimate using the
uncorrelated Gaussian prior model, ρuncorrM . b Posterior mean
estimate using the correlated Gaussian prior model, ρcorrM . c

Probability of a channel structure given the use of the training
image-based prior model, ρTIM

all 100 posterior realizations. Thus, not only is it possi-
ble to produce realizations of the posterior with spatial
features that are consistent with a relatively complex
prior model but it is also clear that adding consistent
prior information for this case provides significantly
sharper de-blurred images.
Typical application of the Metropolis algorithm for

image reconstruction has been based on the classical
Metropolis algorithms [1, 48]. This example shows that
extended Metropolis algorithm can be a computation-
ally efficient used for image reconstruction using com-
plex prior information, as quantified by the sequential
Gibbs sampler. One of many related applications could
be in PET scanning where the scanning image for a
slice in the brain (the result of tomographic inversion)
may be relatively smooth. At the same time, one usually
has a prior knowledge of how a brain might look. The
method proposed has the potential to sharpen such

blurred tomographic images consistent with a complex
prior model.

3.2 Cross-borehole tomography

We now consider a typical geophysical inverse problem
in form of a non-linear cross-borehole inverse problem.
Using the training image in Fig. 1a, an unconditional
realization (Fig. 6a) is generated using the SNESIM
algorithm [45]. We consider this the reference velocity
model for a synthetic cross-borehole inversion problem.
An electromagnetic wave is emitted at the 20 sources

located to the left in Fig. 6a, and the corresponding
arrival times are measured at the 40 receivers located
to the right. This way 800 travel time data are recorded.
Three percent Gaussian noise is added to the synthetic
travel time data (Fig. 6b) and used as observed data,
tobs. To compute the observed travel times, we use a

Fig. 6 a Reference velocity
model and location of sources
(asterisk) and receivers
(circle). Black channel
structures have a velocity of
0.09 m/ns. The background
velocity (white) has a velocity
of 0.13 m/ns. b Calculated
first arrival travel time for
waves traveling between
sources and receivers. Three
percent normally distributed
noise was added to the travel
times
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Fig. 7 Four realizations of the prior model of type a ρ
nugget
M , b ρ

sgsim
M , c ρdssimM , and d ρTIM prior models
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finite difference solution to the eikonal equation [51].
There is thus a non-linear relation between data (travel
time delay) and model parameters (velocities).
We now consider solving the inverse problem of

inferring information about the subsurface velocity
model, using the extended Metropolis algorithm to
generate samples of the posterior probability distrib-
ution, given the observed data and an assumed noise
model. The likelihood of a given model, with associated
estimated travel time data, test(m), is computed as

L(m) = exp(−1
2
(test(m) − tobs)′C−1

D (test(m) − tobs))

(11)

where the diagonal of CD is the variance of the noise
added to the synthetic computed data.
We consider seven different prior models based on

both two-point and multiple-point random models. All
prior models are assumed to have the correct mean and
variance, as obtained from the training image in Fig. 1a.
Thus, all considered prior models are consistent with
this lower-order statistics of the training image.
The first five prior models are based on two-point

random models. A pure nugget model assumes no
spatial correlation, and thus, all model parameters are
a priori considered uncorrelated, ρnuggetM . Two models,
ρ
Gau1
M and ρ

Gau8
M , are based on a Gaussian covariance

Fig. 8 Four realizations of the prior model of type a ρ
TI90
M , b ρ

Gau1
M , and c ρ

Gau8
M
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model with an isotropic range of 1 and 8m, respectively.
The ρ

sgsim
M prior is based on a covariance model inferred

from the training image in Fig. 1a, as an exponential
covariance model with a horizontal range of 6.6 m and
a vertical range of 2.2 m. ρdssimM is the same as ρ

sgsim
M ,

except that the correct binary distribution from the
training image is assumed, such that pixel values can
only be white or black, with a prior probability of a
black pixel (indicating a channel) of 0.3, and hence a
prior probability of a white pixel of 0.7. ρTIM is based on
the multiple-point statistical model inferred from the
training image in Fig. 1a. The last prior, ρTI90M , is based
on the multiple-point statistical model inferred from
the training image rotated 90◦ clockwise. The four prior
models, ρnuggetM , ρsgsimM , ρdssimM , and ρTIM reflect increasing
order of statistics consistent with the training image
from which the reference model was generated. The
other considered prior models are, to a different extent,
in conflict with the actual statistical model that was used
to generate the reference model.
Figures 7 and 8 show four unconditional realizations,

i.e., a sample, of the seven considered prior models.
For each of these prior models, an extendedMetropolis
algorithm is run for 35,000 iterations. The VISIM [18]
and SNESIM [45] programs have been used to perform
sequential simulation, needed for applying the sequen-
tial Gibbs sampler, for two-point and multiple-point
based prior models, respectively. Figure 9 shows the
corresponding negative log-likelihood of all considered
models as a function of iteration number. Figures 10
and 11 show the current model at iteration 20,000,
25,000, 30,000, and 35,000.
The initial phase of running the extendedMetropolis

algorithm is called the “burn-in” phase. This involves a
random search for a location in the model parameter

space where the forward responses of the models fit
data within their uncertainty. One can locate the end
of the burn-in process from Fig. 9 as the iteration
number where the log-likelihood curve flattens out.
The average negative log-likelihood of realizations of
the Gaussian noise model is −N/2 = −400, where N =
800 is the number of data. Thus, if allowed by the
prior model, the log-likelihood curve should flatten out
around a value of−400, indicating that sampled models
fit data within their uncertainty. When the burn-in
phase has been completed, the algorithm has converged
and starts sampling the posterior probability distribu-
tion. Methods for determining when a Metropolis algo-
rithm has converged can be found in, e.g., [4, 7, 12].
It is clear from Fig. 9 that the burn-in phase has

not been completed in the considered 35,000 iterations,
when using the ρ

nugget
M prior. The corresponding log-

likelihood curve never flattens out, nor does it reach a
level that indicates that the data are fitted within their
uncertainty. Using ρ

Gau1
M , the burn-in phase seems to be

completed after around 20,000 iterations. Note, how-
ever, that the associated log-likelihood level indicates
that the data are relatively poorly matched. In any case,
using a prior model with just a little spatial correlation,
as when considering ρ

Gau1
M , results in a sampling algo-

rithm that is muchmore efficient than when considering
no spatial correlation.
As the information content of the prior is increased,

considering ρ
nugget
M , ρ

sgsim
M , ρdssimM , and ρTIM , the burn-in

phase is completed increasingly faster, namely at iter-
ation number ∞, 4,000, 3,800, and 1,000, respectively.
This indicates that the computational complexity of
finishing the burn-in phase and hence sampling the
posterior probability density is also affected by the
information content of the chosen prior. An analysis

Fig. 9 Negative log-likelihood as a function of iteration number for different choices of prior model
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Fig. 10 Current model at iteration number 20,000, 25,000, 30,000, and 35,000 using the a ρ
nugget
M , b ρ

sgsim
M , c ρdssimM , and d ρTIM prior

models, respectively
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of the sampling efficiency of the extended Metropo-
lis algorithm reveals that, on average, 15,000, 6,000,
and 2,500 iterations are needed, considering the ρ

sgsim
M ,

ρdssimM , and ρTIM priors, respectively, in order to obtain
an independent realization of the posterior probability
distribution. This means that using the ρTIM prior results
in a sampling algorithm that is six times more compu-
tational efficient than when using the ρ

sgsim
M prior and

about a factor of 2 more efficient than when using the
ρdssimM prior. For this example, all three prior models
with spatial constraints, ρsgsimM , ρdssimM , and ρTIM , perform
up to infinitely more efficient that when using the
ρ
nugget
M prior.

All the prior models inconsistent with the true model
(ρTI90M , ρGau1M , and ρ

Gau8
M ) perform worse that when using

the ρTIM prior. Yet, they also all perform much better
than when considering the ρ

nugget
M prior.

Figures 7d and 10d illustrate that the use of the
movie strategy, as discussed previously [46], is clearly
possible using complex priors such as ones based on
training images. Figure 7d shows four independent
realizations of ρTIM . It is thus a visualization of the
prior assumptions inherent in ρTIM . Figure 10d shows a
corresponding sample in the form of four independent
realizations of the posterior pdf, σTI, and is thus a
graphical representation of the state of information of

Fig. 11 Current model at iteration number 20,000, 25,000, 30,000, and 35,000 using the a ρ
TI90
M , b ρ

Gau1
M , and c ρ

Gau8
M prior models
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the model parameters obtained by merging the states
of information as given by the prior and the likelihood,
Eq. 2. The differences between Figs. 7d and 10d can be
explained by data.
Of the seven considered prior models, it is only using

the ρTIM prior model that result in an actual sample in
Figs. 10 and 11. All other sets of models are either
statistically dependent, or reflect a model at a timestep
where the Metropolis algorithm has not yet converged.
This simple example suggests that an otherwise rel-

atively easy inverse problem, such as the inversion of
first arrival time data, becomes virtually unsolvable us-
ing a noninformative prior such as ρ

nugget
M . It, however,

also shows that any consistent prior information will
lead not only to samples of the posterior probability
distribution that are more geologically realistic but also
to a much more efficient sampling algorithm.

4 Sequential Gibbs sampling used for optimization

Simulated annealing [28] is an optimization method
closely related to the Metropolis algorithm. Therefore,
it might seem appealing to use the sequential Gibbs
sampler in combination with simulated annealing in
order to locate the model with maximum posterior
probability, consistent with both the prior and the data
likelihood. This is, however, not readily possible.
One feature of the extended Metropolis algorithm

is that an actual measure of the prior probability for a
given model, ρM(m), need not be explicitly computed.
It is sufficient that a black box algorithm exists that
perform a random walk according to the prior, which
we here propose to do using sequential Gibbs sampling.
When using the simulated annealing algorithm, one

must evaluate the posterior probability of a given
model in each iteration. This can be done for simple
Gaussian prior models [29], but there is presently no
way of evaluating the prior likelihood of more complex
prior models based on training images. As the prior
likelihood cannot be computed, neither can the poste-
rior probability.
If the sequential Gibbs sampler is used as part of

a simulated annealing algorithm for proposing models
and the likelihood, L(m), used to evaluate each model,
then such an algorithm would not end up in the max-
imum posterior model. It would end up in the model
with maximum data likelihood of all possible prior
models. Say the prior is given by a Gaussian model.
Then all models will have non-zero prior probability.
Using the simulated annealing method as described
above will then simply, in infinite time with infinite
slow cooling, locate the model with maximum data

likelihood and not the model with maximum posterior
probability. The prior will in this way have no effect
of the final optimization result. For a prior based on
multiple-point statistics, some models will have a prior
probability of zero, and hence, not all models will be ac-
ceptable a priori. In such a case, themodel located using
optimization as considered above will not necessarily
be the maximum likelihood model nor the model with
maximum posterior probability, but the one model of
all prior acceptable models with maximum likelihood.
Thus, using the sequential Gibbs sampler is not

suited to solve optimization problems, as part of, for
example, simulated annealing, or optimization of the
posterior pdf in general, because the actual prior prob-
ability of a given model cannot be computed, which
makes it impossible to locate the model with maximum
posterior probability. Note that the same conclusions
can be made using optimization based on the gradual
deformation method [29] and the probability pertur-
bation method [6], which are two methods that can
be used to gradually change a realization of a random
function based on two-point and multiple-point geosta-
tistics, respectively. Likewise, the optimization method
proposed byMariethoz et al. [30], based on a prior sam-
pler resembling the sequential Gibbs sampler, will not
locate the model with maximum posterior probability.

5 Conclusion

We have proposed an algorithm, sequential Gibbs sam-
pling, that can be used to randomly sample a prior
model described by any statistical model for which con-
ditional realizations can be generated using sequential
simulation. No analytical closed form expression of the
prior pdf is needed. We have laid out the theoretical
background for applying the algorithm and shown that
it is guaranteed to sample, using arbitrarily large or
small step lengths, any random function that can be
sampled using sequential simulation.
These properties make it ideal to use as a way to

sample complex prior models as part of the extended
Metropolis algorithm, allowing sampling of the poste-
rior probability density function of non-linear inverse
problems using realistic prior information.
Through two case studies, we have demonstrated

how samples from the posterior probability density
function can honor both data and a relatively complex
prior. The variability of realizations of the posterior pdf
decreases as the level of consistent prior information is
increased.
We have also demonstrated that the choice of a

noninformative prior, such as the uniform prior, while
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not in conflict with the true subsurface, may cause the
inverse problem to become practically unsolvable as
the number of model parameters increase. In prac-
tice, we have demonstrated how the inclusion of prior
information increases the computational efficiency of
the Metropolis sampling algorithm. As consistent prior
information increases, the computational demands for
generating unconditional realizations of the posterior
pdf decreases. Likewise, inconsistent prior information
tends to increase the computational demands for run-
ning the Metropolis sampling algorithm.
This suggest that if at all possible, an effort should

be made to obtain a prior model consistent with the
problem at hand. This can be achieved through, for ex-
ample, geological expert knowledge, information from
outcrops, or from other independent experiments.
State-of-the-art geostatistical algorithms, based on

sequential simulation, can already today produce re-
alizations of quite complex random models, reflecting,
for example, realistic geological features. There is no
sign that this development will stop, and therefore, the
future will probably allow even more complex patterns
and realistic models to be simulated. Such progress will
have an immediate impact on solving inverse problems
using sequential Gibbs sampling as we have discussed
here.
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Appendix: The Gibbs sampler with multiple parameter
perturbations

Consider a Gibbs sampler with multiple parameter
perturbations, perturbing in iteration k all parameters
belonging to resimulation areaUk. Its transition proba-
bility Pk(mi|m j), the probability that the algorithm in
iteration k jumps to model mi, given that it came from
m j, is given by:

Pk(mi|m j) =
⎧⎨
⎩

p(mi)∑
mk∈Nk

j

p(mk)
mi ∈ N k

j

0 otherwise
(A1)

whereN k
j is the set of all points that are identical tom j

in parameters not belonging to the resimulation area
Uk, and p(m) is the desired sampling distribution.
If mi ∈ N k

j , we can show the following symmetry
property for Pk(mi|m j):

Pk(mi|m j)p(m j)dmidm j = p(mi)∑
mk∈N k

j

p(mk)
p(m j)dmidm j

= p(m j)∑
mk∈N k

i

p(mk)
p(mi)dmidm j

= Pk(m j|mi)p(mi)dmidm j

where we have used that N k
j = N k

i . This property,
called detailed balance, expresses that the probability
of the transition m j → mi equals the probability of
the reverse transition mi → m j in iteration k. Detailed
balance guarantees that once the algorithm is sampling
p(m), it will continue to sample p(m). This means that
p(m) is an equilibrium sampling distribution for the
algorithm [35].
It can be shown (see, e.g., Mosegaard and Sambridge

[35]) that if our transition probability distribution
P(xi|x j) satisfies two particular conditions (in addition
to detailed balance), then p(x) will be the only equi-
librium distribution and so the algorithm will converge
toward p(x) regardless of the starting distribution. The
two conditions are:

1. Aperiodicity. The probability that an iteration of
the algorithm results in the trivial move m j −→
m j is non-zero. This is clearly satisfied by our
algorithm.

2. Irreducibility. It is possible to go from any point m j

to any other pointmi inM , given a sufficient num-
ber of iterations. This requirement is satisfied by
our algorithm if, in K iterations, there is non-zero
probability that any model parameter is perturbed.
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Monte Carlo full waveform inversion of tomographic crosshole data using complex geostatistical a 
priori information 
Knud S. Cordua*, Thomas M. Hansen, and Klaus Mosegaard, Technical University of Denmark, Department of 
Informatics and Mathematical Modelling 

Summary 

This paper presents a Monte Carlo full waveform inversion 
strategy based on a Bayesian formulation of the inverse 
problem. Existing full waveform inversion strategies often 
relies on a migration based approach, which suffers from 
lack of uncertainty estimates. Using a Bayesian approach, 
the solution to the inverse problem is formulated as an a 
posteriori probability density. We demonstrate that samples 
from the solution to the full waveform inverse problem can 
be obtained using the extended Metropolis algorithm in 
conjunction with complex a priori information. The a priori 
information is described by a training image using a 
geostatistical algorithm. A posteriori samples from the 
solution to the inverse problem provide a means of 
obtaining resolution analysis of the solution. The suggested 
strategy is tested on synthetic crosshole full waveform 
ground penetrating radar (GPR) data, but is equally well 
applicable to seismic waveform data. The forward problem 
is solved using finite-difference time-domain calculations 
of Maxwell’s equations. To our knowledge this is the first 
example of performing full waveform inversion using the 
extend Metropolis Algorithm and, in this way, provide an 
uncertainty estimate of a tomographic full waveform 
inverse problem.  

Introduction

Ground penetrating radar (GPR) crosshole tomography is a 
popular method used to obtain tomographic images of near-
surface geological structures and geophysical parameters. 
The crosshole GPR experiment involves a transmitting 
radar antenna (20 MHz – 1 GHz, (see Reynolds, 1997)) 
lowered into a borehole and a receiving antenna placed in 
an adjacent borehole. The boreholes are typically separated 
by a distance of 5m – 20m and are 10 m – 20 m deep. The 
transmitting antenna is kept fixed in one borehole while the 
signal is recorded at multiple locations in the opposite 
borehole. This procedure is repeated for multiple 
transmitter positions until the inter borehole section has 
been covered with measurements. For a corresponding 
seismic experiment the source pulse frequency is typically 
in the order of 500Hz – 1000 Hz (e.g. Paasche et al., 2006; 
Belina et al., 2009).  

Ray-based inversion of first arrival travel times and 
amplitudes of GPR or seismic data provide estimates of the 
signal velocity and attenuation distribution of the inter-
borehole region. Unfortunately, ray-theory is based on a 

high-frequency approximation and accounts only for a 
small part of the information content of the full waveform 
signal. Therefore, tomographic images obtained using ray-
theory are limited in resolution. 

Ernst et al. (2007a,b) introduced and applied an algorithm 
for inversion of  tomographic crosshole GPR data. This 
code was modified by Belina et al. (2009) and applied to 
seismic waveform data. Ernst et al. (2007a,b) and Belina et 
al. (2009) demonstrated that sub-wavelength features can 
be resolved by properly modelling the wave propagation 
and, hence, utilizing the full information content of the 
waveform data. The algorithm introduced by Ernst et al. 
(2007a,b) relies on the migration-based full waveform 
inversion concept introduced by Tarantola (1984). This 
method is desirable because it, in relatively few iterations, 
is able to infer geophysical parameters in order to minimise 
a misfit function between the observed and modelled 
waveforms. However, the migration based approach has 
some limitations: Firstly, the method depends on a good 
initial guess of the large scale features of the solution in 
order to ensure convergence. Secondly, when using this 
method in a tomographic crosshole setup, a dense receiver 
and transmitter coverage is needed in order to avoid 
numerical artefacts along the boreholes. Finally, the method 
is based on an optimization algorithm and does not provide 
any uncertainty estimate of the solution. 

Here, we formulate the GPR crosshole problem as a 
probabilistic, Bayesian, full waveform inverse problem. We 
use the extended Metropolis Algorithm (Mosegaard and 
Tarantola, 1995) to obtain samples of the a posteriori pdf. 
In this way, not only a single estimate, but multiple 
realizations of tomographic images which all honour the 
data uncertainties and a priori information are provided. 
This, in turn, provides a means of performing resolution 
analysis of the solution (Mosegaard, 1998). The a priori 
information about the problem is controlled through a 
geostatistical algorithm. This approach allow us to
incorporate complex a priori information described by both 
2-point and multiple-point statistics. In this study we limit 
the example only to concern a priori information described 
by a training image (i.e. multiple-point statistics). We 
demonstrate how geostatistical formulated a priori 
information serves as a guide in the initial part of the 
inversion procedure. In this way convergence of the 
suggested full-waveform inversion algorithm becomes 
independent of the initial model. 
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Methodology 

Consider that the subsurface can be represented by a 
discrete set of model parameters, , and that a data set, m
d , of indirect observations of the model parameters is 
provided. The model parameters describe some physical 
properties of the subsurface that influences the data 
observations. Hence, the forward relation between the 
model parameters (i.e. the model) and the data observations 
can be expressed as (e.g. Tarantola, 2005):  

( )gd m ,   (1) 

where g is a linear or non-linear mapping operator which 
often relies on a physical law. Here, the forward relation in 
equation (1) is given as a finite-difference time-domain 
solution of Maxwell’s equations. However, any numerical 
wave propagation modelling strategy for GPR or seismic 
signals can be applied. The inverse problem is to infer 
information about the model parameters based on a set of 
observations, a priori information about the model, and the 
forward relation between the model and the data 
observations.

In a Bayesian formulation the solution to the inverse 
problem is given as an a posteriori probability density, 
which can be formulated as (e.g. Tarantola, 2005): 

( ) ( ) ( )M Mk Lm m m ,  (2) 

where k is a normalization constant, ( )M m is the a priori 
probability density, and  is the likelihood function. ( )L m

( )M m  describes the probability that the model satisfies 
the a priori information.  describes how well the ( )L m
modelled data explains the observed data given a data 
uncertainty. Hence, the a posteriori probability density 
describes the probability that a certain model is a solution 
to the inverse problem.  

A highly nonlinear inverse problem refers to the case where 
the a priori probability density is far from being Gaussian 
or the forward relation between the model and data are far 
from being linear. In the case of full waveform inversion 
the forward relation is expected to be highly nonlinear. 
Moreover, the a priori information described by a training 
image is highly non-Gaussian. 

The extended Metropolis algorithm is a versatile tool 
which, in particular, is useful to obtain samples from 
solutions to non-linear inverse problems using arbitrarily 
complex a priori information. The minimum requirement of 
the algorithm is; 1) a “black box” algorithm that is able to 
sample the a priori probability density and, 2) a “black box” 

algorithm that is able to compute the likelihood for a given 
set of model parameters. The flowchart of the extended 
Metropolis algorithm is as follows: 1) The a priori sampler 
proposes a sample, proposem , from the a priori probability 
density, which is a perturbation of a previous accepted 
model, . 2) The proposed sample is accepted with the acceptm
probability (known as the Metropolis rule):  

( )
min 1,

( )
propose

accept
accept

L
P

L
m
m

  (3) 

3) If the proposed model is accepted, proposem s a sample of  i

the a posteriori probability and proposem  becomes acceptm .

Otherwise proposem ejected. 4) The procedure is  is r
continued until a desirable number of models have been 
accepted.  

In this study the algorithm that provides the a priori 
information is the Single Normal Equation SIMulation 
(snesim) algorithm, which is a fast geostatistical algorithm 
that produces samples (conditional or unconditional) from 
an a priori probability density defined by a training image 
for a relatively low number of categorical values (Strebelle, 
2002). Hansen et al. (2008) suggest a strategy termed 
perturbed simulation, which is capable of producing 
perturbations of spatial distributions using geostatistical 
algorithms. Thus, perturbed simulation serves as a “black 
box” that produces samples of a priori probability densities 
described by both two-point and multiple-point statistics. 
The flow of this algorithm is as follows: 1) An initial 
unconditional sample of the a priori probability density 
(here defined by a training image) is provided. 2) A subarea 
of the sample is randomly chosen. 3) The model parameters 
within this area are set to unknown. 4) The unknown model 
parameters are resimulated conditional to the rest of the 
model parameters using a geostatistical algorithm (here 
snesim) and a perturbation is obtained. 5) This procedure is 
repeated in order to obtain multiple samples of the a priori 
probability density.  

The size of the perturbation area governs the exploratory 
nature of the Metropolis algorithm. The size of the 
perturbation area is chosen subjectively. In the extreme case 
where the area covers the entire model the outcome of the 
perturbed simulation algorithm is uncorrelated to the 
previous model. Contrary, if the area only constitutes a 
single model parameter, the perturbed model is highly 
correlated with the initial model. According to the 
metropolis rule a small perturbation area results in a 
proposed model that is more probable of being accepted as 
compared to a proposed model obtained using a larger 
perturbation area. Therefore, the perturbation area should 
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be chosen carefully in order to ensure an efficient 
algorithm. Gelman et al. (1996) found that the acceptance 
rate should be around 23% for high-dimensional 
distributions. For large acceptance rates the algorithm is 
exploring the a posteriori probability density too slowly. On 
the other hand, for smaller acceptance rates too many 
computationally expensive trials are performed. Therefore, 
we suggest to automatically change the size of the 
perturbation area while running the algorithm such that a 
certain acceptance rate is maintained. A constant 
acceptance rate results in a larger perturbation area in the 
burn-in period than in the subsequent sampling period.  
This effect is beneficial because the algorithm needs to 
perform large perturbations in the initial part in order to 
find models of large probability and, hence, produce 
representative samples of the a posteriori probability 
density. 

Finally, the likelihood function is defined as a Gaussian 
distribution: 

2

1

1( ) exp ( ( ) ) /
2

N
i i

obs
i

L k g dm m , (4) 

where  represents the amplitude of the individual ( )ig m
sample points of all the simulated waveforms obtained 
through equation (1) (i.e. the FDTD algorithm) and  are i

obsd
the sample points of the observed waveform data.  is the 
standard deviation of the expected amplitude uncertainty of 
the waveform data. 

Results and discussion 

Figure 1 shows a training image that mimic a matrix of clay 
with embedded channels of unconsolidated sand. 
Electromagnetic signals in near surface sediments are 
sensitive to the dielectric permittivity and the electrical 
conductivity of the materials. In this study we limit 
ourselves only to consider the influence of the dielectric 
permittivity, which is primarily governing the phase 
velocity of the signal. Water saturation of clay is often high 
compared to sandy deposits. Therefore, the dielectric 
permittivity of the clay is set to a relative dielectric 
permittivity of r 4,57 (0,14m/ns)  and the permittivity of 
the sand channels is set to r 2,75 (0,18m/ns) (e.g. Topp 
et al., 1980). Figure 2 (left) is the synthetic reference to be 
considered and is, at the same time, an unconditional 
sample of the training image obtained using snesim. The 
electrical conductivity is set to a constant value of 3 mS/m 
and is, in the following, assumed known. 

A full waveform synthetic data set is calculated using the 
FDTD algorithm. A Ricker wavelet with a central 

frequency of 100 MHz is used as source pulse. The source 
pulse is assumed known during the inversion. The 
transmitter and receiver positions are separated by 2 m and 
0.25 m, respectively (see figure 2 left). Data acquired with a 
transmitter-receiver angle larger than 45 degrees from 
horizontal are omitted since, in practice, these data are 
violated by effects of wave guiding in the boreholes (cf. 
Peterson, 2001). This leads to a total of 248 data 
observations (i.e. recorded waveforms).  
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Figure 1. Training image which mimic sandy channel 
structures embedded in a matrix of clay deposits.  
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Figure 2. Left) Synthetic reference model. Black asterisks 
show transmitter positions and the yellow dots show 
receiver positions. Right) The initial model used as input 
for the inversion. 

Noise is subsequently added to the data by performing a 
random phase shifting of the synthetic waveforms. The 
phase shift is normal distributed with zero mean and a 
standard deviation of 0.4 ns since this is a typical 
magnitude found in GPR travel time data (e.g. Looms et al, 
in press). The phase shift results in an amplitude 
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uncertainty with a standard deviation of . Accordingly, 
the standard deviation of the data uncertainties,

310
, is set to 

. The standard deviation of the amplitude noise is 
indicated by the red error bar in figure 3 and compared with 
two waveforms recorded at 0 degrees (short offset / high 
amplitude) and 45 degrees transmitter-receiver angles (long 
offset / low amplitude), respectively.  
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Figure 3. Dashed line is a waveform recorded at short 
transmitter-receiver offset (0 degrees). Solid line is a 
waveform recorded at long offset (45 degrees). The height 
of the red errorbar indicates 2 times the standard deviation 
of the noise added to the data.  
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Figure 4. Five statistically independent samples from the a 
posteriori probability density of the full waveform inverse 
problem.

The initial model used for the Metropolis algorithm is 
chosen as an unconditional sample of the training image 
using a different random seed than for the reference model 
(see figure 2 right). Burn-in was reached after 2000 
accepted models. Hereafter samples accepted by the 
Metropolis rule are representative samples of the a 
posteriori probability density. Figure 4 shows the 2000th,
6000th, 1000th, 14000th, and 18000th accepted sample using 
a priori information defined by the training image (figure 1) 
and Gaussian data uncertainty (equation 4). Only a slight 
deviation between the individual samples is seen, which 
indicates little a posteriori model uncertainty. Figure 5 
shows the a posteriori mean and variance based on 18000 
samples from the a posteriori probability density after the 
burn-in period. From the a posteriori variance it is seen that 

the overall structures of the model is recovered (variance 
close to or equal to zero) whereas the higher variances 
along the edges between the clay and sand deposits are 
subjected to uncertainty. A comparison between the 
reference model (figure 2 left) and the mean of the samples 
(figure 4 right) confirms that the waveform inversion is able 
to recover the sand structures very well. Moreover, it 
should be noted that the algorithm is able to reach these 
results even though it is initiated in a model uncorrelated 
with the reference model (compare figure 2 right and left).  
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Figure 5. Mean (left) and variance (right) of 18000 samples 
drawn from the a posteriori probability density of the 
solution to the full waveform inverse problem.  

The suggested Monte Carlo inversion strategy is preferable 
in that it allows for arbitrary antennae geometry. 
Furthermore, complex a priori inversion can be included 
using the perturbed simulation algorithm. Finally, a full 
data covariance matrix can be included in order to account 
for correlated data errors, which are often present in 
tomographic inverse problems (e.g. Maurer and Musil, 
2004; Cordua et al., 2008, 2009). However, note that this 
exhaustive sampling strategy needs substantially more 
computationally expensive forward calculations compared 
to the traditional migration based approach.  

Conclusions  

We have demonstrated the potential of producing samples 
of the solution to a tomographic full waveform inverse  
problem using the extended Metropolis algorithm with 
complex a priori information. The methodology provides a 
means of evaluating the a posteriori uncertainty, which is 
not provided using optimisation based strategies for full 
waveform inversion. Moreover, the present approach is 
robust with regard to the initial guess of the solution and the 
transmitter-receiver density. Finally, the extended 
Metropolis Algorithm is flexible regarding the choice of a 
priori information and specification of data uncertainties. 
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Monte Carlo full-waveform inversion of crosshole GPR data
using multiple-point geostatistical a priori information

Knud Skou Cordua1, Thomas Mejer Hansen1, and Klaus Mosegaard1

ABSTRACT

We present a general Monte Carlo full-waveform inversion
strategy that integrates a priori information described by geos-
tatistical algorithms with Bayesian inverse problem theory. The
extended Metropolis algorithm can be used to sample the a pos-
teriori probability density of highly nonlinear inverse problems,
such as full-waveform inversion. Sequential Gibbs sampling is a
method that allows efficient sampling of a priori probability
densities described by geostatistical algorithms based on either
two-point (e.g., Gaussian) or multiple-point statistics. We out-
line the theoretical framework for a full-waveform inversion
strategy that integrates the extended Metropolis algorithm with
sequential Gibbs sampling such that arbitrary complex
geostatistically defined a priori information can be included.
At the same time we show how temporally and/or spatially
correlated data uncertainties can be taken into account
during the inversion. The suggested inversion strategy

is tested on synthetic tomographic crosshole ground-penetrating
radar full-waveform data using multiple-point-based a priori
information. This is, to our knowledge, the first example of ob-
taining a posteriori realizations of a full-waveform inverse
problem. Benefits of the proposed methodology compared with
deterministic inversion approaches include: (1) The a posteriori
model variability reflects the states of information provided by
the data uncertainties and a priori information, which provides a
means of obtaining resolution analysis. (2) Based on a posteriori
realizations, complicated statistical questions can be answered,
such as the probability of connectivity across a layer. (3) Com-
plex a priori information can be included through geostatistical
algorithms. These benefits, however, require more computing
resources than traditional methods do. Moreover, an adequate
knowledge of data uncertainties and a priori information is re-
quired to obtain meaningful uncertainty estimates. The latter
may be a key challenge when considering field experiments,
which will not be addressed here.

INTRODUCTION

Albert Tarantola was one of the pioneers of seismic full-waveform
inversion (see Tarantola, 1984, 1986, 1988). Using a steepest descent
algorithm, he obtained the update gradient in each iteration by cor-
relating a forward-propagated wavefield with the residual wavefield
propagated backward in time from the receiver positions. This ap-
proach has later been referred to as the adjoint method (Talagrand
and Courtier, 1987). The first numerical tests based on finite-
difference simulations of the seismic signal showed promising re-
sults (Gauthier et al., 1986). Since then, several full-waveform inver-
sion algorithms, based on Tarantola’s pioneering work, have been
developed and applied to seismic data (e.g., Mora, 1987; Crase
et al., 1990; Pica et al., 1990; Djikpéssé and Tarantola, 1999).

Ground-penetrating radar (GPR) crosshole tomography is a pop-
ular method used to obtain tomographic images of near-surface geo-
logical structures and geophysical parameters. The crosshole GPR
experiment involves a transmitting radar antenna (20 MHz–
1 GHz; see Reynolds, 1997) lowered into a borehole and a receiving
antenna placed in an adjacent borehole. The boreholes are typically
separated by a distance of 5 m–20 m and are 5 m–100 m deep (e.g.,
Ernst et al., 2007a; Looms et al., 2008). An antenna is kept fixed in
one borehole, while the other antenna is moved between multiple
locations in the opposite borehole. The fixed antenna is moved to
a new position and the procedure is repeated. At each combination
of antennae positions a signal is transmitted between the antennae.
In this way an arbitrary dense tomographic data set that covers the
interborehole region can be obtained (Peterson, 2001).
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Ernst et al. (2007a, 2007b) introduced and applied the adjoint-
based optimization algorithm for inversion of tomographic cross-
hole GPR full-waveform data. They demonstrate that subwave-
length features can be resolved when the full-waveform
information of the GPR signal is accounted for during the inversion,
which was a considerable improvement, compared with traditional
ray-based inversion strategies. The inversion scheme of Ernst
et al. (2007b) was later adopted for inversion of seismic waveform
data by Belina et al. (2009). Recently, the algorithm of Ernst et al.
(2007b) has been improved such that it exploits the full vector field
of the electromagnetic wave propagation and allows for arbitrary
antennae geometry (Meles et al., 2010). Klotzsche et al. (2010) de-
monstrate an application of the improved code to crosshole GPR
waveform data acquired in a gravel aquifer. Lately, Meles et al.
(2011) demonstrated that the adjoint-based method of Ernst
et al. (2007b) becomes less sensitive to the starting model when
the inversion is conditioned to the long wavelengths of the signal
in the initial part of the inversion and higher frequencies are gra-
dually incorporated.
The adjoint-based approach is desirable because, in relatively few

iterations, it is able to obtain a model of geophysical parameters that
minimize a misfit (i.e., objective) function between the observed
and modeled waveforms. However, this inversion strategy has some
limitations. First, the method is based on linearization of the inverse
problem and, therefore, it cannot be guaranteed that the global mini-
mum is found (e.g., Tarantola, 2005). Second, the convergence cri-
terion is chosen somehow subjectively, which may adversely result
in noise propagating into the model estimate (e.g., Ernst et al.,
2007b). Finally, the method is based on a linear assumption of
the forward relation and is limited to Gaussian data uncertainty
and a priori information, which results in a Gaussian approximation
of the a posteriori uncertainty estimate (Tarantola, 1984; Pratt and
Worthington, 1990). Here we propose an algorithm that naturally
deals with these limitations.
In a Bayesian formulation, the solution to the inverse problem is

given as an a posteriori probability density (Tarantola and Valette,
1982). The a posteriori probability is based on the independent
states of information provided by the data (related to the model
parameters through a physical law), an associated data uncertainty
model (that takes into account data noise and data simulation inade-
quacies), and the a priori information on the model. The combined
states of information contained in the a posteriori probability den-
sity are reflected in the model variability of the a posteriori sample.
Hence, data uncertainties will not cause artifacts in the solution, but
rather influence the degree of a posteriori model variability if the
nature of the uncertainties is appropriately accounted for in the un-
certainty model. Resolution analysis is naturally obtained from the a
posteriori model variability. One may simply be interested in cal-
culating the covariance of the a posteriori model parameters, but
more sophisticated questions, such as the probability of geological
connectivity or the residence time of a fluid, may also be answered
by the a posteriori statistics (Mosegaard, 1998).
The extended Metropolis algorithm (Mosegaard and Tarantola,

1995) can be used to sample the a posteriori probability density,
even for highly nonlinear inverse problems. This algorithm does
not need a closed form mathematical expression of the a priori in-
formation, but a “black box” algorithm that is able to sample the a
priori probability density is sufficient. Hansen, et al., (2008;
2012) suggested a method that provides a means of controlling

the perturbation step size and efficiency when sampling a priori
information defined through any geostatistical algorithms that is
based on sequential simulation (e.g. Gomez-Hernandez and
Journel, 1993). This method is referred to as sequential Gibbs sam-
pling (Hansen et al., 2012). They demonstrate that this method
could serve as a black box algorithm in the extended Metropolis
algorithm. Sequential Gibbs sampling can be used to sample a priori
models based on either relatively simple two-point based statistical
models, such as Gaussian-based a priori models, or more complex
multiple-point-based statistical models. This provides a means of
using complex a priori statistical models that allow reproduction
of geologically plausible structures, such as channels and tortuosity.
Such complex patterns (i.e., spatial autocorrelation) can be learned
from so-called training images and reproduced by simulation algo-
rithms based on multiple-point statistics (e.g., Strebelle, 2002).
Multiple-point algorithms offer the flexibility of simulating realiza-
tions with high entropy (e.g., Gaussian distributions) as well as low
entropy (i.e., a few facies) structures or a combination of both
(Journel and Zhang, 2006). See for example Remy et al. (2008)
for different examples of such complex statistical models. In this
way, the extended Metropolis algorithm becomes very flexible with
regard to the choice of a priori model.
Since his seminal work on the full-waveform inverse problem,

Albert Tarantola had the vision that realistic a priori information
for inversion could be learned from a large collection of “training
images” of the subsurface (Mosegaard, 2011). In this paper we
demonstrate how this is made possible by using the extended
Metropolis algorithm in conjunction with a priori information de-
fined by a geostatistical algorithm using sequential Gibbs sampling.
Initially, the theoretical background for this inversion strategy is
outlined. Subsequently, the theory is applied to a tomographic
crosshole GPR full-waveform inverse problem in which the a priori
information is inferred (i.e., learned) from a training image and rea-
lized through the geostatistical algorithm Single Normal equation
SIMulation (Snesim) (Strebelle, 2002). Full-waveform data traces
are often contaminated by noise and are, in addition, subject to un-
certainties related to inadequacies in the data simulation algorithm.
These components of data uncertainty do often exhibit some degree
of temporal correlation. In this study, we consider a Gaussian-
distributed data uncertainty component with a temporal autocorre-
lation. We show how this uncertainty is accounted for in the inver-
sion through the data uncertainty model.
Tarantola (2005) was a proponent of the movie strategy, in which

“movies” of multiple realizations from the a priori and a posteriori
probability densities are compared, to understand the additional in-
formation provided by the data compared with the a priori informa-
tion. Features that occur frequently in the a posteriori movie are
regarded as well resolved. We show that the movie strategy provides
a means of obtaining resolution analysis of the full-waveform
inverse problem. Moreover, we demonstrate how a posteriori reali-
zations can be used to quantify the probability of lithological con-
nectivity. The term resolution is, in this paper, used such that high a
posteriori model variability refers to low resolution and vice versa
(Mosegaard, 1998). To our knowledge this is the first example of
sampling the a posteriori probability density of a tomographic full-
waveform inverse problem. Resolution analysis of the problem re-
veals that the combined states of information from the full-wave-
form data and the a priori information provides a high-resolution
subsurface image, even in the case of considerably sparse data
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coverage. Finally, we demonstrate how the geostatistically formu-
lated a priori information serves as a guide in the initial burn-in part
of the inversion procedure. In this way, convergence of the sug-
gested full-waveform inversion algorithm becomes independent
of the initial model.
The present method is completely explicit with regard to the data

uncertainty model and a priori information. Establishment of an
adequate a priori information and data uncertainty model (compris-
ing data noise and modeling inadequacies) demands effort from the
user to obtain trustworthy a posteriori probability density. These
issues are far from trivial when considering field experiments
and are beyond the scope of this work.

METHODOLOGY

Consider that the subsurface can be represented by a discrete set
of model parameters, m (referred to as the model) and that a data
set, d, of indirect observations of the model parameters is provided.
The model parameters describe some physical properties of the sub-
surface that influence the data. Hence, the forward relation between
the model and the data can be expressed as the relation (e.g.,
Tarantola, 2005)

d ¼ gðmÞ; (1)

in which g is a linear or nonlinear mapping operator that often relies
on a physical law. In this particular study the model represents a
tomographic image of dielectric permittivity of the subsurface ma-
terial, and data are waveforms of the vertical electrical component
of electromagnetic waves propagated across the model between two
boreholes. The forward relation in equation 1 is given as a finite-
difference time-domain (FDTD) solution of Maxwell’s equations
(Ernst et al., 2007b). However, any numerical wave propagation
modeling strategy (for GPR or seismic signals) can be applied.
The inverse problem is to infer information about the model para-
meters on the basis of a set of data (and their uncertainties), a priori
information about the model, and the forward relation between the
model and the data.
In a Bayesian formulation the solution to the inverse problem is

given as an a posteriori probability density, which can be formulated
as (e.g., Tarantola, 2005)

σMðmÞ ¼ cρMðmÞLðmÞ; (2)

where c is a normalization constant, ρMðmÞ is the a priori probabil-
ity density, and LðmÞ is the likelihood function. ρMðmÞ describes
the probability that the model satisfies the a priori information.
LðmÞ describes how well the modeled (i.e., simulated) data explain
the observed data, given a statistical description of the data noise
and modeling inadequacies (from here on referred to as the data
uncertainty model). Hence, the a posteriori probability density de-
scribes the resulting state of information on the model parameters
provided by the independent states of information given by the data
(related to the model through the forward relation) and an a priori
state of information on the model parameters. Hence, an adequate
specification of the data uncertainty model (through the likelihood
function) as well as the a priori information are crucial in order to
ensure a correct a posteriori state of information (i.e., solution of the
inverse problem).

Sampling the a posteriori probability density

A highly nonlinear inverse problem refers to the case in which the
a priori probability density is far from being Gaussian or the like-
lihood function is highly non-Gaussian (typically) due to the non-
linear forward relation between model and data. According to
equation 2 the product of these non-Gaussian probability densities
signifies a highly non-Gaussian a posteriori probability density. In
the case of full-waveform inversion, the forward relation is expected
to be highly nonlinear. Moreover, realistic a priori information, as
we introduce here, is typically far from being Gaussian.
The extended Metropolis algorithm is a versatile tool which, in

particular, is useful to sample the a posteriori probability density of
nonlinear inverse problems using arbitrarily complex a priori infor-
mation. This algorithm is convenient in that it does not need an ex-
plicit expression of the a priori probability density. A black box
algorithm that is able to perform a random walk in the a priori prob-
ability density is sufficient (Mosegaard and Tarantola, 1995). In this
study we use sequential Gibbs sampling, which will be described
below, as the black box algorithm for sampling the a priori prob-
ability density.
The extended Metropolis Algorithm consists of two rando-

mized steps:

1) Exploration: one proposes a candidate model,mpropose, which is
a perturbation of a current model, mcurrent, and at the same time
is a realization of the a priori probability density.

2) Exploitation: one decides if the proposed model should be ac-
cepted or rejected. The proposed model is accepted with the
Metropolis acceptance probability (referred to as the Metropolis
rule)

Paccept ¼ min

�
1;
LðmproposeÞ
LðmcurrentÞ

�
; (3)

where LðmproposeÞ∕LðmcurrentÞ is the ratio between the likelihood
evaluated in the proposed and the current model, respectively. If
accepted, the proposed model becomes the current model and is
a realization of the a posteriori probability density. Otherwise the
proposed model is rejected and the current model counts again.
Thus, in each iteration, the sample size of the a posteriori probabil-
ity density increases.
The exploration step constitutes the strategy by which proposed

models are drawn from the a priori probability density. For small ex-
ploration steps the proposed model will be relatively highly corre-
lated with the current model, compared with large exploration
steps. Thus, according to equation 3, small exploration steps will re-
sult in a high acceptance probability and vice versa. Recall that each
evaluation of the likelihood function involves a computationally ex-
pensive (FDTD) forward calculation. It is, therefore, important to
choose an appropriate exploration step size that does not explore
the a posteriori probability density too slowly, but on the other hand
does not waste too many expensive evaluations of the likelihood that
are very unlikely to be accepted. In particular, the exploration strategy
becomes very important when dealing with high-dimensional prob-
ability densities, since traditional sampling strategies may lead to a
very inefficient exploration strategy (Hansen et al., 2008; 2012). Re-
cently, Hansen, et al., (2008; 2012) introduced a flexible sampling
strategy to sample high-dimensional a priori probability densities
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defined by geostatistical algorithms. This sampling strategy provides
a means of using a variable exploration step size when sampling such
high-dimensional probability densities. This method is briefly out-
lined in the following.

Sampling geostatistically defined a priori information

Hansen et al. (2012) suggest a strategy referred to as sequential
Gibbs sampling, which is a method that is capable of sampling prob-
ability densities defined by geostatistical algorithms based on sequen-
tial simulation. Originally, sequential simulation was used to generate
realizations of two-point based statistical models, such as Gaussian
models (e.g., Gomez-Hernandez and Journel, 1993). Two-point sta-
tistical models are limited to specify the spatial variability between
pairs of data (hence the name two-point statistics) defined by a cov-
ariance model. Two-point statistics does not provide enough informa-
tion to model plausible geological structures, such as channels and
tortuosity. This can be overcome by using a model based on multiple-
point statistics, as suggested by Guardiano and Srivastava (1993). In
multiple-point-based statistical models, the a priori information is
learned from a training image. The training image is scanned by a
template that jointly considers spatial variability among a number
of (more than two) pixel values in the image to obtain a joint prob-
ability distribution that holds information about these spatial correla-
tions. The model parameter values are subsequently sequentially
simulated from conditional probabilities on the basis of the jointly
considered pixel values (e.g., Strebelle, 2002). The algorithm origin-
ally suggested by Guardiano and Srivastava (1993) was, however,
computationally unfeasible. It originally was not until an efficient
way of storing multiple-point statistics in machine memory was pro-
posed that the use of multiple-point based models became computa-
tionally feasible (Strebelle, 2002). See e.g., Remy et al. (2008) for
numerous examples of the application of sequential simulation from
both two-point and multiple-point-based a priori models.
In this study sequential Gibbs sampling serves as the black box

algorithm that samples the a priori probability density ρMðmÞ, de-
scribed by a geostatistical simulation algorithm, with a controllable
exploration step size. The flow of the sequential Gibbs sampling is
as follows:

1) An initial unconditional realization of the a priori probability
density, mcurrent, defined in a 2D regular grid of model para-
meters is provided.

2) A square subarea, corresponding to model parameters msubarea,
with side-length Estep(exploration step size) of the current
model mcurrent is randomly chosen.

3) A realization of the conditional probability density
ρMðmsubareaj ~mcurrentÞ is obtained using sequential simulation.
~mcurrent are the current model parameters outside the subarea.
ρMðmÞ is an a priori probability density that may be described
by either two- or multiple-point statistics. This step is an applica-
tion of the Gibbs sampler where sequential simulation is used to
efficiently generate a realization from the conditional probability
density (hence the name sequential Gibbs sampling). In practice
this is performed simply by running the sequential simulation al-
gorithm conditional to the model parameters outside the subarea.
In this way a new, perturbed model, mpropose is obtained.

4) The proposed model becomes the current model and steps 2 and
3 are repeated to obtain multiple realizations of the a priori
probability density.

Recall that, when applying sequential Gibbs sampling as an a
priori model sampler in the extended Metropolis algorithm, the cur-
rent model mcurrent is reused if the proposed model mpropose is re-
jected by the Metropolis rule. Moreover, the resemblance (i.e.,
correlation) between the current and proposed model, and thus
the average Metropolis acceptance probability (cf. the Metropolis
rule), can be controlled by the explorations step size Estep (i.e.,
the side length of the resimulated area).

The likelihood function and correlated data
uncertainties

GPR or seismic full-waveform data are often contaminated with
temporally correlated uncertainties along the individual waveform
traces or spatially correlated (i.e., static) errors among data related
to certain transmitter (source) or receiver positions. The probabilistic
formulation of the inverse problem allows for an arbitrary data un-
certainty model and it is, therefore, possible to account for these cor-
relations in the data uncertainties. In the present study we consider
that data uncertainties are Gaussian distributed with a temporal cor-
relation along the individual waveform traces, but are uncorrelated
among the individual traces. This type of uncertainty influences the
state of information on the model parameters provided by the data
and is, therefore, accounted for through the likelihood function. This
particular likelihood function takes on the following form

LðmÞ ¼ c
YK
k¼1

exp

�
−
1

2
ðgðmÞk − dkobsÞTC−1

D ðgðmÞk − dkobsÞ
�
;

(4)

where gðmÞk and dkobs are vectors that contain the simulated and ob-
served waveform traces related to the kth transmitter-receiver pair.K
is the total number of waveform traces (i.e., transmitter-receiver
pairs). The factor c is a normalization constant. The term CD is
the data covariance matrix that defines the variances and covariances
of the data uncertainties. The temporal correlation of the data uncer-
tainties is described by an exponential correlation function (e.g.,
Goovaerts, 1997)

CDði; jÞ ¼ c exp

�
−3 sði; jÞ

a

�
; (5)

where c is the sill (i.e., variance) and a is the range (i.e., correlation
length) of the uncertainties. The term sði; jÞ is the temporal distance
between the ith and jth sample point along the waveforms. CD is a
symmetric N × N matrix, where N is the number of samples in the
individual waveform traces.
Cordua et al. (2009) quantified the influence of static-like errors

in crosshole GPR experiments, which are data uncertainties that are
spatially correlated among data related to the individual transmitter
and receiver positions. This kind of data uncertainty may also be
accounted for through the data covariance matrix, but this is not
considered here. For a description of how to set up a data covariance
matrix that accounts for static (i.e., spatially correlated) errors, see
Cordua et al. (2008).

The burn-in period

If the probability that a sampling algorithm at any time enters an
infinitesimal neighborhood Nj, that surrounds the model mj, is
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equal to the probability that it leaves this neighborhood, the
algorithm is said to satisfy microscopic reversibility. It can be
shown that if a sampling algorithm satisfies microscopic reversibil-
ity, then the a posteriori probability density is the only equilibrium
distribution for the algorithm, and the algorithm will converge to-
ward this equilibrium distribution independently of the starting
model. This property is satisfied by the extended Metropolis algo-
rithm (see Mosegaard and Sambridge [2002] for a detailed descrip-
tion of the Metropolis algorithm). In practice, the extended
Metropolis algorithm has reached the equilibrium distribution when
the likelihood values start to fluctuate around a constant level (re-
ferred to as the equilibrium level) and the data are fitted within their
uncertainties. When this phase is reached the algorithm is said to be
burned-in. In case of a nonlinear full-waveform inverse problem the
structure of the a posteriori probability density is completely un-
known. If this distribution is multimodal, several modes may exist
that fit data with the uncertainty. Hence, no guarantee can be given,
no matter the choice of sample strategy, that the a posteriori prob-
ability density is appropriately represented (i.e., that all modes are
represented) by a finite sample size.
The a posteriori probability density is defined over a high-

dimensional space and leaves only small areas of significant prob-
ability. Therefore, the burn-in period may be long because the
algorithm during this period randomly walks across large parts
of this high-dimensional space searching for a small area of signifi-
cant probability. As a consequence, we suggest performing large
exploration steps in the initial part of the burn-in period and then
gradually decreasing the exploration step size as the algorithm ap-
proaches the equilibrium level. In this way, the large-scale structures
of the model are relatively quickly established in the initial part of
the burn-in period, after which the algorithm gradually establishes
the smaller-scale structures. However, microscopic reversibility
cannot be guaranteed when the exploration step size is not kept con-
stant while running the algorithm. Therefore, the algorithm is
stopped when “apparent” burn-in has been reached and the explora-
tion step size is subsequently set to a constant value.
The algorithm is started in an unconditional realization of the a

priori model, which is expected to be far away from volumes of
significant a posteriori probability density. We suggest adaptively
adjusting the exploration step size during the burn-in period such
that the Metropolis acceptance probability (equation 3) controls the
exploration step size. This is controlled by updating the exploration
step size after every M successive exploration steps of the
Metropolis algorithm. The exploration step size update is performed
just after the exploitation step (step 1) of the algorithm. Consider
that the algorithm is at iteration number K, where K is a multiple of
M. Then the exploration step size Eiþ1

step during iteration number
K þ 1 to K þM þ 1 (i.e., the next M iterations) is given as

Eiþ1
step ¼ Ei

step

Paverage

Pcontrol

; (6)

where Ei
step is the exploration step size during iteration numberK-M

to K (i.e., the M preceding iterations). Paverage is the average Me-
tropolis acceptance probability (equation 3) during iteration number
K-M to K and Pcontrol is a subjectively chosen constant acceptance
ratio that the algorithm tries to adhere to by adjusting the explora-
tion step size according to equation 6. For larger values of Pcontrol,
the exploration step size decreases faster and converges to a lower
level, than it does for smaller values. The minimum possible

exploration step size involves resimulation of one model parameter,
whereas the maximum step size is an (unconditional) simulation of
all the model parameters that are statistically independent of the
previous model.

A SYNTHETIC CROSSHOLE GPR
FULL-WAVEFORM INVERSE PROBLEM

The methodology outlined above is tested on a synthetic tomo-
graphic crosshole GPR full-waveform data set. Wavefield simula-
tions of the GPR signals (i.e., the forward relation) are obtained
using FDTD calculations of Maxwell’s equations in transverse elec-
tric mode (Ernst et al., 2007b). This FDTD method provides grid-
based time-domain calculations of the electromagnetic wavefield
propagation. The transmitting and receiving antennae are simulated
as vertically orientated dipole-type antennae and are aligned parallel
with the vertical boreholes. Transmitted and received signals con-
cern the vertical component of the electrical field (Holliger and
Bergmann, 2002). The FDTD algorithm by Ernst et al. (2007b)
yields second-order accuracy in both time and space, and performs
the calculations in 2D Cartesian coordinates. The edges of the
FDTD grid are surrounded by a generalized perfectly matched layer
(GPML) to absorb artificial boundary reflections.
The a priori information of the inverse problem is provided by the

Snesim algorithm. Snesim is a fast geostatistical simulation algo-
rithm that produces realizations (conditional or unconditional to
point data) from a high-dimensional probability density that con-
tains the spatial relations (i.e., patterns) learned from a training im-
age for a relatively low number of categorical values (Strebelle,
2002). Figure 1 shows a training image that mimics a matrix of un-
consolidated sand with embedded channels of gravel situated in an
unsaturated environment. The geological information contained in
the training image may have been obtained from outcrops in a near-
by gravel pit and/or a natural cliff. The training image applied here
does not necessarily represent a realistic near-surface environment,
but is rather used to demonstrate the principle that geologically
realistic features, such as complex channel structures, can be
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Figure 1. Training image containing geological information of the
environment at which the crosshole GPR experiment is conducted.
This information is used as a priori information in the waveform
inversion.
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represented by a multiple-point-based a priori model in the inver-
sion procedure. Electromagnetic signals in the near-surface sedi-
ments are sensitive to the dielectric permittivity, the electrical
conductivity, and the magnetic permeability of the materials. In this
study we limit ourselves to considering only the influence of the
dielectric permittivity, which is primarily governing the phase ve-
locity of the signal. The relative dielectric permittivity of the sand
and the gravel channel is set to εr ¼ 4.0 (0.150 m∕ns) and εr ¼ 3.0

(0.173 m∕ns), respectively (e.g., Ernst et al., 2006). The relative
dielectric permittivity is given as εr ¼ ε∕ε0, where ε is the absolute
dielectric permittivity and ε0 is the dielectric permittivity of
free space.
Figure 2 shows the synthetic reference model to be considered

and is, at the same time, an unconditional realization of the training
image obtained using Snesim. The electrical conductivity is set to a
constant value of 3 mS∕m and in the following it is assumed
known. Near-surface materials are considered nonmagnetic and
the magnetic permeability is set to the magnetic permeability of free
space (e.g., Davis and Annan, 1989).
A full-waveform synthetic data set is calculated using the FDTD

algorithm. A Ricker wavelet with a central frequency of 100 MHz is
used as the source pulse. The source pulse is assumed known during
the inversion. The recorded synthetic GPR full-waveform data are
the vertical component of the electrical field. The experiment is con-
ditioned by data from four transmitters (two in each borehole) at
depths of 3 m and 9 m. The receivers are equidistantly distributed
in the two boreholes with a separation distance of 1.5 m (see
Figure 2). Data acquired with a transmitter-receiver angle larger
than 45° from horizontal are omitted since, in practice, these data
are violated by effects of wave guiding in the boreholes (e.g., Pe-
terson, 2001) and travel paths between the antenna tips instead of
the center of the antennae (Irving and Knight, 2005). These effects
are, among several other sources of uncertainty, a result of inade-
quate forward modeling which has to be seriously considered in
field experiments. Such effects either have to be handled through
a refined forward modeling approach, or accounted for in the like-
lihood function through a statistical description of the data uncer-
tainties imposed by both data noise and modeling inadequacies. See

the discussion for a further treatment of these issues. The data geo-
metry leads to a total of 20 recorded waveform traces. The resulting
transmitter-receiver positions are connected with dotted lines in Fig-
ure 3 on top of the grid of the 6240 unknown model parameters.
Gaussian-distributed data uncertainties with a temporal autocor-

relation described by the exponential correlation function in
equation 5 are added to the waveform data. The temporal correlation
length a (i.e., the range) is set to 12.7 ns. Figure 4 shows the five
waveform traces related to the uppermost transmitter position in the
left borehole (see Figure 2), which are related to the transmitter-
receiver pairs marked by the numbers 1 to 5 in Figure 3. The
noise-free simulated waveforms are plotted as dotted blue curves
and the uncertain waveforms (noisy waveforms) are plotted as
red curves. The 20 uncertain waveform traces are used as observed
data in this study and have an average signal-to-noise ratio of 13.6.
The uncertainty imposed on the “noise-free” data mimic the total
contribution of data noise and modeling inadequacies. In the next
section, full-waveform inversion will be performed on the uncertain
waveform data with a priori information based on a geostatistical
model inferred from the training image in Figure 1.

RESULTS

Burn-in

In the present example the algorithm is started in a realization of
the multiple-point a priori model learned from the training image,
unconditional to any information from the data. In this way the start-
ing model is independent of data and relies only on the a priori in-
formation. The initial exploration step size has a side length of
Estep ¼ 12 m, which corresponds to the maximum dimension of
the model size. Hence, the exploration step size cannot exceed this
side length and at this point the algorithm produces statistically
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Figure 2. Synthetic reference model. Green asterisks show trans-
mitter positions and the red dots show receiver positions.
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the waveform data shown in Figure 4.
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independent realizations. The control acceptance, Pcontrol, is set to
10% to obtain a relatively large exploration step size during the
burn-in period. The exploration step size is evaluated after each
20th iteration (i.e.,M ¼ 20) according to equation 6. The evolution
of the adaptive exploration step size during the first 1000 iterations
is seen in Figure 5. It is observed that the exploration step size is
constant and high in the very first part, after which it gradually de-
creases and stabilizes at a constant level of approximately
Estep ¼ 2 m. The associated development of the model is demon-
strated in Figure 6. It is seen that the large-scale structures are very
quickly brought into place, whereupon only fine-scale features of
the model are accepted by the Metropolis rule (equation 3). After
approximately 17,000 iterations the likelihood values start to fluc-
tuate around an equilibrium level and the data residuals resemble a
normal distribution with approximately the same standard deviation
as the distribution of the noise. At this stage it is assumed that the
algorithm has reached burn-in and produces representative realiza-
tions of the a posteriori probability density.

A posteriori statistics

The last model accepted by the Metropolis rule in the burn-in
period is used as the starting model when the Metropolis algorithm
is subsequently restarted with a constant exploration step size of
1 m. The results obtained in this study demonstrate that the equili-
brium level does not change after the Metropolis algorithm is re-
started with a constant exploration step size. In addition the data
residuals of this period resemble a normal distribution with a stan-
dard deviation of 2.17 · 10−4. As a comparison the standard devia-
tion of the normal distributed noise is 2.24 · 10−4, which
demonstrates that the data are fitted within the data uncertainties.

Hence, this shows that the algorithm has reached burn-in and that
the adaptive exploration step size may be appropriate when the step
size converges toward a constant level (which is the case in our
study). This burn-in strategy may serve as an approximate way
of determining which exploration step size should be used to obtain
a certain average acceptance probability. See Gelman et al. (1996)
for an investigation on the choice of acceptance probability.
After 300,000 iterations the algorithm was stopped. During the

sample period the algorithm had an average acceptance probability
of 40%. Figure 7 shows the autocorrelation between the first model
after burn-in and its correlation to the next150,000 models obtained
from the a posteriori probability density. These models are not sta-
tistically independent because any proposed model in the Metropo-
lis algorithm is a perturbation of a current model or when a
proposed model is rejected the current model counts again. There-
fore, the autocorrelation analysis of the a posteriori sample shows
some correlation length between successive models. In the example
shown in Figure 7, statistical independence is obtained after ap-
proximately 5800 iterations. This point is approximated as the point
at which the autocorrelation curve intercepts the average level of the
correlation curve after it has converged to a constant level. The aver-
age is shown as a dotted line in Figure 7 and is calculated as the
average correlation coefficient between iteration 20,000 and
300,000. A similar analysis is performed on 10 models picked at
different iteration numbers, equally distributed across the a poster-
iori sample, which gives an average of 6745 iterations of separation
to obtain statistically independent realizations from the a posteriori
sample.
In a probabilistic formulation, the solution to the inverse problem

is not a single model estimate, but a sample of multiple model rea-
lizations drawn from the a posteriori probability density. Each rea-
lization is a tomographic image of the subsurface. Displaying
multiple images together corresponds to a movie. The strategy
of displaying and studying the solution to the inverse problem using
such movies is referred to as the movie strategy (Tarantola, 2005).
Roughly speaking, the a priori probability density is filtered by the
likelihood function that results in the a posteriori probability den-
sity. Hence, displaying a “movie” of a priori realizations together
with a movie of a posteriori realizations helps one to understand the
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first 1000 iterations of the burn-in period.
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characteristics of the a priori information imposed on the inverse
problem and to understand the state of information provided by
the data (and their uncertainties). In particular, when the a priori
information is provided through a black box algorithm, and no
closed-form mathematical expression of the a priori probability
density exists, an a priori movie may be important to understanding
whether the state of information provided by the a priori probability
density is commensurate with the a priori expectation of the user.
See Koren et al. (1991) for a seminal example of using the movie
strategy for a seismic inverse problem.
Figure 8 shows eight statistically independent realizations drawn

from the a priori probability density (i.e., an a priori movie). This
movie shows the state of information provided by the a priori prob-
ability density inferred from the training image by the Snesim algo-
rithm. This movie shows a reproduction of the channel structures
inferred from the training image, but with no resemblance between
the location of the channels in individual realizations, as these mod-
els are unconditioned by any data. Figure 9 shows eight statistically
independent realizations from the a posteriori probability density.
The result clearly demonstrates a high degree of resemblance
between the individual a posteriori realizations as a result of the
conditioning to the full-waveform data. The high resemblance re-
veals that the data provides a high resolution of the inverse problem,

despite sparse data coverage (see Figure 3). Moreover, the indivi-
dual realizations only slightly deviate from the reference model (see
Figure 2), which confirms the good resolution provided by the full-
waveform data, their uncertainties, and the training image. The a
posteriori realizations in Figure 9 show some isolated small-scale
features, which are not seen in the training image. These noncon-
tinuous effects are caused by the Snesim simulation technique
because the algorithm occasionally reduces the number of condi-
tioning data events (i.e., pixel values) to avoid singularities during
calculation of the conditional probabilities. A total of 45 statistically
independent realizations are obtained from the 300,000 a posteriori
realizations based on the model autocorrelation analysis (see
Figure 7). These realizations can be used to ask higher-order statis-
tical questions such as what the probability of connectivity is be-
tween a channel observed in the left borehole and a channel
observed in the right borehole. Figure 9d, 9f, and 9h shows some
examples of missing connectivity between the boreholes marked
by red circles. For example it is found that in five out of the 45 rea-
lizations there is no connection between the points A and B as
marked in Figure 9a. Hence, this gives an approximate a posteriori
probability of connectivity between points A and B
of ð45 − 5Þ∕45 ¼ 89%.
Figure 10 shows the mean and variance calculated from the a

posteriori sample. It should be noted that the
mean model is no longer a realization of the a
posteriori probability density, but is only a statis-
tical representation of the sample. The mean
tells, in this particular case, the relative a poster-
iori probability of the presence of a channel at a
certain position in the subsurface. The variance
reveals that the uncertainty of the spatial location
of the channels increases toward the edges of the
channels and declines significantly when moving
away from the edges.
Waveform data associated with the 45 statisti-

cally independent realizations from the a poster-
iori probability density are calculated for the
receiver related to the uppermost transmitter
position in the left borehole (see transmitter-
receiver pairs marked by the numbers 1–5 in

Figure 3). This data variability associated with the model a poster-
iori variability is plotted in Figure 11a (blue curves) together with
the observed data (red curves). The (a posteriori) simulated wave-
forms show a high degree of similarity and appear in the plot almost
as a single fat curve, but are in fact composed of 45 independent
waveform curves. Hence, the a posteriori data variability demon-
strates that the model a posteriori variability is only associated with
very little variability in the waveforms. Moreover, Figure 11a shows
that the simulated waveforms fit the observed data very well.
Figure 11b shows the data residuals (blue curves) of the simulated
waveform data together with the uncertainty component of the ob-
served data (red curves). This plot reveals that the residuals
(i.e., misfits) approximately fluctuate around the uncertainty com-
ponent and resemble the noise statistics (variance and temporal
autocorrelation) satisfactorily.

DISCUSSION

Hansen et al. (2006) demonstrated that linear inverse Gaussian
theory and simple kriging (i.e., two-point statistics) can be merged
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into one single theory. The method of sequential Gibbs sampling
used with the extended Metropolis algorithm has provided a further
step toward bridging probabilistic inverse problem theory and the
field of geostatistics, even for highly nonlinear and non-Gaussian
inverse problems (Hansen et al., 2008; 2012). Hansen et al.,
(2009; 2012) discussed how the complexity of inverse problems
(i.e., the time needed to obtain an a posteriori sample) is reduced
when a statistical a priori model with some degree of spatial corre-
lation between the model parameters is considered. They showed
that the effective dimension of the solution space of the inverse pro-
blem, using two-point-based a priori models, is considerably de-
creased when the a priori expected range of spatial correlation is
increased. On the other hand, when no spatial correlation was con-
sidered, the high-dimensional inverse problem became unsolvable.
Further, it was seen that whether the model parameters take values
from a set of real or binary numbers had insignificant influence on
the effective dimension compared with the degree of correlation be-
tween the model parameters. Hence, we consider the reduction of
the effective dimension due to a priori defined spatial autocorrela-
tion to be one of the keystones that makes Monte Carlo inversion of
a computationally hard, full-waveform inverse problem feasible,
even with thousands of (here 6240) model parameters.
In this study we wish to demonstrate that we are able to freely

choose multiple-point-based a priori information, defined by, e.g.,
the Snesim algorithm, for Monte Carlo-based inversion. We consid-
ered a model with categorical parameters only, but this choice of
using a multiple-point-based a priori model was a first step away
from using simplified a priori models like the Gaussian model.
We believe that such models are often chosen out of mathematical
convenience rather than for the sake of geophysically and geologi-
cally based a priori expectations.
On the basis of the studies of Hansen et al. (2009), we believe that

the solution space of the full-waveform inverse problem (i.e., the
complexity of the inverse problem), considered in this study, is pri-
marily reduced due to the multiple-point-based spatial correlations,
and not significantly due to the binary model parameters. Accord-
ingly, full-waveform inversion may also be tractable when making

use of two-point-based statistical a priori models with both contin-
uous and categorical model parameter values, as long as some de-
gree of spatial correlation can be considered a priori. This is also
confirmed by our preliminary studies on this topic. The above dis-
cussion is encouraging with regard to the possibility of using a
priori models based on either two-point statistics, multiple-point
statistics, or a combination of both, as long as the chosen a priori
model imposes some degree of spatial autocorrelation of the model
parameters (see Journel and Zhang [2007] and further discussions at
the end of this section). This provides a flexible tool for defining an
appropriate a priori model that actually captures our a priori
expectations.
The suggested inversion strategy is very general and may be

equally applicable for tomographic inversion of any kind of data
(e.g., GPR, seismic, x-ray, or electroencephalography data) or
for reflection seismic inversion. In the example presented here
the algorithm only inverts for the dielectric permittivity, whereas
the electrical conductivity is kept fixed. The method could, how-
ever, be extended to invert for both parameters by introducing a
step, just before the exploration step, that randomly chooses in
which of the two fields the exploration should be performed.
A pseudo-full-waveform inversion approach for tomographic

GPR data was proposed by Gloaguen et al. (2007). In their ap-
proach, multiple model realizations were obtained using a stochas-
tic ray-based inversion strategy. Full-waveform simulations were
subsequently calculated in these multiple models. Models related
to waveform data that showed the best fit to the observed data were
regarded as estimates of the waveform inversion. However, their
approach does not guarantee a data fit within the uncertainties
and the accepted models are not realizations from an a posteriori
probability density function.
In this study the sequential Gibbs sampler is applied such that a

continuous block of model parameters are resimulated in each step.
Irving and Singha (2010) also used a type of sequential Gibbs sam-
pling, but resimulated a subset of model parameters scattered ran-
domly across the model. Note that sequential Gibbs sampling will
correctly sample the a priori probability density function regardless
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of how that subset of model parameters to be resimulated is chosen
(Hansen et al., 2012). Whether the continuous or the scattered ex-
ploration strategy should be used is still to be investigated, as such a
choice may affect the computational efficiency when the sequential
Gibbs sampler is used with the Metropolis algorithm. To understand

exploration strategies of high-dimensional spaces, more analytical
approaches are required.
Ray-based inversion experiments on the same scale as the setup

used in this study typically involve in the order of 700 to 1600 trans-
mitter-receiver pairs to obtain a reasonable resolution (e.g.,

Tronicke and Holliger, 2005; Looms et al.,
2008; Nielsen et al., 2010). In this study a high
degree of resolution was obtained with as few as
20 transmitter–receiver pairs. However, in field
experiments modeling inadequacies may lead
to considerably more uncertainty in the data than
considered in this study, which in turn leads to a
lower resolution. In crosshole GPR full-wave-
form inversion the long spatial wavelengths of
the model are typically used as a starting model.
This model is obtained through ray-based inver-
sion of first-arrival traveltimes and amplitudes of
the waveform data (Ernst et al., 2007a; Meles
et al., 2010). The data set considered in our study
is expected to be too sparse to provide any useful
information for a ray-based starting model. We,
therefore, choose to start the full-waveform in-
version in an unconditional realization of the a
priori probability density, and burn-in is obtained
anyway. Hence, the role of the a priori model is
more than simply finding a posteriori model rea-
lizations that jointly honor data and the a priori
model. It turns out that the use of a consistent a
priori model acts as a guide in the burn-in process
that allows the initial model to be far away from
the true solution. The successful convergence
from the data-independent starting model ob-
served in the present study may be explained
as a reduction of the complexity of the problem
through the informative a priori information de-
fined through the geostatistical algorithm (see
Hansen et al., 2009; 2012). This encouraging ob-
servation suggests that future effort should be to-
ward incorporating complex statistical a priori
information into (adjoint) optimization based in-
version approaches.
The most commonly used method for full-

waveform inversion today is based on adjoint
methods, as suggested by Tarantola (1984). This
approach has some limitations: (1) Uncertainty
estimates may theoretically be obtained through
an a posteriori covariance, but only for a linear
approximation of the forward relation limited
to a Gaussian description of the data uncertainty
and a priori model (Tarantola, 1984). (2) The
method is based on simple Gaussian a priori in-
formation (if any at all); and (3) it relies on a sub-
jective convergence criterion that may adversely
result in data uncertainties propagating into the
model estimate. The method we propose over-
comes many of the limitations of using the ad-
joint-based approach. (1) It allows for arbitrary
data geometry and density. (2) Complex a priori
inversion can be included using any geostatistical
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algorithm that can be used for sequential simulation or any other
probabilistically defined a priori information (see Mosegaard and
Tarantola, 1995). (3) The full uncertainty of the inverse problem
can be quantified by analyzing the a posteriori sample. (4) There
are no complications related to the incorporation of refined and
complex forward algorithms. (5) Temporally and spatially corre-
lated data uncertainties can be accounted for either through the data
covariance matrix or any other mathematical description of the un-
certainties (Cordua et al., 2008, 2009). (6) Finally, if the correct data
uncertainty model is known there is no risk of uncertainties propa-
gation into a single model estimate, but data uncertainties are in-
stead reflected in the a posteriori model variability.
The adjoint-based approach has some benefits that the presented

method lacks: In the case of dense data coverage, full-waveform
inversion based on the adjoint-based approach may not need any
a priori model at all, as the data themselves are sufficient to allow
inference of a solution (Tarantola, 1984). The adjoint-based method
has been successfully tested on field data (Ernst et al., 2007a;
Klotzsche et al., 2010). In addition the suggested probabilistic in-
version strategy needs substantially more (computationally expen-
sive) forward calculations than does the traditional adjoint-based
approach.
In the synthetic test performed here, each iteration involves (1) a

model perturbation using Snesim which takes approximately 0.5 s,
and (2) a forward calculation of the four transmitter positions,
which is run in parallel (the number of parallel computations equals
the number of transmitter positions). Each forward calculation takes
approximately 12.5 s on a standard desktop computer with an Intel
Core i7 processor. Thus, the total computation time of 300,000
iterations becomes approximately 45 days. As a comparison, the
adjoint-based method needs approximately 20 iterations to con-
verge to a solution estimate (Ernst et al., 2007a), which involves
20 FDTD forward calculations (for comparison with observed
data), 20 backward (in time) calculations (for update direction),
and 20 forward calculations (for step length) (Ernst et al.,
2007b). Hence, obtaining one estimate using the adjoint-based
method is approximately 5000 times faster than the time needed
to obtain 45 independent realizations from the a posteriori probabil-
ity density using the Monte Carlo method. However, the adjoint-
based method and the Monte Carlo strategy are not directly com-
parable. The adjoint method is an optimization method that searches
for one (in some sense) optimal solution. Additionally, the adjoint
method assumes the full-waveform inverse problem to be a global
optimization problem and, therefore, the method is always in risk of
getting trapped in a local minimum. The Monte Carlo strategy, on
the other hand, aims at characterizing the a posteriori probability
density. Moreover, it can mathematically be shown that the Metro-
polis algorithm will converge toward the correct equilibrium distri-
bution independently of the complexity of the data uncertainty and
the a priori model (e.g., Mosegaard, 1998). Roughly speaking, the
adjoint-based method serves as a fast way of obtaining an approx-
imate maximum a posteriori estimate based on a limited data un-
certainty and a priori model. The strategy suggested here could
subsequently be started in this estimate to obtain a characterization
of the correct a posteriori probability density (i.e., resolution ana-
lysis) based on a realistic data uncertainty and a priori model and the
full nonlinearity of the forward relation. The significant time ex-
pense of the Monte Carlo strategy may in the future be mitigated
through parallelization of the individual FDTD calculation on, for

example, clusters or graphical processing units (GPU) and by run-
ning several algorithms in parallel.
In this study the suggested algorithm was applied on a synthetic

test case with a simple reference model. Perfect knowledge about
the data uncertainty model, the a priori information, and the source
pulse was assumed. Moreover, the electrical conductivity was as-
sumed known. Hence, the robustness of the algorithm has to be
further tested by considering more complex synthetic models of
both the dielectric permittivity and electrical conductivity and larger
data sets. According to equation 2, knowledge about the statistical
properties of the data uncertainties and the a priori information
evenly influences the a posteriori probability density function.
Hence, to ensure a trustworthy a posteriori probability density
the user needs to specify a realistic statistical description of the data
uncertainties and the a priori information. This may, however, be a
very challenging task when dealing with field experiments. On the
other hand, if one does not choose the a priori information the in-
version algorithm will implicitly make this choice. For example,
least-squares and adjoint-based inversion algorithms implicitly con-
sider a Gaussian a priori and data uncertainty model. In the method
that we propose here, one is free to choose a Gaussian description of
the a priori and data uncertainty model, but the user has the flex-
ibility to choose other more complex descriptions.
In field experiments the list of sources of uncertainties involves

both a background noise component and (typically) a major com-
ponent related to modeling errors (i.e., discrepancies between ob-
served data and simulated data due to shortcomings of the forward
relation), such as: (1) source pulse uncertainty, (2) 2D assumption,
(3) local antennae coupling effects, (4) effects of discretization,
(5) small-scale near borehole heterogeneities, (6) numerical attenua-
tion, (7) media dispersion, (8) point-dipole antenna assumption,
(9) effects of high angle travel paths due to wave guiding and an-
tennae spread, (10) unknown antennae positions.
Some of the above mentioned modeling inadequacies can be ac-

counted for through more sophisticated FDTD algorithms (see e.g.,
Bergmann et al., 1998; Holliger and Bergmann, 2002; Ernst et al.,
2006; Irving and Knight, 2006). Alternatively, these modeling un-
certainties should be accounted for through the data uncertainty
model (although it results in higher a posteriori model variability).
Forward modeling inadequacies may lead to a combination of cor-
related and uncorrelated data uncertainties that may be accounted
for through a data covariance matrix (e.g., Cordua et al., 2008;
2009) or a more complex description. See e.g., Peterson (2001),
Cordua et al. (2008, 2009), and Irving and Knight (2005) for de-
scriptions and quantifications of some of these uncertainties.
Statistics of the background noise component could be calculated

in the signal recorded before the first arriving signal at the receiver.
In this period only noise is recorded at the receiver. This may be
obtained by performing an experimental covariance analysis of this
part of the signal and then subsequently fitting an analytic covar-
iance model to the experimental covariance. The analytic covar-
iance model can then be used to set up an appropriate likelihood
function that accounts for the inferred noise component. For more
details on how to determine an experimental covariance model (i.e.,
semivariogram) and how to fit an analytic covariance model see
e.g., Journel and Huijbregts (1978) or Goovaerts (1997).
Ernst et al. (2007a) suggested a method based on deconvolution

for source pulse estimation, which may also be applied together
with our inversion strategy. Then uncertainty related to this process
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needs to be quantified or a Bayesian formulation of the source pulse
determination could be an integral part of the inversion (see Buland
and Omre [2003] for an example of Bayesian wavelet estimation).
Modeling error statistics related to the 2D assumption may be

determined through simulation. Consider that a 3D a priori model
is established: Forward simulations from, say, 100 realizations of
the 3D a priori model could be compared with forward simulations
obtained in the associated 2D profile in the transmitter-receiver
plane of the 3D model. By subtracting 3D and 2D simulations
an estimate of the modeling error statistics associated with the
2D assumptions could be obtained. In the same way modeling error
statistics related to other inadequacies in the forward algorithms
may be simulated by comparing the results from simple algorithms
with more adequate algorithms. In this way adequate computation-
ally expensive forward calculations can (in principle) be substituted
with an appropriate data uncertainty model and a faster approximate
forward simulation.
While the use of training images to describe a priori information

allows complex a priori information to be quantified, the establish-
ment of a priori information through a training image for field data
experiments may be challenging. The training image represents a
concept of the patterns expected a priori independently of the ob-
served data. These expectations may be based on previous studies in
the area based on, for example, kriging and inversion conditional to
soft (e.g., seismic) and hard (borehole) data and/or studies of out-
crops (e.g., Zhang, 2008). To compromise with the distinct facies
(i.e., low entropy) seen in the training image applied here, the a
priori model could constitute a combination of information from
a training image and a high entropy (e.g., two-point statistically)
based a priori model. In any case, we suggest that the movie strategy
should be used to ensure that the algorithm or the mathematical ex-
pression (or a combination of both) that describes the a priori in-
formation also reflects the a priori expectations of the user. See
Zhang (2008) for a description of how to convert geological infor-
mation into training images that can be used with multiple-point
statistical simulation algorithms. Journel and Zhang (2006) demon-
strated that even for a training image with combined high- and low-
entropy information that only approximately captures the complex
low entropy structures of the true model, a better conditional mod-
eling result was obtained than for a pure high entropy Gaussian a
priori model.
To apply the proposed full-waveform inversion strategy to field

data, the major challenge concerning a way of handling modeling
uncertainties (probably through a combination of a statistical de-
scription and a more adequate modeling algorithm) and to obtaining
realistic a priori information that involves training images (from
previous studies) still needs to be addressed. Finally, challenges re-
garding mitigating the computational expense of the Monte Carlo
strategy are left for future research.

CONCLUSION

We have outlined the theoretical background for a Monte Carlo-
based full-waveform inversion strategy based on the extended
Metropolis algorithm in conjunction with complex geostatistical
based a priori information. The use of geostatistical algorithms
for the description of a priori information can be accomplished
in an efficient way through the method of sequential Gibbs sam-
pling, which allows for inclusion of a priori information described
by any geostatistical algorithm based on sequential simulation.

This, in turn, provides a means of using a priori information
described by both two-point and multiple-point statistical a priori
models. Inclusion of such statistical a priori information reduces
the complexity of the inverse problem, which is a keystone in
the feasibility of performing Monte Carlo sampling of the compu-
tationally hard full-waveform inverse problem. We have demon-
strated the potential of this inversion strategy by sampling the a
posteriori probability density of a tomographic full-waveform in-
verse problem using complex a priori information inferred from
a training image using the geostatistical algorithm Snesim. The
methodology provides a means of evaluating the a posteriori uncer-
tainty, which is not provided using traditional adjoint-based optimi-
zation strategies for full-waveform inversion. However, it should be
noted that, if the goal is a single inverse estimate based on pure
Gaussian statistics, the adjoint-based optimization approach for in-
version of full-waveform data is computationally considerably fas-
ter than the suggested inversion strategy. Establishment of adequate
(e.g., a multiple-point-based) a priori information and a data uncer-
tainty model for field data are critical to obtain meaningful a poster-
iori uncertainty estimates. Moreover, the major computational
expenses of the Monte Carlo strategy have to be mitigated, which
are all challenging tasks that need future research.
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Summary 
 
In order to move beyond simplified covariance based a 
priori models, which are typically used for inverse 
problems, more complex multiple-point-based a priori 
models have to be considered. By means of marginal 
probability distributions ‘learned’ from a training image, 
sequential simulation has proven to be an efficient way of 
obtaining multiple realizations that honor the same 
multiple-point statistics as the training image. The 
frequency matching method provides an alternative way of 
formulating multiple-point-based a priori models. In this 
strategy the pattern frequency distributions (i.e. marginals) 
of the training image and a subsurface model are matched 
in order to obtain a solution with the same multiple-point 
statistics as the training image. Sequential Gibbs sampling 
is a simulation strategy that provides an efficient way of 
applying sequential simulation based algorithms as a priori 
information in probabilistic inverse problems. 
Unfortunately, when this strategy is applied with the 
multiple-point-based simulation algorithm SNESIM the 
reproducibility of training image patterns is violated. In this 
study we suggest to combine sequential simulation with the 
frequency matching method in order to improve the pattern 
reproducibility while maintaining the efficiency of the 
sequential Gibbs sampling strategy. We compare 
realizations of three types of a priori models. Finally, the 
results are exemplified through crosshole travel time 
tomography.   
 
Introduction 
 
In geostatistical and probabilistic inverse modeling, a priori 
models that describe the expectations of the spatial 
distribution of the geological structures under study are 
important (Journel and Zhang, 2006).  Traditionally, a 
priori models rely on two-point statistics described through 
covariance models. However, such a priori models cannot 
capture realistically geological curvilinear structures such 
as tortuous channels. In order to overcome this 
shortcoming, multiple-point statistics has to be introduced 
(Guardiano and Srivastava, 1993). The Single Normal 
Equation SIMulation (SNESIM) algorithm is a 
computationally very efficient way of obtaining realizations 
from a joint probability density function (pdf) based on 
multiple-point statistics learned from a training image using 
sequential simulation (Strebelle, 2002).  
 

The extended Metropolis algorithm is a general sampling 
algorithm that can be used to sample the solution to 
nonlinear inverse problems (Mosegaard and Tarantola, 
1995). The extended Metropolis algorithm demands an 
algorithm that is able to produce perturbations between 
realizations from the a priori model. An efficient way of 
obtaining this is through sequential Gibbs sampling 
(Hansen et al., 2012). The extended Metropolis algorithm 
has previously been used in conjunction with sequential 
Gibbs sampling for a priori information defined through the 
SNESIM algorithm to sample the solution of a tomographic 
full waveform inverse problem (Cordua et al., 2012).  
 
An alternative way of defining the multiple-point-based a 
priori pdf is the Frequency Matching Method (FMM) 
(Lange et al., 2011). In this approach the frequency 
distributions of patterns (i.e. marginal probabilities) 
counted in a given solution to the subsurface and in the 
training image are compared. By means of the Chi-square 
statistics, Lange et al. (2011) quantified the match between 
frequency distributions. In this way, they were able to 
jointly optimize for the a priori expectations and a 
tomographic dataset. Here, we define a FMM-based a priori 
pdf using the Dirichlet probability distribution. We show 
the results of sampling this distribution using the 
Metropolis algorithm. 
 
When sequential Gibbs sampling is applied with the 
SNESIM algorithm, the reproducibility of the spatial 
continuity seen in the training image is reduced. This is 
caused by the conditional simulation technique inhered in 
SNESIM, which reduces the number of conditional data 
events when inconsistencies (i.e. singularities) occurs 
during the simulation. These effects are reduced for full 
unconditional SNESIM realizations, but are evident for the 
iterative perturbation strategy performed by the sequential 
Gibbs sampling. We suggest an a priori pdf that combines 
the SNESIM and FMM based a priori pdfs in order to 
overcome these shortcomings. We show that realizations 
from the combined a priori pdf ensures better 
reproducibility of spatial structures found in the training 
image than compared to the individual SNESIM and FMM-
based a priori pdfs, respectively.  
 
The importance of the reproducibility when solving inverse 
problems is demonstrated through a crosshole travel time 
tomographic inverse problem. The solution to this nonlinear 
inverse problem is sampled using the extended Metropolis 
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algorithm with both the SNESIM and the combined 
SNESIM-FMM-based a priori pdfs, respectively.  
 
Methodology 
 
Consider that the subsurface can be represented by a 
discrete set of model parameters m . In geophysical inverse 
problems, information about the unknown model 
parameters is retrieved based on a set of indirect 
observations d (e.g. travel time data), a theoretical forward 
problem that relates model parameters and the data, and 
some a priori information on the model parameters. The 
forward relation between the model parameters and the data 
can be expressed as (e.g. Tarantola, 2005):  
 

( )gd m ,   (1) 
 
where g is a linear or nonlinear function that often relies on 
a physical law. In this study equation 1 is a nonlinear 
relation that provides a set of travel time data at the receiver 
positions given a 2D velocity field. The forward relation is 
based on ray-theory and is calculated using the Eikonal 
equation (Zelt and Barton, 1998).  
 
In a probabilistic formulation, the solution to the inverse 
problem is given as an a posteriori probability density over 
the model parameters (e.g. Tarantola, 2005): 
 

( ) ( ) ( )M Mk Lm m m ,  (2) 
 
where k is a normalization constant, ( )M m is the a priori 
pdf, and ( )L m  is the likelihood function. ( )M m describes 
the probability that the model satisfies the a priori 
information. ( )L m  describes how well the modeled data 
explains the observed data given a data uncertainty. Hence, 
the a posteriori probability density describes the combined 
states of information provided by the data and the a priori 
information.  
 
The extended Metropolis algorithm 
The extended Metropolis algorithm can be used to sample 
the a posteriori probability density of a general nonlinear 
inverse problem as formulated in equation 2. This algorithm 
only requires: 1) A “black box” algorithm that is able to 
produce perturbations between realizations from the a priori 
pdf. 2) An algorithm that is able to compute the likelihood 
for a given set of model parameters. The extended 
Metropolis algorithm contains the following steps:  
1) The exploration step: 
An a priori sampler proposes a realization, proposem , from 

the a priori pdf. proposem  is a perturbation of a current 

realization, currentm .  

2) The exploitation step: 
The proposed realization is accepted with the probability:  
 

( )
min 1,

( )
propose

accept
current

L
P

L
m
m

  (3) 

 
If the proposed model is accepted, proposem  becomes 

currentm , otherwise currentm  counts again.  
The above procedure is continued until a desirable number 
of realizations have been accepted. Together, all the 
accepted realizations constitute a sample of the a posteriori 
probability density (Mosegaard and Tarantola, 1995).  
 
Sequential Gibbs sampling 
Sequential Gibbs sampling is a computationally efficient 
way to sample complex a priori models as quantified by 
most geostatistical simulation algorithms, such as for 
example the SNESIM algorithm (Hansen et al., 2012). With 
sequential Gibbs sampling the degree of perturbation 
between realizations can be controlled. In this way, a priori 
information quantified by geostatistical simulation 
algorithms serve as a “black box” algorithm that can be 
applied with the extended Metropolis algorithm to sample 
the solution for probabilistic inverse problems.  
 
The flow of sequential Gibbs sampling is:  
1) A current unconditional realization of the a priori pdf is 
provided.  
2) A subset of the model parameters in the current 
realization is randomly chosen.  
3) The model parameters within this subset are resimulated 
using sequential simulation conditional to the remaining 
model parameters (using e.g. the SNESIM algorithm).   
4) Step (2) and (3) of this procedure are repeated in order to 
obtain multiple realizations of the a priori pdf.  
 
The size of the subset of model parameters to be 
resimulated is chosen subjectively and controls the 
explorations nature of the Metropolis algorithm. For large 
subsets the exploration step becomes large and the 
probability of accept (in equation 3) decreases. On the other 
hand, smaller exploration steps leads to a higher accept 
probability. However, a small exploration step causes 
successive accepted realizations of the Metropolis 
algorithm to become statistically more dependent and, 
hence, more realizations have to be accepted to obtain 
statistically independent realizations. For more details on 
this topic see Hansen et al. (2012) and Cordua et al. (2012).   
 
The frequency matching method 
Multiple-point sample algorithms rely on sequential 
simulation, which is based on the fact that the complete 
joint probability density can be factorized by conditional 
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probability densities. The conditional probability densities 
can (according to the product rule) be expressed by means 
of marginal probability densities. These “marginals” are 
extracted (or learned) from the training image by simply 
counting the number of times a certain pattern occurs in 
image. The number of pixels within the patterns is fixed 
and determined by a template. The marginal pdf obtained in 
this way can be viewed as a frequency distribution (i.e. a 
normalized histogram), which is the same as the content of 
the search tree, as referred to by Strebelle (2002).  
 
In the frequency matching method (Lange et al., 2011) the 
multiple-point-based a priori pdf is quantified by measuring 
the degree of fit between the frequency distribution of the 
training image and a current realization. In this way it 
becomes possible to actually quantify the multiple-point a 
priori pdf, which is not possible using the SNESIM 
algorithm.  
 
Here, we defined the frequency matching measure using the 
Dirichlet pdf, which is different from the approach of 
Lange et al. (2011): 
 

11

!( )
!,..., !

cur
kHTI priorcur K

k k
FMM cur cur TI prior

kK

H HN
H H N N

m , (4) 

 
where cur

kH is the number of counts in the k’th bin of the 
(unnormalized) histogram obtained from a current 
realization m . TI

kH  is the number of counts in the k’th bin 
of the (unnormalized) histogram obtained from training 
image. TK c  is the number of possible pattern 
combinations, which is function of the template size T and 
the number of categories c . Further, we have that:  
 

1

K
cur cur

k
k

N H    (5) 

1
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TI TI

k
k
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K
prior prior
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k

N H    (7) 

 
where prior

kH  is the k’th bin of the a priori (unnormalized) 
histogram, which represents the a priori expectation of the 
histogram related to underlying process before the training 
image histogram is observed. Hence, prior

kH can be used to 
quantify the degree of expected match between the 
frequency distributions of a current subsurface image and 
the training image. For small values of prior

kH the current 
model is expected to match the training image frequency 
distribution better than for large values. Note that the 

Dirichlet distribution only needs to be evaluated for the bins 
| 0cur

jk j H . All other bins do not contribute to the 

probability. Hence, the histograms becomes sparse, which, 
in particular, saves memory for large template sizes and/or 
many categories of the model parameter values. 
  
Combining FMM with the SNESIM algorithm 
Figure 2 shows realizations from the SNESIM-based priori 
model using the sequential Gibbs sample strategy. Figure 3 
shows realizations from the Dirichlet (i.e. FMM-based) a 
priori probability distribution. The multiple-point statistics 
of these a priori models is obtained from the training image 
seen in figure 1. By comparing figure 2 and 3 with the 
training image it is obvious that the continuous structures 
seen in the training image are not very well reproduced.  
In order to improve this, we suggest combining the FMM 
with the SNESIM algorithm such that we obtained an a 
priori pdf defined as: 
 

( ) ( ) ( )M SNESIM FMMm m m   (8) 
 
This a priori pdf can efficiently be sampled using the 
extended Metropolis algorithm in conjunction with 
sequential Gibbs sampling. By substituting ( )FMM m with 
the likelihood function ( )L m  in equation (2) and (3), 
realizations from the combined a priori in equation 8 can be 
obtained. Note that, in this way, the value of ( )SNESIM m  
does not need to be evaluated. 

 
Figure 1. Training image used for obtaining the multiple-
point a priori statistics. 
 
Results  
 
Figure 4 shows realizations obtained from the combined a 
priori model defined in equation 8. In this study we choose 
the a priori histogram to be a homogenous distribution with 

5, | 0prior cur
k jH k j H  and a template size of 3 
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pixels x 3 pixels. The results demonstrate that the combined 
FMM-SNESIM-based a priori probability density recovers 
the structures of the training image better than compared to 
both the SNESIM and FMM-based a priori pdfs.  

 
Figure 2. Realizations from the SNESIM a priori model 
using sequential Gibbs sampling.  
 

 
Figure 3. Realizations of the Dirichlet pdf (i.e. FFM-based 
a priori pdf) using the Metropolis algorithm with a 
homogenous proposal pdf.  
 

 
Figure 4. Realizations from the combined SNESIM-FMM-
based a priori pdf using the extended Metropolis algorithm 
in conjunction with sequential Gibbs sampling. 
 
Crosshole travel time tomography 
In order to demonstrate how the different a priori models 
influence the solution to a nonlinear inverse problem, we 
consider a crosshole ground penetrating radar tomographic 
inverse problem (see e.g. Cordua et al., 2009). A synthetic 
reference model, from which a synthetic data set is 
obtained, is seen in figure 5. This model is a fully 
unconditional realization of the SNESIM based a priori pdf. 
A zero mean uncorrelated Gaussian noise component with a 
standard deviation of 1 ns (~2.7 % of the signal) is added to 
the data. The likelihood function is a Gaussian pdf that 
takes into account the statistics of the noise. The result of 
the inversion is seen in figure 6 and 7. It is clear that the 
improved FMM-SNESIM-based a priori probability density 
provides realizations that resemble the reference model 
better than when using the SNESIM-based a priori pdf. 
Moreover, the variability between the individual 
realizations becomes smaller when considering the 

combined a priori model. This shows that the improved a 
priori information improves the resolution of the solution. 

 
Figure 5. Reference model used for travel time tomography. 
The red rays give an indication of the data coverage. 

 
Figure 6. Realizations from the a posteriori pdf with a priori 
information defined by SNESIM using sequential Gibbs 
sampling. 

 
Figure 7. Realizations from the a posteriori pdf based on the 
combined SNESIM-FMM a priori pdf using sequential 
Gibbs sampling. 
 
Discussion and Conclusion  
 
We have demonstrated the potential of combining the FMM 
with the sequential simulation strategy provided by 
SNESIM. In this way, realizations obtained when using 
sequential Gibbs sampling reproduces the spatial structures 
of the training image much better then when only 
considering SNESIM. At the same time, the suggested 
strategy ensures that the computationally efficiency of 
sequential simulation is maintained.  
The combined SNESIM-FMM-based a priori model 
demonstrates to improve the resolution when applied for a 
tomographic nonlinear inverse problem. 

132



Combining Sequential Simulation with the Frequency Matching Method 

References 
Cordua, K. S., T. M. Hansen, and K. Mosegaard, 2012, 
Monte Carlo full-waveform inversion of crosshole GPR 
data using multiple-point geostatistical a priori information: 
Geophysics, 77, H19 – H31. 
 
Cordua, K. S., L. Nielsen, M. C. Looms, T. M. Hansen, and 
A. Binley, 2009, Quantifying the influence of static-like 
errors in least-squares-based inversion and sequential 
simulation of cross-borehole ground penetrating radar data: 
Journal of Applied Geophysics, 68, 71 – 84. 
 
Hansen, T. M., K. S. Cordua, and K. Mosegaard, 2012, 
Inverse problems with non-trivial priors: Efficient solution 
through Sequential Gibbs Sampling: Computational 
Geosciences, DOI: 10.1007/s10596-011-9271-1. 
 
Journel, A. and T. Zhang, 2006, The Necessity of a 
Multiple-Point Prior Model: Mathematical Geology, 38, 
591 – 610.  
 
Lange, K., J. Frydendall, K. S. Cordua, T. M. Hansen, Y. 
Melnikova, and K. Mosegaard, 2011, A Frequency 
Matching Method: Solving Inverse Problems by use of 
Geologically Realistic Prior Information: IAMG 2011, 
Salzburg, Austria.  
 
Mosegaard, K., and A. Tarantola, 1995, Monte Carlo 
sampling of solutions to inverse problems: Journal of 
geophysical research, 100, no. B7, 431 – 447. 
 
Strebelle, S., 2002, Conditional simulation of complex 
geological structures using multiple-point statistics: 
Mathematical Geology, 34, 1 – 21. 
 
Tarantola, A., 2005, Inverse problem theory and methods 
for model parameter estimation: Society of Industrial and 
Applies Mathematics, Philadelphia, PA., 353pp. 
 
Zelt, C., and P. Barton, 1998, Three-dimensional seismic 
refraction seismic refraction tomography - a comparison of 
two methods applied to data from the Faeroe Basin: Journal 
of Geophysical Research, 103, no. B4, 7187 – 7210. 
 
Guardiano, F., and R. Srivastava, 1993, Multivariate 
geostatistics: Beyond bivariate moments, in A. Soares, ed., 
Geostatistics Tróia ’92, v. 1, Kluwer, 133 – 144. 

133



Appendix A6:  

Improving the pattern reproducibility of multiple-point-based prior 

models 
 

 

 

Authors: 

Knud Skou Cordua, Thomas Mejer Hansen, and Klaus Mosegaard 

 

Published in: 

Submitted to Mathematical Geosciences 

 

134



Improving the pattern reproducibility of multiple-point-

based prior models 

Knud S. Cordua*, Thomas M. Hansen*, Klaus Mosegaard* 

* Technical University of Denmark, Center for Energy Resources Engineering, National Space 

Institute, Electrovej, Building 327, 2800 Kgs. Lyngby, Denmark. 

 

Corresponding author: Knud Skou Cordua, kcor@dtu.dk, fax 45259575, phone +4527260794.  

 

Short title: Improving multiple-point-based prior models 

 

Submitted: 7/3 - 2013 

135



Abstract 

Some multiple-point simulation algorithms, such as the SNESIM algorithm, are based on 

sequential simulation using conditional probabilities obtained from training image statistics. 

Such algorithms, which we will refer to as pruned sequential sample algorithms, are based on 

imperfect implementations of sequential simulation because all necessary conditional 

probability distributions cannot be obtained. Consequently, zero probability multiple-point 

events may occur during the simulation. The pruned sequential sample algorithms deal with 

this by reducing (i.e. pruning) the number of conditioning events until a non-zero probability 

can be established. However, in this way some of the information obtained from the training 

image is lost, which reduces the reproducibility of the training image patterns in the output 

realizations. By means of sequential Gibbs sampling, sequential simulation based algorithms 

can be used as prior models for inverse problems. Sequential Gibbs sampling has been proven 

to work for perfect implementations of sequential simulation. When the SNESIM algorithm is 

used with the sequential Gibbs sampler, the pattern reproducibility of the output realizations is 

deteriorated. In order to mitigate this problem, we suggest combining the sequential Gibbs 

sampler with the frequency matching method. This combination maintains the efficiency of the 

sequential Gibbs sampler while seeking to match the multiple-point statistic from the training 

image and the output realizations. In this way the pattern reproducibility of the SNESIM prior 

realizations is considerably improved. Finally, a tomographic cross-borehole example is used to 

demonstrate how the pattern reproducibility of the prior model influences the solution to an 

inverse problem. 

 

Keywords: Cross-hole tomography, Multiple-point statistics, Training image, Sequential 

Simulation algorithm, Pattern frequency, Frequency Matching Method.  
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1. Introduction 

In geostatistics and probabilistic inverse problems prior information about the 

spatial distribution of the model parameters, describing the subsurface properties under study, 

are important in order to obtain trustworthy predictions of production data or uncertainty 

quantifications or of the subsurface structures (Journel and Zhang, 2006; Hansen et al., 2013b). 

Moreover, prior models with high information content may also reduce the effective dimension 

of the inverse problem and make otherwise computationally heavy inverse problems tractable 

(Hansen et al., 2009; Cordua et al., 2012). In some cases an unrealistic prior may lead to 

apparent data uncertainties (Cordua et al., 2009) and may event prevent the observed data to 

be fitted.  

Traditionally, prior models have relied on two-point statistics parameterized by a 

mean and covariance (e.g. Journel, 1974; Alabert, 1987; Hansen et al., 2008; Cordua et al., 

2009). However, such prior models cannot capture realistically geological complex structures 

such as tortuous channels. In order to overcome this shortcoming, multiple-point statistics was 

introduced (Guardiano and Srivastava, 1993). The Single Normal Equation SIMulation (SNESIM) 

algorithm is a computationally efficient way of obtaining prior realizations based on multiple-

point statistics “learned” from a training image using sequential simulation (Strebelle, 2002). 

The SNESIM algorithm has previously been used as prior model for inverse problems 

conditioned by production data (e.g. Caers, 2006), satellite data (Boucher et al., 2008), 

tomographic travel time data (Hansen et al., 2008) and full waveform data (Cordua et al., 2012). 

Examples of geostatistical multiple point based algorithms not based on 

sequential simulation are CCSIM (Tahmasebi et al., 2012) and FILTERSIM (Zhang et al., 2006). 

Another way of expressing complex geological prior information is through object based 

simulation. In these methods the earth model is represented by a set of objects with 

geometries and positions defined by probability distributions (Deutsch and Wang, 1996; 

Skorstad et al., 1999)  
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Lange et al. (2012) suggested a way of defining a multiple-point-based prior model 

using a Frequency Matching Method (FMM). This method quantifies the degree of match 

between the pattern frequency (i.e. multiple-point histogram) of the training image and a 

realization from this prior model. Lange et al. (2012) quantified the match between frequency 

distributions using a Chi-square dissimilarity measure. In this way they were able to optimize 

for a model that, at the same time honored the multiple-point-based prior information from a 

training image and seismic tomographic travel time data. 

In a probabilistic formulation, the solution to an inverse problem is given as a 

posterior probability distribution over the model parameters, which combines the information 

provided by a relation between the data and model parameters, the observed data, an 

associated data uncertainty, and data-independent prior information about the model 

parameters (see e.g. Tarantola, 2005). For the sake of uncertainty quantification of the model 

parameters, rather than searching for a set of model parameters with maximum posterior 

probability, a sample from the posterior distribution has to be obtained. This can be obtained 

by means of sample algorithms such as the Metropolis algorithms or the rejection sampler 

(Tarantola, 2005; Irving and Singha, 2010, Mosegaard and Tarantola, 1995; Hansen et al., 

2013b). The rejection sampler is only suitable for very low-dimensional problems or problems 

with very noisy data (Hansen et al., 2013b). The Metropolis algorithm, on the other hand, is 

appropriate for higher dimensional problems, such as geoscientific inverse problems 

(Mosegaard and Tarantola, 1995). 

 The Metropolis algorithm requires an algorithm that is able to perform a random 

walk in the prior probability distribution with a controllable degree of perturbation between 

the realizations (i.e. a step-length). An efficient way of obtaining this for sequential simulation 

based algorithms is through sequential Gibbs sampling (SGS) (Hansen et al., 2008; Hansen et al., 

2012). The Probability Perturbation Method (PPM) is another example of a sample strategy that 

can be used to make a perturbation between realizations from multiple-point based sample 
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algorithms (Caers, 2006). An example of an algorithm used for perturbations between 

realizations from two-point statistical prior models is the Gradual Deformation Method (GDM) 

(Hu, 2000). 

The Metropolis algorithm has previously been used in conjunction with Sequential 

Gibbs Sampling for prior information defined through the SNESIM algorithm to sample the 

solution of a tomographic full waveform inverse problem (Cordua et al., 2012). Other examples 

of using a methodology related to sequential Gibbs sampling for sampling of solutions to 

inverse problems are seen in Hansen et al. (2008, 2013b), Mariethoz et al. (2010a) and Irving 

and Singha (2010).  

Most multiple-point-based sequential simulation algorithms (such as the SNESIM 

algorithm (Strebelle, 2002), the direct sampling method (Mariethoz et al., 2010b) and other 

methods that rely on the idea by Guardiano and Srivastava, 1993) are based on an 

implementation of sequential simulation that simulates from conditional probability 

distributions based on multiple-point statistics obtained from a training image. We will refer to 

such algorithms as pruned sequential sampling (PSS) algorithms because these sequential 

sample algorithms prune the number of conditioning events until a non-zero probability to be 

used for the simulation can be established. Moreover, we will refer to a perfect implementation 

of sequential simulation as the situation where a conditional probability distribution 

conditioned to all previously simulated model parameters is always available. This is not the 

case for the PSS algorithms because only a limited set of these conditional probability 

distributions is used by such algorithms. As a consequence, the sequential simulation process 

may ask for a conditional probability distribution based on a multiple-point event with zero 

probability according to the training image. This problem is fixed (circumvented) by reducing 

the number of conditioning events until a multiple-point event with non-zero probability is 

obtained (for details see Strebelle, 2002). However, this comes at the cost of reducing the 

multiple-point information propagated from the input training image to the output realizations. 
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This, in turn, reduces the ability to reproduce the training image patterns in the output 

realizations.   

Hansen et al. (2012) proved that for a prior model based on a perfect 

implementation of sequential simulation the sequential Gibbs sampler samples this prior model 

correctly. However, Cordua et al. (2012) noticed that when sequential Gibbs sampling is applied 

with the SNESIM algorithm, the pattern reproducibility is deteriorated when compared with 

traditional unconditional SNESIM realizations. This tells us that the multiple-point based 

information propagated from the training image to the output realizations is further reduced 

(as compared to generating an unconditional realization using SNESIM) when the SNESIM 

algorithm is used with the sequential Gibbs sampler. The reason for that will be further 

addressed in the discussion section. This is undesirable for two reasons: 1) Such a prior model 

becomes influenced by the number and geometry of the pixels/area used for the local 

resimulation (i.e. step-length) performed by the sequential Gibbs sampler. Hence, the prior 

model becomes unsuitable for use with the Metropolis algorithm where the step-length should 

preferably be chosen for maximum computational efficiency without influencing the 

information expressed by the prior model. 2) The amount of prior information from the input 

training image about the subsurface patterns that is propagated to the output realizations is 

reduced. 

In this study we suggest to combine the frequency matching method with the 

sequential Gibbs sampling using a pruned sequential sample algorithm. In this way we maintain 

a better match between the multiple-point pattern frequency of the training image and the 

prior realizations. Moreover, this combination maintains the efficiency of the sequential Gibbs 

sampler. We define a frequency matching method that uses the Dirichlet probability 

distribution to quantify the match between the pattern frequency distributions and describe 

how this can be combined with the sequential Gibbs sampler. The SNESIM algorithm is here 

used as an example of a pruned sequential sample algorithm. We compare sets of prior 
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realizations based on: 1) the frequency matching method 2) traditional application of SNESIM 

without sequential Gibbs sampling, 3) SNESIM based sequential Gibbs sampling, and 4) a 

combination of the frequency matching method with SNESIM based sequential Gibbs sampling.  

The importance of pattern reproducibility in the prior when solving inverse 

problems is demonstrated through a cross-hole travel time tomography example. The solution 

to this nonlinear inverse problem is sampled using the Metropolis algorithm with prior 

information based on both the SNESIM-based sequential Gibbs sampler and the proposed 

method combining the frequency matching method with the SNESIM-based sequential Gibbs 

sampler.  

 

2. Methodology 

2.1 Probabilistic inverse problem theory 

Consider that the subsurface can be parameterized by a discrete set of model 

parameters m  that represent the subsurface properties under study. In a probabilistic 

formulation, the solution to the inverse problem is based on combined information about the 

model parameters. This information is provided by a set of indirect observations d  (e.g. travel 

time data), data uncertainties ( )D d , a theoretical forward problem that describes the relation 

between the model parameters and data 

( )gd m ,      (1) 

and some data independent prior information on the model parameters ( )M m . The forward 

function g describes a linear or nonlinear relation that relies on a physical law or an 

emperically based relation. In this study equation 1 is a nonlinear relation that provides a set of 

travel time data observed at the receiver positions given a 2D velocity field between the 
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transmitter and receiver positions. The forward relation is based on ray-approximation and is 

calculated using the Eikonal equation (Zelt and Barton, 1998).  

The solution to the inverse problem is given as the posterior probabiltiy 

distribution over the model parameters (e.g. Tarantola, 2005) 

( ) ( ) ( )M Mk Lm m m (2) 

where k  is a normalization constant and ( ) ( ( ))DL gm m  is the likelihood function. The prior 

distribution ( )M m  describes the prior information over the model parameters. The likelihood 

function ( )L m  describes information over the model parameters provided by the forward 

problem, the observed data and the uncertainty related to the observed data (i.e. noise). 

 In this paper we assume that the noise component is Gaussian distributed with 

zero mean. In this case the likelihood function takes on the form 

11( ) exp ( ) ( )
2

obs obs
DL c g gm m d C m d , (3)

where obsd is a vector of observed data, DC is the covariance matrix that describes the 

(co)variances of the data noise. 

 

2.2 The extended Metropolis algorithm 

The extended Metropolis algorithm can be used to sample the posterior 

probability distribution of a general nonlinear inverse problem as formulated in equation 2. This 

algorithm requires: 1) A “black box” algorithm that is able to perform a random walk in the  

prior probability distribution (i.e. produce perturbations between realizations from the prior 

distributions). 2) An evaluation of the likelihood function for a given set of model parameters. 

The extended Metropolis algorithm takes the following steps:  

1) The exploration step:  
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A prior sampler proposes a realization, proposem , from the prior probability distribution, where 

proposem  is a perturbation of a current realization, currentm .  

2) The exploitation step: 

The proposed realization is accepted with probability 

( )
min 1,

( )
propose

accept
current

L
P

L
m
m

    (4) 

If the proposed model is accepted, proposem  becomes currentm , otherwise currentm  is accepted (and 

counted) again. The above procedure is continued until a desirable number of realizations have 

been accepted. The set of all accepted realizations constitutes a sample of the posterior 

probability distribution (Mosegaard and Tarantola, 1995).  

       

2.3 Sequential Gibbs sampling 

In order to make sequential simulation based algorithms appropriate for inverse 

modeling it is often required that a random walk with a controllable step-length between two 

prior realizations can be obtained (e.g. the current and proposed models described in the 

Metropolis algorithm). Sequential Gibbs sampling is such a tool that can be used to control the 

step-length between realizations obtained from algorithms based on sequential simulation 

(Hansen et al., 2008; Hansen et al., 2012). 

In a perfect implementation of sequential simulation each model parameter is 

simulated from a conditional probability distribution that is conditioned by all previously 

simulated model parameters. Hence, all conditional probability distributions from the final joint 

probability distribution are provided. Consequently, the probability distribution that is sampled 

in this way can be expressed as 

1 2 1 2 1 1 2 2 1 2 1 1( , , ..., ) ( | , ..., , ) ( | , ..., , )... ( | ) ( )N N N N Np x x x p x x x x p x x x x p x x p x  (5) 
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Using this implementation the sequential simulation will lead to a realization of the same joint 

distribution independent of the simulation sequence. 

Hansen et al. (2012) proved that for a perfect implementation of sequential 

simulation the sequential Gibbs sampler satisfies detailed balance, which guarantees that once 

the sequential Gibbs sampler samples the desired distribution it will continue sampling this 

distribution. 

The sequential Gibbs sampler provides a sampling strategy that can be used as 

prior sampler for the Metropolis algorithm. In this way complex geostatistical sampling 

algorithms based on sequential Gibbs sampling can be used as prior models for probabilistic 

inverse problems.  

The flow of the sequential Gibbs sampler is:  

1) A current realization from the prior distribution is provided.  

2) A subset of the model parameters in the current realization is randomly chosen.  

3) The model parameters within this subset are resimulated using sequential simulation 

conditional to the remaining model parameters (using e.g. the SNESIM algorithm).   

4) Step (2) and (3) of this procedure are repeated in order to obtain multiple realizations from 

the prior distribution.  

The size of the subset of model parameters to be resimulated is chosen 

subjectively and controls the explorational nature of the extended Metropolis algorithm. For 

large subsets the exploration step becomes large and the probability of acceptance (see 

equation 4) decreases. On the other hand, smaller exploration steps leads to a higher accept 

probability. However, a small exploration step causes successive accepted realizations of the 

Metropolis algorithm to become statistically more dependent and, hence, more realizations 

have to be accepted to obtain statistically independent realizations. For more details on this 

topic see e.g. Cordua et al. (2012).   
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2.3.1 Example 

In this section, prior realizations from the pruned sequential sample algorithm 

SNESIM algorithm and the SNESIM algorithm used in conjunction with sequential Gibbs 

sampling are compared. The multiple-point statistics used as input for these two prior models is 

obtained from the training image seen in Fig. 1.  

Figure 2 shows 5 traditional unconditional realizations from SNESIM using a 

template of 7 x 7 pixels. Figure 3 shows realizations using SNESIM-based sequential Gibbs 

sampling with a resimulation area of 2 m x 2 m (8 pixels x 8 pixels). A comparison of Figs. 2 and 

3 reveals that the use of the sequential Gibbs sampling strategy reduces the quality of the 

pattern reproduction. Moreover, the patterns seen in the output realizations from both of 

these prior models do not resemble the patterns seen in the input training image. This 

motivates us to have a look at the frequency matching method, which provides a means of 

controlling the degree of match between the pattern frequency distribution of the input 

training image and the output realizations. 
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Figure 1. Training image used for obtaining the multiple-point prior statistics.

Figure 2. Independent realizations from the SNESIM algorithm without sequential Gibbs 

sampling. 
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Figure 3. Realizations from the SNESIM prior model using sequential Gibbs sampling. 

2.4 The frequency matching method 

Multiple-point-based sample algorithms that rely on sequential simulation 

simulates from local conditional probability distributions (e.g. Strebelle, 2002). These 

conditional probability distributions are (according to the product rule) expressed by means of 

a (local) joint probability distribution. The joint distribution is based on multiple-point statistics 

from the training image, which is obtained by counting the number of times a certain pattern 

(i.e. multiple-point event) occurs in the training image. The joint probability distribution 

obtained in this way can be viewed as a pattern frequency distribution (i.e. a multiple-point 

histogram), which carry the same information as the content of the search tree, as referred to 

by Strebelle (2002).  

In the frequency matching method (Lange et al., 2012) the multiple-point-based 

prior probability distribution is quantified by measuring the degree of fit between the pattern 

frequency distribution of the training image and an output realization. In this way it becomes 

possible to formulate a closed form mathematical expression that quantifies the multiple-point 

prior probability distribution, which is not possible using a pruned sequential sample algorithm.  

Lange et al. (2012) defined a frequency matching method using a Chi-square 

dissimilarity measure. However, using this formulation does not lead to a prior probability 
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distribution, which makes it inappropriate to be used in a pure probabilistic formulation of the 

solution to the inverse problem. Therefore, we chose to defined the frequency matching 

measure using the Dirichlet probability distribution 

1

!( )
!, ..., !1

K

k

curHpriorTI kcur H HN k k
FMM cur cur priorTIH H N NK

m ,  (6) 

where curHk  is the number of counts in the k’th bin of the (unnormalized) histogram obtained 

from a prior realization m . TI
kH is the number of counts in the k’th bin of the (unnormalized) 

histogram obtained from training image. TK c is the number of possible pattern 

combinations, which is function of the template size T and the number of categories c . 

Further, we have that:  

1

K
cur cur

k
k

N H (7)

1

K
TI TI

k
k

N H (8)

1

K
prior prior

k
k

N H , (9)

where prior
kH  is the k’th bin of the prior (unnormalized) histogram, which represents the prior 

expectation of the pattern histogram before the training image histogram is observed. For high 

values of prior
kH a mismatch between the frequency distributions of an output realization and 

the training image has higher probability than for lower values of prior
kH . Notice that the 

Dirichlet distribution only needs to be evaluated for bins in which cur
kH as non-zero counts. All 

other bins (with zero counts) do not contribute to the probability. Hence, the histograms 

148



TI prior
k kH H becomes sparse, which, in particular, saves memory for large template sizes 

and/or many categories of the model parameter values. 

To our knowledge, this allows, for the first time, the possibility of quantifying the 

prior probability of a certain model m given a training image (and the associated pattern 

frequency distribution). One can sample the prior according to FMM directly using for example 

using the Metropolis sampler with a uniform proposal distribution. An example of this is shown 

in Fig. 4. Figure 4 shows realizations from the frequency matching based prior using the 

Dirichlet distribution in the case choosing the prior histogram to be a homogenous distribution 

with 5, | 0prior cur
k jH k j H  and using a template size of 3 pixels x 3 pixels. 

 While the evaluation of equation 6 in itself is computationally very cheap, this is a 

computationally extremely inefficient way to sample such a multiple point based prior, due the 

use of the uniform proposal distribution. Instead we propose to combine the frequency 

matching method, using the definition in equation 6, with a pruned sequential sample 

algorithm (exemplified here through the SNESIM algorithm) such that the computational 

efficiency of the sequential Gibbs sampling strategy can be utilized. 

 
Figure 4. Realizations of the Dirichlet probability distribution obtained using the Metropolis 

algorithm with a homogenous prior probability distribution.  
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2.5 Combining the frequency matching method with a PSS algorithm 

In this study we suggest to combine (algorithm-driven) PSS-based prior models 

(such as a SNESIM-based prior model) PSS with the frequency matching method prior based on 

a mathematic expression as a product of the two  

( ) ( ) ( )M PSS FMMm m m     (10) 

If the prior pattern frequency distribution prior
kH is assumed homogenous, then for very high 

values of prior
kH  the frequency matching based prior approaches a homogeneous distribution 

and the combined prior approaches the PSS-based prior. Hence, in principle the combined prior 

provides a means of controlling the degree of training image pattern match.  

The combined prior distribution can efficiently be sampled using the Metropolis 

algorithm in conjunction with the sequential Gibbs sampler. By substituting ( )FMM m with the 

likelihood function ( )L m  in equation (2) and (4), realizations from the combined prior in 

equation 10 can be obtained. The algorithm that samples this combined prior has the following 

workflow: 

1) Generate a current unconditional prior realization currentm  from the PSS-based prior ( )PSS m . 

2) Calculate the prior probability of this realization ( )FMM currentm  using the frequency matching 

method.  

3) Use the sequential Gibbs sampler (see section 2.3) to produce a perturbation of the current 

model in order to obtain a proposed model proposem . 

4) Evaluate the propose model using the frequency matching method ( )FMM proposem . 

5) Accept the proposed model with probability 

( )
min 1,

( )
FMM propose

FMM current

P
m
m

    (11) 
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If the proposed model is accepted, proposem becomes currentm , otherwise currentm  is accepted (and 

counted) again. By repeating step 2 – 5 a desirable number of models are accepted. All models 

accepted by this algorithm will be realizations from the combined 

prior ( ) ( ) ( )M PSS FMMm m m . Note that, in this way, the prior probability of the PSS-based 

realization ( )PSS m  does not need to be evaluated.  

The computational efforts needed to evaluate ( )FMM m is insignificant compared to performing 

one iteration of PSS algorithm.  

 

3. Results  

Figure 5 shows the results of obtaining realizations from the combined prior using 

sequential Gibbs sampling in conjunction with the Metropolis algorithm (using the same setting 

of the sequential Gibbs sampler, SNESIM and frequency matching method as described above). 

The results demonstrate that realizations from the combined prior model contain the same 

continuous channel structures as seen in the training image. It is observed that the pattern 

reproducibility is even better than compared to the traditional unconditional SNESIM 

realizations not influence by the sequential Gibbs sampler (compare Figs 2 and 5). Realizations 

using the SNESIM algorithm tends to show chopped off channel structures, while this is not the 

case using the combined prior model.  
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Figure 5. Realizations from the combined SNESIM-FMM-based a priori pdf using the extended 

Metropolis algorithm in conjunction with sequential Gibbs sampling.  

 

3.1 Influence of the prior on the solution to a tomographic inverse problem 

In order to demonstrate how the ability of the prior model to reproduce the 

patterns of the training image influences the solution to a nonlinear inverse problem, we 

consider a crosshole ground penetrating radar tomographic inverse problem (see e.g. Cordua et 

al., 2009). The inverse problem as defined here is formulated in a probabilistic manner as 

defined by equation 2. Realizations from the posterior distribution are obtained using the 

Metropolis algorithm.  

A synthetic reference model, from which a synthetic data set is obtained, is seen 

in Fig 6. This model is an unconditional realization of the SNESIM based prior model. A zero 

mean uncorrelated Gaussian noise component with a standard deviation of 1 ns (~2.7 % of the 

signal) is added to the data. This noise is appropriately accounted for by the likelihood function 

as seen in equation 3. The posterior probability distribution of this inverse problem is sampled 

using the Metropolis algorithm. The result of the inversion using SNESIM-based sequential 

Gibbs sampling prior is seen in Fig 7 (the associated prior realizations are seen in Fig 3). The 

posterior realizations related to the inverse problem using the combined prior model are seen 

in Fig 8. It is clear that the improved combined prior model provides posterior realizations that 
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resemble the reference model better than when using the SNESIM-based sequential Gibbs 

sampling prior. Moreover, the variability between the individual realizations becomes smaller 

when considering the combined prior model. This shows that the improved, and more 

informative prior, improves the resolution of the solution to the inverse problem. Additionally, 

the training image pattern reproducibility is improved. 

 

 
Figure 6. Reference model used for travel time tomography. The red rays give an indication of 

the data coverage. 
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Figure 7. Realizations from the posterior probability distribution with prior information defined 

by SNESIM-based sequential Gibbs sampling. 

 
Figure 8. Realizations from the posterior probability distribution based on the prior model 

combining the frequency matching method and the SNESIM-based sequential Gibbs sampler. 

 

4. Discussion 

4.1 PSS based Sequential Gibbs sampling 

During the sequential simulation performed by PSS algorithms a zero-probability 

multiple-point event may occur. This is dealt with by reducing the number of conditioning 

events until a non-zero multiple-point event is obtained. When the number of conditioning 

events is reduced, the information contained in the multiple-point statistics that is extracted 
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from the training image is reduced and, therefore, not propagated to the outcome realizations. 

This loss of information influences the ability of the algorithm to reproduce the input patterns 

as seen in the training image.       

Figure 3 showed that when sequential Gibbs sampling is used in conjunction with 

the PSS algorithm SNESIM the reproducibility of the training image patterns in the outcome 

realizations were worse than compared to full unconditional SNESIM realizations. As the 

sequential simulation in PSS algorithm proceeds, the likelihood that the algorithm needs to 

reduce the number of conditioning events will increase because it gradually becomes harder to 

fit a multiple-point event (as they are obtained from the training image) with non-zero 

probability. The local resimulation performed by the sequential Gibbs sampler corresponds to 

being in the last part of the sequential simulation process. Consequently, the number of 

conditioning events is likely to be reduced, which in turn reduces the number multiple-point 

information propagated from the training image to the realizations. Visually this will be 

observed as a reduction in the pattern reproducibility. Moreover, this tells us that the step-

length (i.e. the size of the resimulated area) influences the prior information contained in the 

output realizations.  

When using the combined prior, the frequency matching method ensures a better 

propagation of the multiple-point-based information from the input training image to the 

output realization by assigning low probability to multiple-point events not observed in the 

training image. In addition, the prior may become less sensitive to the step-length of the 

sequential Gibbs sampler.  

 

4.2 Training image patterns vs. prior expectations 

As it was seen above, the patterns seen in the training image are not necessarily 

reproduced in the realizations when using the non-combined prior models. In these cases the 
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patterns of the training image are not the prior information expressed by the algorithm-driven 

prior. Hence, the prior information actually expressed by such prior models can only be realized 

using the movie strategy, which involves looking at a set of prior realizations generated by the 

actual algorithm that is used as prior model for the inverse problem (see e.g. Cordua et al., 

2012).  

It has been argued that most all geostatistical simulation methods are algorithm-

driven, which means that one must run the algorithm in order to see what kind of spatial 

variability is actually produced by this prior model. The use of such ‘algorithmic prior’ adds a 

layer of complexity between the expert on spatial structures (such as the geologist) and the use 

of this information as prior information for a modeling problem. If the prior information about 

the subsurface model expressed by the training image is actually reflecting the prior believes 

about the subsurface, it is unsatisfying not to maintain this information in the output of the 

prior model. Moreover, as it is seen above, the pattern reproducibility has an enormous impact 

on the solution to the inverse problem. The pattern reproducibility might even be more crucial 

in case of flow simulation in which the scenario of connected vs. disconnected channel results 

in a significant difference in the forward responses. This study demonstrates the importance of 

not assuming that the training image in itself represents the prior information, but rather the 

combination of the training image and the sampling algorithm. Therefore, for any practical use 

of realistic models of spatial variability it is necessary to develop methods that allow a 

geological expert to quantify his/her knowledge of spatial variability (in form of e.g. a training 

image) without needing to be an expert in geostatistics and algorithmic details.  

 

4.3 Maximum posterior models with training image based prior information 

Lange et al. (2012) expressed a frequency matching method based prior using a 

Chi-square dissimilarity distance. For a cross-borehole tomographic inverse problem they were 
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able to find solution that honored a combination of the likelihood function and this multiple-

point-based prior model. The frequency matching method based on the Dirichlet distribution is 

a purely probabilistic formulation of the prior model and can, therefore, be used to find the 

maximum posterior model of the probabilistically defined inverse problem 

( ) ( ) ( )M FMMk Lm m m      (12) 

The advantage of the Dirichlet formulation as compared to the Chi-square 

dissimilarity measure is that the Dirichlet formulation is a probability distribution where the 

“weighting” factor prior
kH  is based on prior believes and is not found by using a L-curve method 

that searches to find a balanced weight between the prior and likelihood terms, as is the case 

for Lange et al. (2012). The use of the frequency matching method based on the Dirichlet 

distribution is well suited for use with probabilistic inversion methods, both for sampling the 

posterior distribution and to allow locating the model with maximum posterior probability. 

Hansen et al (2012) discuss that no methods is yet available to locate the model with maximum 

posterior probability in the case of a training image based prior, because, until now, no method 

has existed to quantity the prior probability. This is now the case for the first time using 

equations 6 and 12 above. An example of finding a model with maximum posterior probability 

based on a Dirichlet formulated prior is saved for future research. 

It should be noted that the influence of the patterns from the training image can 

be controlled by prior
kH . Therefore, the suggested combined prior can be used to control to 

what degree the patterns of the prior realization matches the training image patterns. If the 

influence of the frequency matching method is completely removed (for very high values of 
prior

kH ), then the prior reduces to a prior model based on PSS based sequential Gibbs sampling. 

On the other hand, for small values of prior
kH , the frequency matching method imposes a high 

degree of pattern matching on the combined prior model.  
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4.4 Sampling the frequency matching based prior model 

If it was possible to evaluate the probability of the outcome realizations from the PSS algorithm, 

it would be possible to use this algorithm as proposal for the sample algorithm. In such a case it 

would be able to sample a pure frequency matching based prior model (instead of the product 

of the frequency matching based prior and the PSS-based prior model) while maintaining the 

computational efficiency of the sequential simulation strategy. Such a sample algorithm is 

obtained by substituting the accept probability in equation 11 with the following 

( ) ( )
min 1,

( ) ( )
FMM propose PSS current

FMM current PSS propose

P
m m
m m

,   (13) 

which compensates for the proposal distribution. Using the algorithm in section 2.5 with this 

accept probability the algorithm will sample ( )FMM m  instead of ( ) ( )PSS FMMm m .  

 

5. Conclusion  

We have demonstrated the potential of combining the frequency matching 

method with a PSS-based sequential Gibbs sampling (here exemplified through the SNESIM 

algorithm). In this way, the output realization from this combined prior conserves the 

information from the multiple-point statistics obtained from the training image, which visually 

appear as an improved reproduction of the pattern from the training image. This reproduction 

is even better than when compared to traditional unconditional realization from the SNESIM 

algorithm. The suggested strategy maintains the computationally efficiency of sequential 

simulation while improving the reproducibility of the multiple-point patterns from the training 

image.  

The suggested combined prior model was used for an inverse problem to 

demonstrate the influence of the pattern reproducibility to the solution of an inverse problem. 

We showed that the improved pattern reproducibility improved the resolution when applied 
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for a tomographic nonlinear inverse problem. This demonstrates the importance of being able 

to propagate the multiple-point-based prior information from the training image into the 

output realizations.  
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Abstract 

Probabilistic inverse problems and geostatistical modeling rely on and benefit from 

trustworthy prior information. For such problems, prior information is expressed by a probability 

distribution over the space of model parameters. In practice, however, prior information is often 

given as incomplete knowledge extracted from few realizations of the subsurface model (e.g. 

training images), stemming from earlier data analysis, or provided by specialists. From such 

information approximate marginal distributions can be derived. In this paper, we discuss how to 

determine a joint probability distribution (i.e. random field) that is consistent with a limited set of 

known marginal distributions. Central to our discussion is the use of additional constraints to 

supplement the marginals when building a well-defined joint distribution, and the effects of these 

constraints on the resulting distribution. We pay particular attention to the currently most applied 

method for injection of prior information into inverse problems, namely sequential simulation. 

Sequential simulation algorithms are capable of sampling joint probability distributions based on a 

set of marginal distributions. We investigate the implicit assumptions made by such algorithms 

and show that distributions sampled by such algorithms depend on the sampling sequence, and 

do not have the desired marginal distributions. We describe how a sequential simulation strategy 

based on a Markovian joint distribution can avoid these problems. Finally, we address the problem 

that training images have limited size and therefore, even under an assumption of stationarity, 

provide limited statistical information about the marginals. For this case, we suggest a formulation 

that incorporates these statistical uncertainties. 

 

Keywords: Multiple-point Geostatistics, sample algorithms, entropy, information theory, prior 

model. 
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1 Introduction 

In a probabilistic formulation, the solution to an inverse problem or a geostatistical 

modeling problem is given by a (posterior) probability distribution, which is both influenced by the 

observed data and the prior state of information on the model parameters (Tarantola, 2005). 

Therefore, trustworthy prior probability distributions are important in order to obtain a 

dependable solution to such problems (Journel and Zhang, 2006; Hansen et al., 2012). 

Geostatistical models are useful tools for quantifying geological information. Therefore, 

such models serve as a means of expressing prior information about an earth model to be inferred 

(e.g. Cordua et al., 2012). Geostatistical modeling basically rely on two different approaches: (1) 

the object-based approach in which the geometrical shapes of geobodies are defined by stochastic 

parameters (e.g. Deutsch and Wang, 1996). (2) The pixel-based approach in which the earth model 

is characterized by an image where the pixel values are associated with stochastic parameters 

(Journel and Alabert, 1989). The information provided by a geostatistical model can be expressed 

by a joint probability distribution defined over a set of stochastic parameters (also referred to as 

model parameters). Here, our focus will be on the pixel based approach. In this case the individual 

parameters are associated with a position in space (typically arranged in a regular grid). A joint 

probability distribution over parameters that, as in our case, refer to spatial locations is known as 

a random field. However, throughout this paper we will refer to it as a joint probability 

distribution. 

Typically, this joint probability distribution is unknown, except for a limited set of its 

marginal probability distributions. Assuming stationarity, the marginal distributions can be 

estimated from a sample model (i.e. a realization from the unknown joint distribution) in form of a 

training image or an old dataset. The single normal equation simulation (SNESIM) algorithm is an 

example of a geostatistical algorithm that samples a joint probability distribution based on a set of 

marginal distributions obtained from a training image (Strebelle, 2002). Another example is to 

assume the joint distribution to be Gaussian distributed and then determination its parameters 

using a semivariogram (i.e. covariance model) based on a set of observations (e.g. Journel and 

Huijbregts, 1978; Looms et al, 2010). The simulation algorithm may use a limited class of functions 

to represent the marginal distributions in order to save computational time. An example of such 

an algorithm is sequential Gaussian simulation (SGSIM) using a local neighborhood of conditioning 
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data (e.g. Journel, 1994). An example of determining a joint probability distribution, which 

represents a noise model, based on a sample model in form of set of observations, is shown by 

Mosegaard et al. (1997). 

The simplest possible statistics that can be obtained from a sample model (such as a 

training image) is expressed by a one-dimensional marginal distribution (i.e. a histogram of single-

pixel values). However, if information about the spatial dependencies between model parameters 

has to be contained in the statistics (i.e. two- or multiple-point statistics), higher dimensional 

marginals have to be estimated (e.g. Lange et al., 2012). An M-dimensional marginal distribution 

then represents the probability of patterns over certain M-pixel configurations (e.g. Guardiano 

and Srivastava, 1993; Strebelle, 2002). Markov random fields with higher order interactions have 

previously been used to characterize large scale complex spatial patterns (Tjelmeland and Besag, 

1998). Recently, an approach using a Markov mesh model has been proposed (Stien and 

Kolbjørnsen, 2011).  

In this paper we discuss the general problem of determining a joint probability distribution 

based on a set of its marginal probability distributions. It is shown that for a limited set of marginal 

probability distributions this will in general lead to an underdetermined problem. We discuss 

different assumptions that can be made in order to uniquely define a joint probability distribution 

given its marginals. 

Sequential simulation algorithms are able to sample an unknown joint probability 

distribution based on a set of marginal distributions. We investigate the assumptions made by 

such algorithms and in this way obtain explicit mathematical expressions for the joint probability 

distribution that is sampled by these algorithms. It is demonstrated that if the assumptions are 

used in an incorrect way the joint distribution will depend on the simulation sequence (i.e. the 

random path used) and will not be consistent with the marginal distributions. We review the 

sequential simulation strategy based on a Markovian joint distribution that is consistent with the 

marginal distributions and is not influenced by the simulation sequence.  

Marginal probability distributions estimated from a sample model are subject to 

uncertainty due to the limited size of the training image or data set used to obtain the sample 

model. We suggest a formulation of a Markovian joint distribution that takes into account the 

statistical uncertainty related to the estimation of marginal distributions. Finally, we discuss the 
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information content (i.e. entropy) of joint probability distributions and how it is influenced by lack 

of consistency and uncertainty with regard to the marginal distributions.  

2 From marginal to joint probability distributions 

In this section we investigate the problem of inferring a joint probability distribution 

based on a limited set of its marginal probability distributions. Consider two marginal probability 

distributions 1( )p m  and 2( )p m  of dimension M = 1 from a joint probability distribution 1 2( , )p m m

of dimension N = 2. The model parameters are assumed to be categorical variables with K = 3 

possible outcomes ( 1,2,3m ). Then, the joint probability distribution has 23 9NK  possible 

outcomes (see Fig 1). The L = 2 corresponding marginal probability distributions have 
12 3 6MLK  possible outcomes. 

In order to determine the joint probability distribution depicted in Fig 1, based on 

the marginal probability distributions, the probabilities of its 9 possible outcomes must be 

calculated from a total of 6 possible outcomes from the two marginals. This calculation amounts 

to solving a system of 6 linear equations with 9 unknowns (using 11p  as short for 1 2( 1, 1)p m m  

and 1p  as short for 1 2( 1) ( 1)p m p m , etc.) 

11 12 13 1

21 22 23 2

31 32 33 3

11 21 31 1

12 22 32 2

13 23 33 3

p p p p
p p p p
p p p p
p p p p
p p p p
p p p p

      (1) 

subject to the constraint that all pi  0, and an additional equation stating that the probabilities 

must sum to one: 

11 12 13 21 22 23 31 32 33 1p p p p p p p p p .    (2) 

The latter two conditions state that the solution must reside in the unit 9-simplex, part of an 8-

dimensional linear subspace of R9. In matrix notation this system of equations takes on the form 
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11

12 1

13 2

321

22 1

23 2

331

32

33

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 1 1 1 1 1 1 1 1 1

p
p p
p p

pp
p p
p p

pp
p
p

    (3) 

jointAp p ,       (4) 

where jointp  is the unknown joint probability distribution and p

. It can be shown that this linear set of equations has an 4-dimensional linear 

solution space (the matrix A in equation 4 has rank 5) in 9R its solution is non-unique, 

and the additional constraints are not sufficient to uniquely determine a solution. This can be seen 

in the following way: 

 Assume that (1) (2) (3) (4), , ,n n n n

A

( ) 0k
i

i
n

1,2,3,4k

N
( )

,
max k

ii k
n N

jointp joint
, 0i jp ( , )i j

joint
,,

min i ji j
p

joint
,,

max 1i ji j
p
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jointp

joint joint ( )
1 2 3 4ˆ ( , , , ) k

k
k

a a a a ap p n

joint
1 2 3 4ˆ ( , , , )a a a ap / (4 )ka N ( 1,2,3,4)k

jointˆ0 1p

( , )i j  

jointp joint
, 0i jp ( , )i j . 

However, the demonstration can easily be extended to the case where some of the components 

of jointp are zero. 

The conclusion is that further information (i.e. constraints) must be added in order to 

uniquely determine the joint probability from the marginal distributions.  

Following a reasoning similar to the above example, it can easily be verified that if the inequality 

1M NLK K       (11) 

is satisfied, then the problem of determining a joint probability distribution from its marginal 

probability distributions (having the same dimension) is underdetermined (i.e. have some degree 

of freedom), and  infinitely many joint distributions are possible. To ensure a unique solution to 

the problem, at least  1N MK LK  additional constraints must be supplied. 
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Figure 1. Outline of a two-dimensional joint probability distribution and two one-dimensional 

marginal probability distributions obtained from the joint probability distribution. The possible 

outcomes from the joint probability distribution are marked by blue dots and the outcomes from 

the marginal probability distributions are marked by red dots. In this particular example the 

number of possible outcomes from the marginal probability distribution is smaller than the 

number of possible outcomes from the joint probability distribution. It can be shown that infinitely 

many joint probability distributions are consistent with the given marginal distributions. 

3 Adding constraints to obtain unique joint distributions 

The degrees of freedom can be reduced if additional constrains can be imposed on 

the problem of determining a joint probability distribution based on its marginal probabilities. In 

what follows we will list some of the (not necessarily mutually exclusive) possibilities for reducing 

the degrees of freedom in the problem.   

 

3.1 Assuming that the joint distribution is parametric  

If the joint probability distribution is assumed to be parametric of some form, the 

degrees of freedom are reduced to the number of parameters that control the probability 

distribution. For instance, by assuming the joint probability distribution to be Gaussian reduces 

the degrees of freedom to 
2 3

2
N N

 ( N  means, N  variances, and 
( 1)

2
N N

 covariances). 
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3.2 Assuming that the joint distribution has Markov properties 

Assuming that the joint probability distribution is Markovian also implies a reduction 

in the degrees of freedom. A Markovian probability distribution (or Markov random field) is 

defined as a random field in which probability distributions over the individual variables only 

depend on variable values within a certain neighborhood. Hence, a Markov random field is 

completely defined by a set of conditional probability distributions (one for each variable and its 

neighborhood) or, equivalently, by the corresponding set of marginal probability distributions. 

Hence, the number of degrees of freedom is equal the number of marginal probability 

distributions.  

Assuming that the variables of the distribution are stochastically independent is a 

special case of the Markovian property in which the neighborhood of dependence of the individual 

variables is equal to the variables itself. 

 

3.3 Assuming that the joint distribution is stationary 

That a random field is stationary means that its neighborhoods do not change when shifted 

in space and their corresponding marginals are all equal to the same marginal probability 

distribution. In this way, when assuming the joint distribution to be Markovian, only a single 

marginal probability distribution is necessary to uniquely determine the joint probability 

distribution.  

If the random field is assumed to be both Gaussian and stationary, the assumption of 

stationarity further reduces the degrees of freedom because in this case we only have one mean, 

one variance, and N covariances.  Hence, the total degrees of freedom are reduced to 2N . In 

this case a semivariogram analysis of the sample model provides the variance and the covariances 

of the unknown joint probability distribution, and the semivariogram together with the mean of 

the sample model provides exactly the necessary information (N+2 degrees of freedom) in order 

to uniquely determine the unknown joint distribution.  

Stationarity can also be exploited in cases where a sample model (often in form of a 

training image) from the joint probability distribution is available. A sample model is a set of 
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model parameters that is assumed to be a realization from the unknown joint probability 

distribution. By assuming that the underlying joint probability distribution represents a stationary 

process, all marginal probability distributions defined over model parameters related to a certain 

pixel configuration are equal. Under this assumption, the sample model provides a sample (i.e. 

multiple realizations) from the marginal probability distributions (related to a certain pixel 

configuration) of the unknown, underlying joint probability distribution.  

By scanning the image with a template  (defined by a certain pixel configuration) an M-

dimensional histogram with M-point statistical information from the sample model  is 

provided. The pattern frequency distribution related to a template , , (i.e. normalized 

histogram) provides an estimate of an M-dimensional marginal probability distribution from the 

unknown joint probability distribution. The more times L that the template can be repeated across 

the image related to the sample model, the better becomes the approximation of the marginal 

probability distribution. See e.g. Strebelle (2002) for more details on how to obtain statistics from 

a training image.  

3.5 Assuming that the joint distribution has maximum entropy 

Assuming maximum entropy of a probability distribution is often considered the 

most "neutral" assumption possible. This assumption involves that among all possible joint 

probability distributions satisfying the marginal probability distributions, this probability 

distribution is the least biased estimate possible on the given information, i.e. it is maximally 

noncommittal with regard to missing information (Jaynes, 1957). 

The entropy H of a variable m with probability distribution ( )p m  is denoted as 

(Shannon, 1948) 

2( ) ( ) log ( )i i
i

H p pm m m ,    (12) 

where 2log is the logarithm with base 2. In this case the entropy is measured in bits. If nothing is 

known and assumed about the distribution, a uniform distribution is the one that carries least 

information and, therefore, has maximum entropy. Given the mean and covariance, the Gaussian 

distribution is the maximum entropy distribution. Hence, by assuming maximum entropy the 

degrees of freedom always match the information at hand and no degrees of freedom will be left.  

kT

SMm

T ( , )SM Tm
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3.5.1 Sequential simulation and entropy  

Using the product rule, a joint probability distribution can be expressed as a product of conditional 

probability distributions 

1 1 1 1 1

1 1 1 2 1 2 1

1 1 2 1 1
3

( ,..., ) ( | , ..., ) ( ,..., )
( | , ..., ) ( | , ..., ) ( ,..., )

( | , ..., ) ( | ) ( )

N N N N

N N N N N

N

k k
k

f m m f m m m f m m
f m m m f m m m f m m

f m m m f m m f m

, (13) 

This equation is the backbone of sequential simulation, because in this way a realization of the 

joint distribution can be obtained by sequentially simulating the model parameters conditionally 

to all previously simulated model parameters (see e.g. Gómez-Hernández and Cassiraga (2000) 

and Hansen et al. (2012)).   

The entropy of equation 13 is given as (Cover and Thomas, 2006) 

1 1 2 1 1 1
3

( ,..., ) ( ) ( | ) ( | ,..., )
N

N k k
k

H m m H m H m m H m m m .  (14) 

It can be shown (Cover and Thomas, 2006) that conditioning leads to a decrease in entropy: 

1 2 1( | ) ( )H m m H m      (15) 

with equality if 1m  and 2m  are independent. Consider now the case where not all marginal 

probability distributions can be provided (as is otherwise demanded in the formulation in equation 

13), but only some of them can be obtained, which will be the case when the marginals are 

extracted from a training image (e.g. 5 1 2 3 4( | , , , )p m m m m m

5 1 2( | , )p m m m ). In such a case the entropy of this term in 

equation 14 will increase, according to the inequality in equation 15 (e.g.

5 1 2 3 4 5 5 1 2( | , , , , ) ( | , )H m m m m m m H m m m ), which will make the resulting entropy of joint 

distribution in equation 13 increase. Hence, every time the dimension of a marginal probability 

distribution used for the sequential simulation is pruned (i.e. some variables are not used), the 

information content of the resulting joint probability distribution is reduced. 
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4 Effects from additional constraints 

As we have seen above, if we are only acquainted with a limited set of approximate 

marginal probability distributions based on a sample model, we are facing an underdetermined 

problem of finding the joint probability distribution. In the following we discuss and analyze some 

unwanted consequences of adding additional constrains to this undetermined problem by using 

different assumptions about the joint probability distribution. We address these consequences 

and come up with alternative formulations. Finally, we formulate a solution that also takes into 

account the statistical uncertainty related to the given marginal probability distributions based on 

a sample model.    

4.1 The use of pruned marginal distributions in sequential simulation 

A common assumption used by the sequential simulation algorithms is that the 

values of the individual model parameters are only dependent on other model parameters within 

a certain neighborhood surrounding the location associated with the parameter. As discussed 

earlier, this assumption is known as the Markov property. If the joint distribution is also assumed 

to be stationary, then only a single marginal distribution must be known in order to uniquely 

determine this Markovian joint distribution.  

As a sequential simulation algorithm proceeds, the model parameters are simulated 

from a local conditional probability distribution (based on the known marginal distribution) one at 

a time (e.g. Strebelle, 2002). As the simulation evolves, the algorithm forms a directed graph, 

where each simulated model parameter is associated with a node and the directed edges between 

the nodes represent probabilistic dependencies between the model parameters. Since each node 

is only visited once during the sequential simulation, no cycle will ever occur in such a graph. 

Hence, the graph is said to be a directed acyclic graph (DAG) (see e.g. Bishop (2006) for an 

introduction to graphical models).  

Figure 2(I) shows a set of nodes marked by letters A – I to be sequentially simulated. 

Figure 2(II) shows a DAG that occurs as a result of sequential simulation with the simulation 

sequence marked by numbers on the nodes. The dependencies defined by the directed edges 

result from a square-shaped template of 3 by 3 interconnected nodes.  

The joint probability distribution over a DAG can be factorized as follows (e.g. 

Whittaker, 1990) 
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1
1 1

( ,..., ) ( | ( )) ( , ( ))
N N

N i i i i
i i

f m m p m pa m p m pa m ,   (16) 

with the normalization factor  
1

1

( ( ))
N

i
i

p pa m . 

( )ipa m is the set of so-called parents of the model parameter im .  As an example, the model 

parameters associated with the nodes D, E, G, and I in Fig 2(II) are parents of the model parameter 

associated with the node H. The product in equation 16 is evaluated in the same order as the 

model parameters are visited during the sequential simulation. From equation 16 we now have a 

general formulation of the joint probability distribution that results from a sequential simulation 

algorithm.  

 

 
Figure 2. (I) Graph with 9 nodes labeled with letters A – I. (II) First example of sequential 

simulation sequence in a directed acyclic graph. The numbers are associated with the order by 

which the nodes are sequentially simulated. The arrows show the dependencies between the 

nodes as a result of a template of 3 by 3 interconnected nodes with the “central node” located in 

the center of the template. Hence, using this template the individual nodes can only be dependent 

on other nodes that are located next to them. (III) Second example of a sequential simulation path 

(as a result of the same template). 

 

The joint probability distribution in equation 16 evaluated for the simulation 

sequences (seq. 1) as seen in Fig 2(II) is given as: 

1( , ,..., ) ( ) ( ) ( | , ) ( ) ( | ) ( | , )

( | , , , , , ) ( | , , , ) ( | , , , , )
seqf A B I p C p D p B C D p I p G D p A B D

p E A B C D G I p H D E G I p F B C E H I
  (17) 
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Using the product rule this expression can be rewritten as: 

1
( ) ( , , ) ( ) ( , ) ( , , ) ( , , , , , , )( , ,..., )

( , ) ( , ) ( , , , , , ) ( , , , ) ( , , , , )
( , , , , ) ( , , , , , )

seq
p C p B C D p I p G D p A B D p E A B C D G If A B I

p C D p B D p A B C D G I p D E G I p B C E H I
p H D E G I p F B C E H I

 (18) 

Another choice of simulation sequence (seq. 2) is shown in Fig 2(III). The associated joint 

probability distribution over this graph is given as: 

2 ( , , ..., ) ( ) ( ) ( | , ) ( | , ) ( | , ) ( | , , , , )

( | , , ) ( | , , ) ( | , , )
( ) ( ) ( , , ) ( , , ) ( , , , , , ) ( , , , )

( , ) ( , ) ( , ) ( , , , , ) ( , , ) ( , , )
( , , , )

seqf A B I p A p F p B A F p D A B p H D F p E A B D F H
p C B E F p I E F H p G D E H
p A p F p B A F p H D F p E A B D F H p C B E F

p A F p A B p D F p A B D F H p B E F p D E H
p I E F H ( , , , )p G D E H

 (19) 

From these examples (expressed in equations 18 and 19) it is seen that two different simulation 

sequences lead to two different joint probability distributions.  

The above example shows that when Markov properties are assumed in a sequential 

simulation strategy as described above, the actual joint probability distribution sampled by the 

sequential simulation algorithm depends on (1): the size of the template (typical for multiple-

point statistic) or neighborhood (typical for two-point statistics), and (2): the simulation sequence. 

Note that if im  always has all previously simulated nodes as its parents equation 16 equals 

equation 13 and is no longer dependent on the simulation sequence. 

Equation 16 demonstrates that the joint probability distribution over a random 

simulation sequence is proportional to the product of marginal probability distributions over the 

individual nodes and their parents, , ( )i ip m pa m . Since the set of model parameters 

, ( )i im pa m

, this formulation of the joint probability distribution is not consistent with 

the known marginal probability distribution (i.e. does not satisfy equation 4).  

4.1.1 Sequential simulation of the canonical joint distribution of a Markov random field  

In an undirected graph a clique is defined as a subset of nodes in which every two nodes 

are connected by an edge. The marginal probability distributions from a joint distribution defined 

over such a graph contain the probabilistic dependencies over the cliques. The set of marginal 

probability distributions that is obtained from a sample model will be overlapping such that the 

T
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associated cliques will form a chain of cliques 1( ,..., )nC C . For a chain of cliques we have that: (1) 

every clique occurs exactly once and (2) 1 1( ... )k kC C C is a subset of at least one of the 

previous cliques 1 1( ,..., )kC C . The set 1 1( ... )k k kS C C C  is said to be the k-th separator. 

Hence, kS  is the overlap between clique kC  and the previous cliques in the chain. The set 

\k k kR C S  is said to be the k-th residual. 

The joint probability distribution defined over a chain of cliques is a Markov random field, 

which can be expressed as (see e.g. Castillo et al., 1997): 

1
1 1 1

( ,..., ) ( | ) ( , ) ( )
L L L

N k k k k k
k k k

f m m p r s p r s p c ,   (20) 

where the normalization constant is given as
1

1

( )
L

k
k

p s . kr  and ks  are the model 

parameters associated with the node of the k’th set of residuals kR  and separators kS , 

respectively. L is the total number of cliques in the chain of cliques. kc  are the model parameters 

associated with the nodes contained in a clique kC , which is equal to the set of nodes given by the 

set ( , )k kr s .  

In the graph depicted in Fig 3(I) an example of a chain of cliques is given by the subsets: 

, , ,ABDE BCEF DEGH EFHI . The associated separators and residuals are given by the subsets 

, , ,BE DE EFH  and , , ,ABDE CF GH I , respectively. The resulting joint probability 

distribution is then given as: 

( , , , ) ( , , , ) ( , , , ) ( , , , )( , ,..., )
( , ) ( , ) ( , , )

p A B D E p B C E F p D E G H p E F H Ip A B I
p B E p D E p E F H

,  (21) 

where the simulation sequence is seen in Fig 3(II).  Note that the exemplified chain of cliques is not 

the only one possible.  

Equation 20 is function of the known marginal distributions and is consistent with these 

marginals (i.e. satisfies equation 4). Therefore, this expression uses all the information provided by 

the known marginal probability distributions, which was not the case using the DAG formulation.  

Moreover, this expression guarantees that the same joint probability distribution (the canonical 

distribution) will be sampled from any simulation sequence that forms a chain of cliques from the 

set of cliques defined by the known marginal probability distributions. However, it should not be 
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forgotten that the nonuniqueness of the joint distribution consistent with given marginals still 

remains. The canonical distribution is just one particular choice out of infinitely many. 

The formulation in equation 20 provides a means to perform sequential simulation from 

this Markovian joint distribution. As seen in Fig 3(II), sequential simulation based on this equation 

may at some points lead to sequential simulation of more than one model parameter at a time. 

However, this can easily be reformulated such that sequential simulation of one model parameter 

at a time can be obtained using the product rule (see equation 13) within each residual: For the 

k'th residual the conditional probability can be rewritten as: 

1 1 2 1 1
3

( | , ..., , ) ( | , ) ( , )
( , )( | )
( ) ( )

J

j j
j

p r r r s p r r s p r s
p r sp r s
p s p s

   (22) 

where J  is the number of nodes within the k'th set of residuals. This is an application of the 

product rule, which is not influenced by the simulation sequence. 

  Thus, a sequential simulation algorithm based on equations 20 and 22 will lead to an 

algorithm that generate realizations from a known joint probability distribution that is consistent 

with the known marginal probability distribution obtained from a sample model (such as a training 

image).  

It should be noted that, for the Markovian joint distribution, the model with maximum 

probability will be the model only containing patterns with maximum probability in the marginal 

distribution due to the factorized formulation of the joint distribution (see equation 20). Hence, 

the maximum probability model may be very unrealistic and lack the variability and patterns as 

seen in the sample model. 
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Figure 3. (I) An example of an undirected graph and the dependencies among the nodes marked 

by letter A, B,…, I. (II) The simulation sequence, when using a Markov random field formulation for 

the joint probability distribution over the nodes, is indicated by numbers. 

 

4.2 Uncertain marginals  

The sample model consists of a finite set of model parameters, which means that a 

marginal probability distribution ( , )SM
obs Tm  estimated from such a sample is only an 

approximation to the true marginal distribution. We shall now consider how this statistical 

uncertainty can be taken into account in the Markovian joint distribution.  

The probability that a certain pattern histogram ReH K  is a realization from a 

process with outcome probabilities given by the observed pattern histogram from the sample 

model SM SM
obsH K   can be expressed by the Dirichlet distribution. Here, ReK and SMK  are the 

number of counts in the pattern histograms related to a realization and the sample model (e.g. 

training image), respectively. If 1( ,..., )K  is defined through ReH K , this probability 

distribution is expressed as: 

Re

1
11

!( ,..., )
!,..., !

iHSM priorI
i i

K SM prior
iI

H HKp
H H K K

    (23) 
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where Re
i iH K , SM

iH and prior
iH are the i’th bins in the pattern histograms. prior

iH is the prior 

histogram that expresses our prior expectations about the pattern histogram of the sample model. 

Typically, this histogram is assumed to be uniformly distributed because this is the information 

provided before the training image is seen. If multiple sample models are known, the resulting 

histogram is simply the sum of the pattern histograms related to the individual sample models. 
MI K (i.e. K M ) is the number of possible pattern combinations within a 

certain template, which is a function of the template size M and the number of discrete 

outcomes from the categorical model parameters K.  

Note that the Dirichlet distribution only needs to be evaluated for bins where 0iH  . No 

other bins contribute to the probability. Hence, the histogram becomes sparse, which, in 

particular, saves memory for large template sizes and/or many categories of the model parameter 

values. In the limit 0, 1,2,...,prior
iH i I  the Dirichlet distribution reduces to the multinomial 

distribution. 

Each frequency distribution represents an approximation to a marginal probability 

distribution appp . Given an approximation to a marginal probability distribution we can define 

a Markovian joint probability distribution over a set of model parameters given a marginal 

probability distribution (using equation 20): 

app
1

( | ) ( )
L

k
k

p p cm       (24) 

From equation 23 and 24 we are then capable of defining a joint probability distribution over the 

model parameters and the frequency distributions as:  

( , ) ( | ) ( )p p pm m        (25) 

A marginalization over the frequency distribution gives us an expression for a Markovian joint 

probability distribution that takes into account the uncertainty related to the marginal probability 

distribution: 

( ) ( , ) ( | ) ( )p p p pm m m      (26) 

Realizations from this distribution can be obtained by sequentially simulating from the 

joint probability distribution ( , )p m  by: 

1. Obtain a realization from the Dirichlet distribution ( )p . 
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2. Given a realization of , a realization of m can then be obtained through sequential simulation 

of ( | )p m  .  

All realizations of m obtained in this way will then be realizations from ( )p m . 

Equation 26 is a formulation of the Markovian joint probability distribution, as defined in 

equation 20, that in addition takes into account the statistical uncertainty related to the 

approximate marginal probability distribution obtained from a sample model (e.g. due to the finite 

number of count that can be obtained from a training image). Hence, in such a formulation the 

exactness of the marginal probability, which is controlled by for example the size of the training 

image, has an influence on the variability of the joint probability distribution, which is not the case 

in existing approaches. 

Taking this uncertainty into account is important in order to obtain a joint probability 

distribution that is not realistic, and over optimistic, with respect to the information content 

obtained from the sample model. In this way such a formulation can be used to provide a prior 

probability distribution that carry realistic prior information obtain from a training image rather 

than a “narrow” prior information that consider the training image to represent the exhaustive 

prior information about the subsurface.   

 

4.3 Loss of information by algorithms with pruned marginal distributions 

As we saw above, the joint probability distribution related to a DAG is not consistent 

with the known marginal distributions because ( , ( ))i ip m pa m  was typically of a dimension smaller 

than the known marginal. On the other hand, for the Markovian joint probability distribution the 

probabilities over the cliques ( , )k kp r s  are exactly the known marginal distribution. As we saw in 

section 4.5, when dependencies does not exist (i.e. are unknown or discarded), as is the case of 

the DAG based algorithms when compared to the canonical formulation in equation 20, the 

entropy of the joint distribution increases.  

 The Markovian joint probability distribution is consistent with the known marginal 

probability distributions. However, if only a set of lower-dimensional pruned marginal 

distributions is used, as is the case when using a DAG based algorithm (such as the SNESIM 

algorithm or SGSIM using a local neighborhood), the entropy of the resulting joint distribution that 
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is sampled by such algorithms is increased compared to the entropy of the Markovian joint 

distribution. In other words, information is lost when neighborhoods (i.e. marginal probability 

distribution) are pruned. 

 The SNESIM algorithm reduces the number of conditioning events if the 

denominator of the conditional probability distribution becomes zero (Strebelle, 2002). Pruning of 

a conditioning event leads to a joint distribution that is inconsistent with the marginals because a 

parent is removed (see equation 16), and leads to an increase in the entropy. Only if the 

simulation sequences and the pruning strategy are the same for two different SNESIM simulations, 

the joint distributions sampled during the two simulations will be the same.       

 When uncertainty of the marginal distributions is taken into account, as obtained 

through the Dirichlet distribution, the variability of the Markovian joint probability distribution will 

increase as compared to the case of not accounting for this uncertainty. This will, in turn, result in 

an increase in the entropy due to the less certain information provided by an uncertain marginal 

distribution.  

5 Numerical examples 

In this section we demonstrate different numerical examples. First, we calculate the 

entropy of the two joint probability distributions that are obtained using two different simulation 

sequences. Second, we see how this influences the probability of drawing a certain realization 

from these two joint probability distributions. Finally, we look at the relative error of using 

different sizes of neighborhood (ignoring different number of conditioning events) when 

performing sequential Gaussian simulation (SGSIM).  

5.1 Quantifying the loss of information using different simulation sequences.  

( , , , , , , , , )a b c d e f g h i
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1( , , , , , , , , ) ( ) ( ) ( | ) ( ) ( | ) ( | , ) ( ) ( | ) ( | )
( , ) ( , ) ( , , ) ( , ) ( , )( ) ( ) ( ) ( )
( ) ( ) ( , ) ( ) ( )

( , , )( , ) ( , ) ( , ) ( , )
( , )

seqp a b c d e f g h i p e p b p i e p a p h e p f b e p g p c b p d a
p i e p h e p f b e p c b p d ap e p b p a p g
p e p e p b e p b p a

p f b ep i e p h e p c b p d a
p b e

2 ( , , , , , , , , ) ( ) ( ) ( | , ) ( ) ( | ) ( ) ( | , ) ( | , ) ( | )

( , , ) ( , ) ( , , ) ( , , ) ( , )( ) ( ) ( ) ( )
( , ) ( ) ( , ) ( , ) ( )

( , , ) ( , , )( ) ( ) ( , )
( , ) ( , )

seqp a b c d e f h h i p g p d p h g d p c p f c p a p i f h p e a d p b a
p h g d p f c p i f h p e a d p b ap g p d p c p a
p g d p c p f h p a d p a

p h g d p i f h pp g p d p f c
p g d p f h

( , , ) ( , )
( , )
e a d p b a

p a d

4
1

5 8 4 26 24( 0, 0, 0, 0, 1, 1, 0, 0, 1) 20.90 10
48 48 9 48 48seqp a b c d e f g h i

4
2

18 18 21 6 3 4 26( 0, 0, 0, 0, 1, 1, 0, 0, 1) 8.33 10
48 48 24 48 5 24 48seqp a b c d e f g h i

( , , , , , , , , )a b c d e f g h i
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1

1 1 1

2 2 2
0 0 0

1 1

2 2
0 0

( , , , , , , , , ) ( ) ( ) ( | ) ( ) ( | ) ( | , ) ( ) ( | ) ( | )

( ) log ( ) ( ) log ( ) ( | ) log ( | )

( ) log ( ) ( | ) log ( | )

seq

x x x

x x

H a b c d e f g h i H e H b H i e H a H h e H f b e H g H c b H d a

p e x p e x p b x p b x p i x e p i x e

p a x p a x p h x e p h x e

1 1

2 2
0 0

1 1

2 2
0 0

2 2 2 2

( | , ) log ( | , ) ( ) log ( )

( | ) log ( | ) ( | ) log ( | )

18 18 18 18 5 5 5 54 log 1 log 1 log 1 log 1
48 48 48 48 14 14 14 14

x x

x x

p f x b e p f x b e p g x p g x

p c x b p c x b p d x a p d x a

2 2 2 2

2 2 2 2

8 8 8 8 7 7 7 7log 1 log 1 log 1 log 1
15 15 15 15 9 9 9 9
24 24 24 24 24 24 24 24log 1 log 1 log 1 log 1
32 32 32 32 33 33 33 33
4.79bits  

and 

2

1 1 1

2 2 2
0 0 0

1

2 2
0

( , , , , , , , , ) ( ) ( ) ( | , ) ( ) ( | ) ( ) ( | , ) ( | , ) ( | )

( ) log ( ) ( ) log ( ) ( | , ) log ( | , )

( ) log ( ) ( | ) log (

seq

x x x

x

H a b c d e f g h i H g H d H h g d H c H f c H a H i f h H e a d H b a

p g x p g x p d x p d x p h x g d p h x g d

p c x p c x p f x c p f x
1

0
1 1

2 2
0 0

1 1

2 2
0 0

2 2 2

| )

( ) log ( ) ( | , ) log ( | , )

( | , ) log ( | , ) ( | ) log ( | )

18 18 18 18 21 21 214 log 1 log 1 log 1
48 48 48 48 25 25 25

x

x x

x x

c

p a x p a x p i x f h p i x f h

p e x a d p e x a d p b x a p b x a

2

2 2 2 2

2 2 2 2

21log 1
25

9 9 9 9 3 3 3 3log 1 log 1 log 1 log 1
33 33 33 33 7 7 7 7
4 4 4 4 24 24 24 24log 1 log 1 log 1 log 1
25 25 25 25 30 30 30 30

4.25bits
, respectively. 

Sequential simulation sequence no. 2 leads to a joint distribution that is based on 

conditional probability distributions that are conditional to more events than is the case for 

simulation sequence no. 1. Consequently, the entropy of the joint distribution related to sequence 

1 is higher than for sequence no. 2. This means that more information will be propagated from the 

input training image to the output realizations using simulation sequence no. 2. The loss of 

information by choosing simulation sequence no. 1 instead for sequence no. 2 is 0.54bits . Hence, 

185



the joint probability distribution based on simulation sequence no. 1 is more “flat” than the 

distribution based in simulation sequence no. 2. This is also reflected in the probabilities of the 

realization evaluated in the two different joint distributions, where the probability is lowest for 

the joint distributions with the highest entropy.  

 

 
Figure 4. A) Training image. The white pixels refer to model parameters with value 0 and the blue 

pixels to the value 1. B) Template used to extract multiple-point statistics. C) An example of a 

realization. D) Sequential simulation sequence no. 1. E) Sequential simulation sequence no. 2. D) 

The non-zero multiple-point probabilities extracted from the training image using the displayed 

template.  

5.2 Quantifying the relative error of using different neighborhoods 

refp p

ref
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p
m m
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Figure 5. The relative error of realizations obtained from approximate Gaussian probability 

distributions using different neighborhoods that include the 50, 20 and 5 nearest conditioning 

events, respectively, as compared to the case of using all conditioning events. The error is 

calculated for 10 different random simulation sequences (i.e. random seeds). It is seen that the 

relative error is influences by the number of conditioning events used (the three different curves) 

and by the simulation sequence used (the variability of the individual curves).  

6 Conclusion 

The problem of determining a joint probability distribution based on a limited set of its 

marginal probability distributions is in general an underdetermined problem. Different 

assumptions about the joint probability distribution can be made that reduce the degrees of 

freedom of this problem. The degrees of freedom of a general formulation of such a problem have 

been quantified and the influence of these assumptions has been discussed. 

In practice a set of marginal probability distribution from an unknown joint probability 

distribution can be estimated based on a realization (i.e. referred to as a sample model) from the 

joint probability distribution under the assumption of stationarity. We have investigated the 
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consequences of using different assumptions in order to uniquely determine a joint probability 

from its marginal probability distributions based on a single realization.  

The implicit assumptions made by typical sequential simulation algorithms have been 

investigated and the joint probability distribution that is sampled by such algorithms has been 

expressed. We find that these joint probability distributions depend on the simulation sequence 

(i.e. the random path used) and the size of the template/neighborhood. Additionally, this joint 

probability distribution is generally not consistent with the known marginal probability 

distributions. Moreover, the information content, measured as the entropy in the resulting joint 

probability distributions, decreases when the known marginal probability distributions are pruned 

during the sequential simulation. 

From Markov random field theory a solution that provides a means of defining a 

Markovian joint probability distribution that is consistent with the known marginal probability 

distribution is provided. At the same time this formulation can also be used for sequential 

simulation that leads to realizations from the same joint probability distribution independent of 

the simulation sequence. The simulation sequence is not related to the individual nodes, but to a 

chain of cliques overlapping at least one of the previous cliques in the sequence. 

Finally, we formulate a sequential simulation algorithm that takes into account the 

uncertainty related to marginal probability distributions estimated from sample models.  
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Abstract 
This paper presents a Frequency Matching Method (FMM) for generation of a priori sample 
models based on training images and illustrates its use by an example. In geostatistics, training 
images are used to represent a priori knowledge or expectations of models, and the FMM can be 
used to generate new images that share the same multi-point statistics as a given training image. 

The FMM proceeds by iteratively updating voxel values of an image until the frequency of pat-
terns in the image matches the frequency of patterns in the training image; making the resulting 
image statistically indistinguishable from the training image. 

1. Background 
Consider a training image with  voxels (or pixels if the image is only 2D). Let  denote the 
value of the th voxel of the image, . Here, we shall assume that the training image 
is a realization of a random process satisfying: 

1) Voxel value  depends only on the values of the voxels in a certain neighborhood N  
around voxel . Voxel  itself is not contained in N . Let  be an ordered vector of the 
values of the voxels in N ; we then have: 

. 

 
2) For an image of infinite size the geometrical shape of all neighborhoods N  are identic-

al. This implies that if voxel  has coordinates  and voxel  has coordinates 
 then:  

N N . 
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3) We assume ergodicity, i.e.: 
. 

 

The basis of sequential simulation (e.g. Strebelle, 2002) is to exploit the assumptions above to 
estimate , and to use these conditions to generate new realizations of the random 
process from which the training image is a realization. The FMM does not operate by directly 
using conditional probabilities but it represents images by their frequency distribution, which is 
derived using neighborhoods of voxels. The frequency distribution is closely related to condi-
tional probabilities.  

2. The Frequency Distribution 
Before presenting the FMM we need to define what we denote the frequency distribution. To do 
so we will reuse the concept of neighborhoods from section 1 as well as the notation. Given an 
image with the set of voxels Z  and voxel values  we define the template 
function  as a function that takes as argument a voxel  and returns the set of voxels belonging 
to the neighborhood of voxel . The neighborhood is denoted N , and we will use the notation 
N .  

In the FMM the neighborhood of a voxel is indirectly given by the statistical properties of the 
image itself; however, the shape of a neighborhood satisfying the assumptions from section 1 is 
unknown. For each training image one must therefore define a template function that seeks to 
correctly describe the neighborhood. 

Let N  denote the number of voxels in N . We define the set of inner voxels, Z , of the im-
age as: 

Z N
Z

N  

Typically, voxels on the boundary or close to the boundary of an image will not be inner voxels. 
It is the choice of template function that determines whether or not a voxel is an inner voxel. 

The frequency distribution of an image is computed by scanning through all inner voxels of the 
image. For each of these we identify first the neighboring voxels and then the values of those. 
For voxel Z , the values of the neighboring voxels are denoted by the vector . The length 
of this vector equals the number of voxels in the neighborhood N , which will be constant for 
all inner voxels; this follows trivially from the definition of inner voxels. We denote this number 

. As each voxel can take on  different values, there exists up to different types of neigh-
borhoods; i.e. combinations for the values in . 

Using the above definition of a neighborhood we now introduce the concept of patterns. The th 
pattern P  of the image is defined as the union of an inner voxel  and the set of its neighboring 
voxels. We will denote voxel  the center voxel of the th pattern regardless of the geometrical 
shape of P . Trivially, it follows that there exist  different types of patterns in the image. 
The type of a pattern is characterized by the (ordered) values of  and the value of the th voxel 
itself. It should be stressed that the subindex  of P , as well as of N , represents the center 
voxel and thereby the location of the pattern, and it does not contrain any information on the type 
of the pattern.  

Let , for , count the number of times a pattern of type  appears in the image. 
These counts are used to represent the frequency distribution of an image. After having scanned 
through all inner voxels exactly once (the order is irrelevant) the frequency distribution is given 
by the vector :  
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Here  is the function that, given an image and a template function  computes the frequency 
distribution of the image with respect to the template as just described. 

We notice that, for a given template, the frequency distribution of an image is uniquely deter-
mined. The opposite, however, does not hold. Different images can have the same frequency 
distribution. This is exactly what we seek to exploit by using the frequency distribution to gener-
ate multiple new images, at the same time similar to, and different from, our training image. 

3 The Frequency Matching Method 
The Frequency Matching Method proceeds by iteratively updating voxel values of an image, 
until the frequency of patterns in the image matches the frequency patterns in the training image. 
One of the primary tasks when formulating the method is to define a similarity function for how 
close the frequency distributions of two images are. Below we shall define the similarity function 
used in the current implementation, and describe the optimization method we have applied to 
solve the combinatorial optimization problem arising from this. 

3.1 The Similarity Function 
 The similarity function plays the following two important roles: 

I. It allows us to determine if the frequency distribution of an image and the frequency 
distribution of a training image are identical within the accuracy required and we 
therefore consider the image a valid realization of the random process from which the 
training image is a realized.  

II. Given two different images, no matter how similar they might be, and a training im-
age, the similarity function should determine which of the two images is most similar 
to a valid realization of the same process as the training image, or if the two images 
are equally similar. At the same time it should reflect (in some sense) how close the 
images are to being a valid realization.  

Using an iterative solution method, point I is used to determine if the method has converged to 
an acceptable solution, whereas point II guides the method through the solution space, helping it 
to converge. 

As we do not know the random process of which the training image is a realization, we have 
chosen the chi-square measure of ‘goodness of fit’ between two sets of nominal data as a similar-
ity function for our FMM implementation. This measure determines the distance between to fre-
quency distributions by comparing the proportions of types of pattern in the two. 

3.2 Applying the  Measure in the FMM 
The chi-square measure can be applied to our situation using the following interpretations (see 
Bere and Chimedza, 2007): 

samples Each frequency distribution is considered a sample, i.e., we have 
two independent samples; one for the image itself and one for 
the training image. 

categories The samples are categorized with respect to the  exclusive 
and exhaustive types of patterns.   

observations Each appearance or count of a pattern is an observation. For each 
sample, the number of observations equals the number of inner 
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voxels in the corresponding image.  

Given the frequency distributions of an image, , and of a training image, , we can compute 
what we denote to be the similarity function value of the image: 

 

where  and  denote the expected count of patterns of type  of the image and the training im-
age, respectively. These are computed as: 

 

 

and  and  are the number of inner voxels in the image and the training image, respectively. 

Let denote the chi-square value of the image computed from the two frequency distributions  
and .  is a function of the frequency distribution  of the image, and the frequency distribution 

 of the training image. The training image and therefore its frequency distribution will remain 
unchanged when computing a new image; has therefore been omitted as an argument of the 
similarity function. Furthermore, the frequency distribution  of the image is derived given a 
template function, i.e., the argument  of  depends on a template as well as on , which 
means  is in fact a function of the image and a template function. However, to simplify the text, 
we have chosen to avoid these dependencies in the notation. 

3.3 The Optimization Problem 
The function  defined in section 3.2 seems to fulfill the two requirements we had, making the 
FMM a combinatorial optimization problem. The variables are the voxel values of the image. 
They can take on  different integer values namely Binary images, for instance, 
have . Given a template function , the frequency distributions of the solution image, , 
and of a training image, , are computed by the frequency function Based on the two fre-
quency distributions the similarity function of the image is computed. By minimizing the simi-
larity function with respect to certain constraints, we can create images sharing the same multi-
point statistics as the training image. The resulting optimization problem can be expressed as 
follows: 

 

 

If some of the voxel values are known beforehand, and the voxels are therefore not free va-
riables, the last set of constraints can easily be altered, such that the set of values that the th 
voxel can take is only a subset of  
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3. Example 
We have now introduced the Frequency Matching Me-
thod for generating a priori sample models from training 
images, and this has led us to a combinatorial optimiza-
tion problem. Our choice of solution method is, for now, 
the intuitively simple heuristic Simulated Annealing (SA) 
(e.g. Kirkpatrick et al., 1983). For future work we would 
also like to explore other solution methods in the hope of 
finding one better suited for optimization and sampling 
problems.  

The FMM has been implemented in MATLAB. To demon-
strate the FMM we will consider a two-dimensional, bi-
nary training image with channel structures, see Figure 1. 

We have defined the template such that the neighborhood of an arbi-
trary inner pixel  contains exactly the eight nearest pixels, see Fig-
ure 2. This relatively small neighborhood size is unlikely to com-
pletely satisfy our assumption of a pixel only being conditioned upon 
the pixels in its neighborhood. However, it will be shown that the 
method is still able to compute an acceptable solution. Due to the 
complexity of the method the size of the neighborhood greatly influ-
ences the running times, and for using much bigger templates we 
recommend implementing the method in Fortran, for instance. 

We choose the exponential cooling rate for the SA, and the algorithm 
parameters are chosen manually. Discussing the strategies for choos-
ing these optimally is beyond the scope of this text. 

The starting image for SA is chosen to be all white. The SA algorithm searches the solution 
space consisting of images, and it moves from one image to another by randomly choosing a 
pixel and changing its value. Figure 3 and Figure 4 show the normalized frequency distributions 
of the training image and the image computed by the FMM, respectively. By ‘normalized’ we 
mean relative to the number of inner pixels in each of the images. Any normalized frequency 
distribution therefore sums to 1. Here we have truncated the ordinates of Figure 3 and Figure 4, 
as only one entry is significantly bigger than 0.08. The last entry is approximately 0.42 for both 
images. This entry is the one representing a white center pixel surrounded by all white neighbor-
ing pixels.  

 
Figure 3: Normalized frequency distribution of 
the training image. 

 
Figure 4: Normalized frequency distribution of 
the optimal solution image.  

Notice that in Figure 3 and Figure 4 indexes corresponding to types of patterns appearing in nei-
ther the training image nor the solution image have been omitted 

Figure 1: Training image. 

Figure 2: The template 

197



Katrine LANGE, Knud Skou CORDUA, Jan FRYDENDALL, Thomas Mejer HANSEN & Klaus MOSEGAARD 
 

 6

We observe that the FMM in 
terms of the frequency distri-
butions has managed to match 
the training image quite well. 
Summing the bars of Figure 5 
reveals that the two images 
have approximately 96.7% of 
their patterns in common. This 
number is likely to be im-
proved by changing the para-
meters of the SA algorithm. 

 
Figure 5: The absolute difference (in percent) between the 
normalized frequency distributions in Figure 3 and Figure 4. 

Keep in mind that matching the frequency distributions only results in a useful image if our as-
sumptions are met; i.e., if we chose a suitable template. Choosing too big a template means very 
long running times without sufficient gain in accuracy, and choosing too small a template will 
result in the picture not being similar to the training image. Our choice seems sufficient although 
not perfect, see Figure 6. 

Figure 6 shows the image computed by the FMM. For 
this test case we have chosen to compute a  
image based on a  training image but the me-
thod can produce images of arbitrary size. We notice 
that despite the relatively small template size, we have 
successfully recreated the channel structures. The chan-
nels even occasionally form loops, just like the channels 
of the training image. 

One significant difference between the computed image 
and the training image is that the channels in the com-
puted image are not all horizontally continuous across 
the image. We expect that this is merely a matter of 
choice of template and also the number of iterations the 
algorithm has been allowed to perform. 

Figure 6: The computed solution image. 

Another difference is the boundaries. It seems the method creates some artifacts along the boun-
daries. The density of channels is much higher on the left and right boundary then in the middle 
of the image. In the middle it resembles our training image and we therefore could have some 
issues in the way we treat non-inner pixels.  

Notice how matching the frequency distributions indirectly results in the proportion of channels 
versus background in the computed picture to be in correspondence with the proportion of chan-
nels versus background in the training image. As stated, this is merely an example of the perfor-
mance of the FMM. The method has also been applied to training images with different struc-
tures and shown similar results.  

4. Conclusions and Future Work 
In this paper we have derived the Frequency Matching Method for generation of a priori sample 
models from training images. We have implemented the method in MATLAB and shown the re-
sults of a simplified test case. The test example shows that the method is indeed able to produce 
an image that shares the same multi-point statistics as the training image.  
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This paper only scratches the surface of this newly developed method. In order to better under-
stand its potential we would like to:  

 Experiment thoroughly with training images with different structures. 
 Investigate the convergence rate and performance of the FMM combined with other op-

timization methods. 
 Explain and eventually avoid possible artifacts for non-inner voxels. 
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Abstract The frequency matching method defines a closed form expression for a
complex prior that quantifies the higher order statistics of a proposed solution model
to an inverse problem. While existing solution methods to inverse problems are ca-
pable of sampling the solution space while taking into account arbitrarily complex a
priori information defined by sample algorithms, it is not possible to directly compute
the maximum a posteriori model, as the prior probability of a solution model cannot
be expressed. We demonstrate how the frequency matching method enables us to
compute the maximum a posteriori solution model to an inverse problem by using
a priori information based on multiple point statistics learned from training images.
We demonstrate the applicability of the suggested method on a synthetic tomographic
crosshole inverse problem.

Keywords Geostatistics ·Multiple point statistics · Training image ·Maximum a
posteriori solution

1 Introduction

Inverse problems arising in the field of geoscience are typically ill-posed; the avail-
able data are scarce and the solution to the inverse problem is therefore not well-
determined. In probabilistic inverse problem theory the solution to a problem is given
as an a posteriori probability density function that combines states of information
provided by observed data and the a priori information (Tarantola 2005). The ambi-
guities of the solution of the inverse problem due to the lack of restrictions on the
solution is then reflected in the a posteriori probability.
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A priori information used in probabilistic inverse problem theory is often
covariance-based a priori models. In these models the spatial correlation between
the model parameters is defined by two-point statistics. In reality, two-point-based a
priori models are too limited to capture curvilinear features such as channels or cross
beddings. It is therefore often insufficient to rely only on the two-point statistics,
and thus higher order statistics must also be taken into account in order to correctly
produce geologically realistic descriptions of the subsurface. It is assumed that ge-
ological information is available in the form of a training image. This image could
for instance have been artificially created to describe the expectations for the solution
model or it could be information from a previous solution to a comparable inverse
problem. The computed models should not be identical to the training image, but
rather express a compromise between honoring observed data and comply with the
information extracted from the training image. The latter can be achieved by ensuring
that the models have the same multiple point statistics as the training image.
Guardiano and Srivastava (1993) proposed a sequential simulation algorithm that

was capable of simulating spatial features inferred from a training image. Their ap-
proach was computationally infeasible until Strebelle (2002) developed the single
normal equation simulation (snesim) algorithm. Multiple point statistics in general
and the snesim algorithm in particular have been widely used for creating models
based on training images and for solving inverse problems, see for instance Caers and
Zhang (2004), Arpat (2005), Hansen et al. (2008), Peredo and Ortiz (2010), Suzuki
and Caers (2008), Jafarpour and Khodabakhshi (2011). A method called the proba-
bility perturbation method (PPM) has been proposed by Caers and Hoffman (2006).
It allows for gradual deformation of one realization of snesim to another realization
of snesim. Caers and Hoffman propose to use the PPMmethod to find a solution to an
inverse problem that is consistent with both a complex prior model, as defined by a
training image, and data observations. PPM is used iteratively to perturb a realization
from snesim while reducing the data misfit. However, as demonstrated by Hansen et
al. (2012), as a result of the probability of the prior model not being evaluated, the
model found using PPM is not the maximizer of the posterior density function, but
simply the realization of the multiple point based prior with the highest likelihood
value. There is no control of how reasonable the computed model is with respect to
the prior model. It may be highly unrealistic.
The sequential Gibbs sampling method by Hansen et al. (2012) is used to sample

the a posteriori probability density function given, for example a training image based
prior. However, as with the PPM it cannot be used for optimization and locating the
maximum a posteriori (MAP) model, as the prior probability is not quantified. The fo-
cus of our research is the development of the frequency matching (FM) method. The
core of this method is the characterization of images by their multiple point statistics.
An image is represented by the histogram of the multiple point-based spatial event
in the image; this histogram is denoted the frequency distribution of the image. The
most significant aspect of this method, compared to existing methods based on multi-
ple point statistics for solving inverse problems, is the fact that it explicitly formulates
an a priori probability density distribution, which enables it to efficiently quantify the
probability of a realization from the a priori probability.
The classical approach when solving inverse problems by the least squares meth-

ods assumes a Gaussian prior distribution with a certain expectation. Solution models
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to the inverse problem are penalized depending on their deviation from the expected
model. In the FM method, the frequency distribution of the training image acts as
the expected model and a solution image is penalized depending on how much its
frequency distribution deviates from that of the training image. To perform this com-
parison we introduce a dissimilarity measure between a training image and a model
image as the χ2 distance between their frequency distributions. Using this dissimilar-
ity measure for quantifying the a priori probability of a model the FM method allows
us to directly compute the MAPmodel, which is not possible using known techniques
such as the PPM and sequential Gibbs sampling methods.
Another class of methods are the Markov random fields (MRF) methods (Tjelme-

land and Besag 1998). The prior probability density given by Markov methods in-
volves a product of a large number of marginals. A disadvantage is therefore, despite
having an expression for the normalization constant, that it can be computationally
expensive to compute. Subclasses of the MRF methods such as Markov mesh mod-
els (Stien and Kolbjørnsen 2011) and partially ordered Markov models (Cressie and
Davidson 1998) avoid the computation of the normalization constant, and this advan-
tage over the MRF methods is shared by the FM method. Moreover, in contrast to
methods such as PMM and MRF, the FM method is fully non-parametric, as it does
not require probability distributions to be written in a closed form.
This paper is ordered as follows. In Sect. 2 we define how we characterize im-

ages by their frequency distributions, we introduce our choice of a priori distribution
of the inverse problem and we elaborate on how it can be incorporated into tradi-
tional inverse problem theory. Our implementation of the FM method is discussed in
Sect. 3. In Sect. 4 we present our test case and the results when solving an inverse
problem using frequency matching-based a priori information. Section 5 summarizes
our findings and conclusions.

2 Method

In geosciences, inverse problems involve a set of measurements or observations dobs

used to determine the spatial distribution of physical properties of the subsurface.
These properties are typically described by a model with a discrete set of parameters,
m. For simplicity, we will assume that the physical property is modeled using a reg-
ular grid in space. The model parameters are said to form an image of the physical
property.
Consider the general forward problem,

d = g(m), (1)

of computing the observations d given the perhaps non-linear forward operator g

and the model parametersm. The values of the observation parameters are computed
straightforwardly by applying the forward operator to the model parameters. The as-
sociated inverse problem consists of computing the model parameters m given the
forward operator g and a set of observations dobs. As the inverse problem is usually
severely under-determined, the model m that satisfies dobs = g(m) is not uniquely
determined. Furthermore, some of the models satisfying dobs = g(m) within the re-
quired level of accuracy will be uninteresting for a geoscientist as the nature of the
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forward operator g and the measurement noise in dobs may yield a physically unre-
alistic description of the property. The inverse problem therefore consists of not just
computing a set of model parameters satisfying Eq. 1, but computing a set of model
parameters that gives a realistic description of the physical property while honoring
the observed data. The FM method is used to express how geologically reasonable a
model is by quantifying its a priori probability using multiple point statistics. Letting
the a priori information be available in, for instance, a training image, the FMmethod
solves an inverse problem by computing a model that satisfies not only the relation
from Eq. 1 but a model that is also similar to the training image. The latter ensures
that the model will be geologically reasonable.

2.1 The Maximum A Posteriori Model

Tarantola and Valette (1982) derived a probabilistic approach to solve inverse prob-
lems where the solution to the inverse problem is given by a probability density func-
tion, denoted the a posteriori distribution. This approach makes use of a prior distri-
bution and a likelihood function to assign probabilities to all possible models. The
a priori probability density function ρ describes the data independent prior knowl-
edge of the model parameters; in the FM method we choose to define it as follows

ρ(m) = const. exp(−α f (m)
)
,

where α acts as a weighting parameter and f is a dissimilarity function presented in
Sect. 2.4. Traditionally, f measures the distance between the model and an a priori
model. The idea behind the FM method is the same, except we wish not to compare
models directly but to compare the multiple point statistics of models. We therefore
choose a traditional prior but replace the distance function such that instead of mea-
suring the distance between models directly, we measure the dissimilarity between
them. The dissimilarity is expressed as a distance between their multiple point statis-
tics.
The likelihood function L is a probabilistic measure of how well data associated

with a certain model matches the observed data, accounting for the uncertainties of
the observed data,

L
(
m,dobs

) = const. exp
(

−1
2

∥∥dobs − g(m)
∥∥2

Cd

)
.

Here, Cd is the data covariance matrix and the measurement errors are assumed to be
independent and Gaussian distributed with mean values 0. The a posteriori distribu-
tion is then proportional to the product of the prior distribution and the likelihood

σ(m) = const.ρ(m)L
(
m,dobs

)
.

The set of model parameters that maximizes the a posteriori probability density is
called the maximum a posteriori (MAP) model

mMAP = argmax
m

{
σ(m)

}
= argmin

m

{− logσ(m)
}

= argmin
m

{
1

2

∥∥dobs − g(m)
∥∥2

Cd
+ α f (m)

}
.
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The dissimilarity function f is a measure of how well the model satisfies the
a priori knowledge that is available, for example from a training image. The more
similar, in some sense, the image from a set of model parameters m is to the training
image the smaller the function value f (m) is. Equivalently to the more traditional
term ‖m − mprior‖2Cm , stemming from a Gaussian a priori distribution of the model
parameters with mean values mprior and covariance matrix Cm, f (m) can be thought
of as a distance. It is not a distance between m and the training image (f (m) may be
zero for other images than the training image), but a distance between the multiple
point statistics of the image formed by the model parameters and the multiple point
statistics of the training image.

2.2 The Multiple Point Statistics of an Image

Consider an image Z = {1,2, . . . ,N} with N voxels (or pixels if the image is only
two dimensional) where the voxels can have the m different values 0,1, . . . ,m − 1.
We introduce the N variables, z1, z2, . . . , zN and let zk describe the value of the
kth voxel of the image. It is assumed that the image is a realization of an unknown,
random process satisfying:

1. The value of the kth voxel, zk , is, given the values of voxels in a certain neigh-
borhoodNk around voxel k, independent of voxel values not in the neighborhood.
Voxel k itself is not contained inNk . Let zk be a vector of the values of the ordered
neighboring voxels in Nk ; we then have

fZ(zk|zN , . . . , zk+1, zk−1, . . . , z1) = fZ(zk|zk),

where fZ denotes the conditional probability distribution of the voxel zk given the
values of the voxels within the neighborhood.

2. For an image of infinite size the geometrical shape of all neighborhoods Nk are
identical. This implies that if voxel k has coordinates (kx, ky, kz), and voxel l has
coordinates (lx, ly, lz), then

(nx, ny, nz) ∈Nk ⇒ (nx − kx + lx, ny − ky + ly, nz − kz + lz) ∈ Nl .

3. If we assume ergodicity, that is, when two voxels, voxel k and voxel l, have the
same values as their neighboring voxels, then the conditional probability distribu-
tion of voxel k and voxel l are identical

zk = zl ⇒ fZ(zk|zk) = fZ(zl |zl).

Knowing the conditionals fZ(zk|zk) we know the multiple point statistics of the
image, just as a variogram would describe the two-point statistics of an image. The
basis of sequential simulation as proposed by Guardiano and Srivastava (1993) is
to exploit the aforementioned assumptions to estimate the conditional probabilities
fZ(zk|zk) based on the marginals obtained from the training image, and then to
use the conditional distributions to generate new realizations of the unknown ran-
dom process from which the training image is a realization. The FM method, on the
other hand, operates by characterizing images by their frequency distributions. As
described in the following section, the frequency distribution of voxel values within
the given neighborhood of an image is given by its marginal distributions. This means
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that comparison of images is done by comparing their marginals. For now, the train-
ing image is assumed to be stationary. With the current formulation of the frequency
distributions this is the only feasible approach. Discussion of how to avoid the as-
sumption of stationarity exists in literature, see for instance the recent Honarkhah
(2011). Some of these approaches mentioned here might also be useful for the FM
method, but we will leave this to future research to determine.

2.3 Characterizing Images by their Frequency Distribution

Before presenting the FM method we define what we denote the frequency distri-
bution. Given an image with the set of voxels Z = {1, . . . ,N} and voxel values
z1, . . . , zN we define the template function Ω as a function that takes as argument
a voxel k and returns the set of voxels belonging to the neighborhood Nk of voxel k.
In the FM method, the neighborhood of a voxel is indirectly given by the statistical
properties of the image itself; however, the shape of a neighborhood satisfying the
assumptions from Sect. 2.2 is unknown. For each training image one must therefore
define a template function Ω that seeks to correctly describe the neighborhood. The
choice of template function determines if a voxel is considered to be an inner voxel.
An inner voxel is a voxel with the maximal neighborhood size, and the set of inner
voxels, Zin, of the image is therefore defined as

Zin =
{
k ∈ Z: |Nk| =max

l∈Z
|Nl |

}
,

where |Nk| denotes the number of voxels in Nk . Let n denote the number of voxels
in the neighborhood of an inner voxel. Typically, voxels on the boundary or close to
the boundary of an image will not be inner voxels. To each inner voxel zk we assign a
pattern value pk ; we say the inner voxel is the center voxel of a pattern. This pattern
value is a unique identifier of the pattern and may be chosen arbitrarily. The most
obvious choice is perhaps a vector value with the discrete variables in the pattern, or
a scalar value calculated based on the values of the variables. The choice should be
made in consideration of the implementation of the FM method. The pattern value is
uniquely determined by the value of the voxel zk and the values of the voxels in its
neighborhood, zk . As the pattern value is determined by the values of n + 1 voxels,
which can each have m different values, the maximum number of different patterns
is mn+1.
Let πi , for i = 1, . . . ,mn+1, count the number of patterns that have the ith pattern

value. The frequency distribution is then defined as π

π = [π1, . . . , πmn+1].
Let pΩ denote the mapping from voxel values of an image Z to its frequency distri-
bution π , that is, pΩ(z1, . . . , zN) = π .
Figure 1 shows an example of an image and the patterns it contains for the template

function that defines neighborhoods as follows

Nk = {
l ∈ Z \ {k}: |lx − kx | ≤ 1, |ly − ky | ≤ 1

}
.

Recall from Sect. 2.2 that (lx, ly) are the coordinates of voxel l in this two-
dimensional example image. We note that for a given template function the frequency
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Fig. 1 Example of patterns found in an image. Notice how the image is completely described by the
(ordered) patterns in every third row and column; the patterns are marked in red

distribution of an image is uniquely determined. The opposite, however, does not
hold. Different images can, excluding symmetries, have the same frequency distribu-
tion. This is what the FM method seeks to exploit by using the frequency distribution
to generate new images, at the same time similar to, and different from, our training
image.

2.4 Computing the Similarity of Two Images

The FM method compares a solution image to a training image by comparing its
frequency distribution to the frequency distribution of the training image. How dis-
similar the solution image is to the training image is determined by a dissimilarity
function, which assigns a distance between their frequency distributions. This dis-
tance reflects how likely the solution image is to be a realization of the same un-
known process as the training image is a realization of. The bigger the distance, the
more dissimilar are the frequency distributions and thereby also the images, and the
less likely is the image to be a realization of the same random process as the training
image. The dissimilarity function can therefore be used to determine which of two
images is most likely to be a realization of the same random process as the training
image is a realization of.
The dissimilarity function is not uniquely given but an obvious choice is the χ2

distance also described in Sheskin (2004). It is used to measure the distance between
two frequency distributions by measuring how similar the proportions of patterns in
the frequency distributions are. Given two frequency distributions, the χ2 distance
estimates the underlying distribution. It then computes the distance between the two
frequency distributions by computing each of their distances to the underlying dis-
tribution. Those distances are computed using a weighted Euclidean norm where the
weights are the inverse of the counts of the underlying distribution, see Fig. 2. In our
research, using the counts of the underlying distribution turns out to be a favorable
weighting of small versus big differences instead of using a traditional p-norm as
used by Peredo and Ortiz (2010).
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Fig. 2 Illustration of the χ2

distance between two frequency
distributions π and πTI, each
containing the counts of two
different pattern values, p1 and
p2. The difference between the
frequency distributions is
computed as the sum of the
length of the two red line
segments. The length of each
line segment is computed using
a weighted Euclidean norm. The
counts of the underlying
distribution are found as the
orthogonal projection of the
frequency distributions onto the
a line going through the origin
such that
‖π − ε‖2 = ‖πTI − εTI‖2

Hence, given the frequency distributions of an image, π , and of a training image,
πTI, and by letting

I = {
i ∈ {

1, . . . ,mn+1}: πTIi > 0
} ∪ {

i ∈ {
1, . . . ,mn+1}: πi > 0

}
, (2)

we compute what we define as the dissimilarity function value of the image

c(π) = χ2
(
π,πTI

) =
∑
i∈I

(πTIi − εTIi )2

εTIi

+
∑
i∈I

(πi − εi)
2

εi

, (3)

where εi denotes the counts of the underlying distribution of patterns with the ith
pattern value for images of the same size as the image and εTIi denotes the counts
of the underlying distribution of patterns with the ith pattern value for images of the
same size as the training image. These counts are computed as

εi = πi + πTIi

nZ + nTI
nZ, (4)

εTIi = πi + πTIi

nZ + nTI
nTI, (5)

where nZ and nTI are the total number of counts of patterns in the frequency distri-
butions of the image and the training image, that is, the number of inner voxels in the
image and the training image, respectively.

2.5 Solving Inverse Problems

We define the frequency matching method for solving inverse problems formulated
as least squares problems using geologically complex a priori information as the fol-
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lowing optimization problem

min
z1,...,zN

∥∥dobs − g(z1, . . . , zN)
∥∥2

Cd
+ α c(π),

w.r.t. π = pΩ(z1, . . . , zN), (6)

zk ∈ {0, . . . ,m − 1} for k = 1, . . . ,N,

where c(π) is the dissimilarity function value of the solution image defined by Eq. 3
and α is a weighting parameter. The forward operator g, which traditionally is a
mapping frommodel space to data space, also contains the mapping of the categorical
values zk ∈ {0, . . . ,m − 1} for k = 1, . . . ,N of the image into the model parameters
m that can take m different discrete values.
The value of α cannot be theoretically determined. It is expected to depend on

the problem at hand; among other factors its resolution, the chosen neighborhood
function and the dimension of the data space. It can be thought of as playing the
same role for the dissimilarity function as the covariance matrix Cd does for the data
misfit. So it should in some sense reflect the variance of the dissimilarity function
and in that way determine how much trust we put in the dissimilarity value. Variance,
or trust, in a training image is difficult to quantify, as the training image is typically
given by a geologist to reflect certain expectations to model. Not having a theoretical
expression for α therefore allows us to manipulate the α value to loosely quantify the
trust we have in the training image. In the case where we have accurate data but only
a vague idea of the structures of the subsurface the α can be chosen low, in order to
emphasize the trust we have in the data and the uncertainty we have of the structure
of the model. In the opposite case, where data are inaccurate but the training image is
considered to be a very good description of the subsurface, the α value can be chosen
high, to give the dissimilarity function more weight.
Due to the typically high number of model parameters, the combinatorial opti-

mization problem should be solved by use of an iterative solution method; such a
method will iterate through the model space and search for the optimal solution.
While the choice of solution method is less interesting when formulating the FM
method, it is of great importance when applying it. The choice of solution method
and the definition of how it iterates through the solution space by perturbing images
has a significant impact on the feasibility of the method in terms of its running time.
As we are not sampling the solution space we do not need to ensure that the method
captures the uncertainty of the model parameters, and the ideal would be a method
that converges directly to the maximum a posteriori solution. While continuous op-
timization problems hold information about the gradient of the objective function
that the solution method can use to converge to a stationary solution, this is not the
case for our discrete problem. Instead we consider the multiple point statistics of the
training image when perturbing a current image and in that way we seek to generate
models which better match the multiple point statistics of the training image and thus
guide the solution method to the maximum a posteriori model.

2.6 Properties of the Frequency Matching Method

The FM method is a general method and in theory it can be used to simulate any
type of structure, as long as a valid training image is available and a feasible template
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function is chosen appropriately. If neighborhoods are chosen too small, the method
will still be able to match the frequency distributions. However, it will not reproduce
the spatial structures simply because these are not correctly described by the cho-
sen multiple point statistics and as a result the computed model will not be realistic.
If neighborhoods are chosen too big, CPU cost and memory demand will increase,
and as a result the running time per iteration of the chosen solution method will in-
crease. Depending on the choice of iterative solution method, increasing the size n

of the neighborhood is likely to also increase the number of iterations needed and
thereby increase the convergence time. When the size of neighborhoods is increased,
the maximum number of different patterns, mn+1, is also increased. The number of
different patterns present is, naturally, limited by the number of inner voxels, which
is significantly smaller thanmn+1. In fact, the number of patterns present in an image
is restricted further as training images are chosen such that they describe a certain
structure. This structure is also sought to be described in the solutions. The structure
is created by repetition of patterns, and the frequency distributions will reveal this
repetition by having multiple counts of the same pattern. This means, the number of
patterns with non-zero frequency is greatly smaller than mn+1 resulting in the fre-
quency distributions becoming extremely sparse. For bigger test cases, with millions
of parameters, patterns consisting of hundreds of voxels and multiple categories, this
behavior needs to be investigated further.
The dimension of the images, if they are two or three dimensional, is not im-

portant to the FM method. The complexity of the method is given by the maximal
size of neighborhoods, n. The increase in n as a result of going from two- to three-
dimensional images is therefore more important than the actual increase in physical
dimensions. In fact, when it comes to assigning pattern values a neighborhood is,
regardless of its physical dimension, considered one dimensional where the ordering
of the voxels is the important aspect. Additionally, the number of categories of voxel
values m does not influence the running time per iteration. As with the number of
neighbors, n, it only influences the number of different possible patterns mn+1 and
thereby influences the sparsity of the frequency distribution of the training image.
The higher m is, the sparser is the frequency distribution. It is expected that the spar-
sity of the frequency distribution affects the level of difficulty of the combinatorial
optimization problem.
Strebelle (2002) recommends choosing a training image that is at least twice as

large as the structures it describes; one must assume this advice also applies to the
FM method. Like the snesim algorithm, the FM method can approximate continuous
properties by discretizing them into a small number of categories. One of the advan-
tages of the FM method is that by matching the frequency distributions it indirectly
ensures that the proportion of voxels in each of them categories is consistent between
the training image and the solution image. It is therefore not necessary to explicitly
account for this ratio. Unlike the snesim algorithm, the computed solution images
therefore need very little post treatment—in the current implementation the solution
receives no post treatment. However, the α parameter does allow for the user to spec-
ify how strictly the frequency distributions should be matched. In the case where the
data are considered very informative or the training image is considered far from re-
ality, decreasing the α allows for the data to be given more weight and the multiple
point statistics will not be as strictly enforced.
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Constraints on the model parameters can easily be dealt with by reducing the fea-
sible set {0, . . . ,m − 1} for those values of k in the constraints of the problem stated
in Eq. 6. The constrained voxels remain part of the image Z and when computing the
frequency distribution of an image they are not distinguished from non-constrained
voxels. However, when perturbing an image all constraints of the inverse problem
should at all times be satisfied and conditioned to the hard data. The additional con-
straints on the model parameters will therefore be honored.

3 Implementation

This section describes the current implementation of the frequency matching method.
Algorithm 1 gives a general outline of how to apply the FM method, that is, how to
solve the optimization problem from Eq. 6 with an iterative optimization method.
In the remainder of the section, the implementation of the different parts of the
FM method will be discussed. It should be noted that the implementation of the
FM method is not unique; for instance, there are many options for how the solu-
tion method iterates through the model space by perturbing models. The different
choices should be made depending on the problem at hand and the current imple-
mentation might not be favorable for some given problems. The overall structure in
Algorithm 1 will be valid regardless of what choices are made on a more detailed
level.

Algorithm 1: The Frequency Matching Method

Input: Training image, ZTI, Starting image Z

Output: Maximum a posteriori image ZFM

Compute frequency distribution of training image πTI and pattern list p
(Algorithm 2)
Compute partial frequency distribution of starting image π (Algorithm 3)
while not converged do

Compute perturbed image Z based on Z (Algorithm 4)
Compute partial frequency distribution of perturbed image π (Algorithm 5)
if accept the perturbed image then

Set Z ← Z and π ← π

end
end

The current implementation is based on a Simulated Annealing scheme. Simu-
lated Annealing is a well-known heuristic optimization method first presented by
Kirkpatrick et al. (1983) as a solution method for combinatorial optimization prob-
lems. The acceptance of perturbed images is done using an exponential cooling rate
and the parameters controlling the cooling are tuned to achieve an acceptance ratio
of approximately 15 accepted perturbed models for each 100 suggested perturbed
models. A perturbed model is generated by erasing the values of the voxels in a part
of the image and then re-simulating the voxel values by use of sequential simula-
tion.
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3.1 Reformulation of the Dissimilarity Function

The definition of the dissimilarity function from Eq. 3 has one great advantage that
we for computational reasons simply cannot afford to overlook. As discussed previ-
ously, the frequency distributions are expected to be sparse as the number of patterns
present in an image is significantly smaller than mn+1. This means that a lot of the
terms in the dissimilarity function from Eq. 3 will be zero, yet the dissimilarity func-
tion can be simplified further. It will be shown that the dissimilarity function value of
a frequency distribution, c(π), given the frequency distribution of a training image,
π , can be computed using only entries of π where πTI > 0. In other words, to com-
pute the dissimilarity function value of an image we need only to know the count of
patterns in the image that also appear in the training image. Computationally, this is
a great advantage as we can disregard the patterns in our solution image that do not
appear in the training image and we need not compute nor store the entire frequency
distribution of our solution image, which is shown by inserting the expressions of the
counts for the underlying distribution defined by Eqs. 4 and 5

c(π) =
∑
i∈I

(πTIi − εTIi )2

εTIi

+
∑
i∈I

(πi − εi)
2

εi

=
∑
i∈I

(
√

nZ

nTI
πTIi −

√
nTI
nZ

πi)
2

πTIi + πi

. (7)

This leads to the introduction of the following two subsets of I

I1 = {
i ∈ I : πTIi > 0

}
,

I2 = {
i ∈ I : πTIi = 0}.

The two subsets form a partition of I as they satisfy I1 ∪ I2 = I and I1 ∩ I2 = ∅. The
dissimilarity function Eq. 7 can then be written as

c(π) =
∑
i∈I1

(
√

nZ

nTI
πTIi −

√
nTI
nZ

πi)
2

πTIi + πi

+ nTI

nZ

∑
i∈I2

πi

=
∑
i∈I1

(
√

nZ

nTI
πTIi −

√
nTI
nZ

πi)
2

πTIi + πi

+ nTI

nZ

(
nZ −

∑
i∈I1

πi

)
(8)

recalling that
∑

i∈I πi = nZ and that πi = 0 for i /∈ I .
A clear advantage of this formulation of the dissimilarity function is that the entire

frequency distribution π of the image does not need to be known; as previously stated,
it only requires the counts πi of the patterns also found in the training image, which
is for i ∈ I1.

3.2 Computing and Storing the Frequency Distributions

The formulation of the dissimilarity function from Eq. 3 and later Eq. 8 means that
it is only necessary to store non-zero entries in a frequency distribution of a training
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image πTI. Algorithm 2 shows how the frequency distribution of a training image is
computed such that zero entries are avoided. The algorithm also returns a list p with
the same number of elements as the frequency distribution and it holds the pattern
values corresponding to each entry of πTI.

Algorithm 2: Frequency Distribution of a Training Image

Input: Training Image ZTI

Output: Frequency distribution πTI, list of pattern values p
Initialization: empty list πTI, empty list p
for each inner voxel, i.e., k ∈ ZTIin do

Extract pattern k

Compute pattern value pk

if the pattern was previously found then
Add 1 to the corresponding entry of πTI

else
Add pk to the list of pattern values p
Set the corresponding new entry of πTI equal to 1

end
end

Algorithm 3 computes the partial frequency distribution π of an image that is
needed to evaluate the dissimilarity function c(π) = χ2(π ,πTI) from Eq. 8. The
partial frequency distribution only stores the frequencies of the patterns also found in
the training image.

Algorithm 3: Partial Frequency Distribution of an Image
Input: Image Z, list of pattern values p from the training image
Output: Partial frequency distribution π

Initialization: all zero list π (same length as p)
for each inner voxel, i.e., k ∈ Zin do

Extract pattern k

Compute pattern value pk

if the pattern is found in the training image then
Add 1 to the corresponding entry of π

end
end

3.3 Perturbation of an Image

The iterative solver moves through the model space by perturbing models and this is
the part of the iterative solver that leaves the most choices to be made. An intuitive
but naive approach would be to simply change the value of a random voxel. This
will result in a perturbed model that is very close to the original model, and it will
therefore require a lot of iterations to converge. The current implementation changes
the values of a block of voxels in a random place of the image.
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Before explaining in detail how the perturbation is done, let Zcond ⊂ Z be the set
of voxels that we have hard data for, which means their value is known and should
be conditioned to. First a voxel k is chosen randomly. Then the value of all voxels in
a domain Dk ⊂ (Z \ Zcond) around voxel k are erased. Last, the values of the voxels
in Dk are simulated using sequential simulation. The size of the domain should be
chosen to reflect how different the perturbed image should be from the current image.
The bigger the domain, the fewer iterations we will expect the solver will need to it-
erate through the model space to converge, but the more expensive an iteration will
become. Choosing the size of the domain is therefore a trade-off between number
of iterations and thereby forward calculations and the cost of computing a perturbed
image.
Algorithm 4 shows how an image is perturbed to generate a new image.

Algorithm 4: Perturbation of an Image
Input: Image Z, partial frequency distribution π of Z
Output: Perturbed image Z

Initialization: set π = π

Pick random voxel k
for each voxel l around voxel k, i.e., l ∈ Dk do

Erase the value of voxel l, i.e., zl is unassigned
end
for each unassigned voxel l around voxel k, i.e., l ∈ Dk do

Simulate zl given all assigned voxels in Nl .
end

3.4 Updating the Frequency Distribution

As a new image is created by changing the value of a minority of the voxels, it would
be time consuming to compute the frequency distribution of all voxel values of the
new image when the frequency distribution of the old image is known. Recall that
n is the maximum number of neighbors a voxel can have; inner voxels have exactly
n neighbors. Therefore, in addiction to changing its own pattern value, changing the
value of a voxel will affect the pattern value of at most n other voxels. This means
that we obtain the frequency distribution of the new image by performing at most
n + 1 subtractions and n + 1 additions per changed voxel to the entries of the already
known frequency distribution.
The total number of subtractions and additions can be lowered further by exploit-

ing the block structure of the set of voxels perturbed. The pattern value of a voxel
will be changed when any of its neighboring voxels are perturbed, but the frequency
distribution need only be updated twice for each affected voxel. We introduce a set
of voxels Zaff, which is the set of voxels who are affected when perturbing image Z

into Z, that is, the set of voxels whose pattern values are changed when perturbing
image Z into image Z

Zaff = {k ∈ Z: pk �= pk}. (9)

How the partial frequency distribution is updated when an image is perturbed is illus-
trated in Algorithm 5.
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Algorithm 5: Update Partial Frequency Distribution of an Image

Input: Image Z, partial frequency distribution π of Z, perturbed image Z, set
of affected voxels Zaff, set of pattern values p from the training image

Output: Partial frequency distribution π of Z
Initialization: set π = π

for each affected voxel, i.e., k ∈ Zaff do
Extract pattern k from both Z and Z

Compute both pattern values pk and pk

if the pattern pk is present in the training image then
Subtract 1 from the corresponding entry of π

end
if the pattern pk is present in the training image then

Add 1 to the corresponding entry of π
end

end

As seen in Algorithm 1, the FM method requires in total two computations of a
frequency distribution, one for the training image and one for the initial image. The
FM method requires one update of the partial frequency distribution per iteration.
As the set of affected voxels Zaff is expected to be much smaller than the total im-
age Z, updating the partial frequency distribution will typically be much faster than
recomputing the entire partial frequency distribution even for iterations that involve
changing the values of a large set of voxels.

3.5 Multigrids

The multigrid approach from Strebelle (2002) that is based on the concept initially
proposed by Gómez-Hernández (1991) and further developed by Tran (1994) can also
be applied in the FMmethod. Coarsening the images allows the capture of large-scale
structures with relatively small templates. As in the snesim algorithm, the results from
a coarse image can be used to condition upon for a higher resolution image.
The multigrid approach is applied by running the FM method from Algorithm 1

multiple times. First, the algorithm is run on the coarsest level. Then the resulting im-
age, with increased resolution, is used as a starting image on the next finer level, and
so on. The resolution of an image can be increased by nearest neighbor interpolation.

4 Example: Crosshole Tomography

Seismic borehole tomography involves the measurement of seismic travel times be-
tween two or more boreholes in order to determine an image of seismic velocities in
the intervening subsurface. Seismic energy is released from sources located in one
borehole and recorded at multiple receiver locations in another borehole. In this way
a dense tomographic data set that covers the interborehole region is obtained.
Consider a setup with two boreholes. The horizontal distance between them is	X

and they both have the depth 	Z. In each borehole a series of receivers and sources
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Fig. 3 Training image
(resolution: 251× 251 pixels)

Table 1 Parameter values for
the test case 	X 500 m

	Z 1,200 m

	x 10 m

	z 10 m

ds 250 m

dr 100 m

vlow 1,600 m/s

vhigh 2,000 m/s

is placed. The vertical domain between the two boreholes is divided into cells of
dimensions 	x by 	z and it is assumed that the seismic velocity is constant within
each cell. The model parameters of the problem are the propagation speeds of each
cell. The observed data are the first arrival times of the seismic signals. For the series
of sources and receivers in each borehole the distances between the sources are ds and
the distances between the receivers are dr . We assume a linear relation between the
data (first arrival times) and the model (propagation speed) from Eq. 1. The sensitivity
of seismic signals is simulated as straight rays. However, any linear sensitivity kernel
obtained using, for example, curvilinear rays or Fresnel zone-based sensitivity, can
be used.
It is assumed that the domain consists of zones with two different propagation

speeds, vlow and vhigh. Furthermore a horizontal channel structure of the zones with
high propagation speed is assumed. Figure 3 shows the chosen training image with
resolution 251 cells by 251 cells where each cell is 	x by 	z. The training image
is chosen to express the a priori information about the model parameters. The back-
ground (white pixels) represents a low velocity zone and the channel structures (black
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Fig. 4 Reference model
(resolution: 50× 120 pixels)

Fig. 5 Computed model for
α = 1.8× 10−2 (resolution:
50× 120 pixels)

pixels) are the high velocity zones. The problem is scalable and for the example we
have chosen the parameters presented by Table 1.
The template function is chosen, such that the neighborhood of pixel k is the fol-

lowing set of pixels

Nk = {
l ∈ Z \ {k}: |lx − kx | ≤ 4, |lz − kz| ≤ 3

}
.

Recall that pixel l has the coordinates (lx, lz); the first coordinate being the horizon-
tal distance from the left borehole and the second coordinate being the depth, both
measured in pixels. To compute a perturbed image, the domain used in Algorithm 4
is defined as follows

Dk = {
l ∈ Z \ Zcond: |lx − kx | ≤ 7, |lz − kz| ≤ 7

}
.

The values of all pixels l ∈ Dk will be re-simulated using Sequential Simulation con-
ditioned to the remaining pixels l /∈ Dk . We are not using any hard data in the exam-
ple, which means Zcond = ∅.
This choice of template function yields n = 34 where the geometrical shape of the

neighborhood of inner pixels is a 7 pixels by 5 pixels rectangle. This is chosen based
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Fig. 6 The computed models
for increasing values of α:
(a) α = 10−3, (b) α = 10−2,
(c) α = 10−1, (d) α = 10

on the trends in the training image, where the distance of continuity is larger horizon-
tally than vertically. However, it should be noted that this choice of template function
is not expected to meet the assumptions of conditional independence of Sect. 2.2.
The distance of continuity in the training image appears much larger horizontally
than only seven pixels, and vertically the width of the channels is approximately ten
pixels. This implies that, despite matched frequency distributions, a computed so-
lution will not necessarily be recognized to have the same visual structures as the
training image. The goal is solve the inverse problem which involves fitting the data
and therefore, as our example will show, neighborhoods of this size are sufficient.
The data-fitting term of the objective function guides the solution method, such that
the structures from the training image are correctly reproduced. The low number of
neighbors constrains the small-scale variations, which are not well-determined by the
travel time data. However, the travel time data successfully determine the large-scale
structures. The template function does not need to describe structures of the largest
scales of the training image as long as the observed data are of a certain quality.
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Fig. 7 L-curve used to
determine the optimal α value.
Models have been computed for
13 logarithmically distributed
values of α ranging from 1
(upper left corner) to 10−3
(lower right corner). Each of the
13 models is marked with a blue
circle. See the text for further
explanation

Figure 4 shows the reference model that describes what is considered to be the
true velocity profile between the two boreholes. The image has been generated by the
snesim algorithm (Strebelle 2002) using the multiple point statistics of the training
image. The arrival times d for the reference model mref are computed by a forward
computation, d = Gmref. We define the observed arrival times dobs as the computed
arrival times d added 5 % Gaussian noise. Figure 5 shows the solution computed us-
ing 15,000 iterations for α = 1.8×10−2. The solution resembles the reference model
to a high degree. The FMmethod detected the four channels; their location, width and
curvature correspond to the reference model. The computations took approximately
33 minutes on a Macbook Pro 2.66 GHz Intel Core 2 Duo with 4 GB RAM.
Before elaborating on how the α value was determined, we present some of the

models computed for different values of α. Figure 6 shows the computed models for
four logarithmically distributed values of α between 10−3 and 101. It is seen how
the model for lowest value of α is geologically unrealistic and does not reproduce
the a priori expected structures from the training image as it primarily is a solution
to the ill-posed, under-determined, data-fitting problem. As α increases, the channel
structures of the training image are recognized in the computed models. However, for
too large α values the solutions are dominated by the χ2 term as the data have been
deprioritized, and the solutions are not geologically reasonable either. As discussed,
the chosen template is too small to satisfy the conditions from Sect. 2.2, yielding
models that do in fact minimize the χ2 distance, but do not reproduce the structures
form the training image. The data misfit is now assigned too little weight to help
compensate for the small neighborhoods, and the compromise between minimizing
the data misfit and minimizing the dissimilarity that before worked out well is no
longer present.
We propose to use the L-curve method (Hansen and O’Leary 1993) to determine

an appropriate value of α. Figure 7 shows the value of χ2(mFM) versus the value of
1
2‖g(mFM)−dobs‖2Cd for 13 models. The models have been computed for logarithmi-
cally distributed values of α ranging from 1 (upper left corner) to 10−3 (lower right
corner). Each of the 13 models is marked with a blue circle. The models from Fig. 6
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are furthermore marked with a red circle. The model from Fig. 5 is marked with a red
star. We recognize the characteristic L-shaped behavior in the figure and the model
from Fig. 5 is the model located in the corner of the L-curve. The corresponding value
α = 1.8× 10−2 is therefore considered an appropriate value of α.

5 Conclusions

We have proposed the frequency matching method which enables us to quantify a
probability density function that describes the multiple point statistics of an image.
In this way, the maximum a posteriori solution to an inverse problem using training
image-based complex prior information can be computed. The frequency matching
method formulates a closed form expression for the a priori probability of a given
model. This is obtained by comparing the multiple point statistics of the model to the
multiple point statistics from a training image using a χ2 dissimilarity distance.
Through a synthetic test case from crosshole tomography, we have demonstrated

how the frequency matching method can be used to determine the maximum a pos-
teriori solution. When the a priori distribution is used in inversion, a parameter α is
required. We have shown how we are able to recreate the reference model by choos-
ing this weighing parameter appropriately. Future work could focus on determining
the theoretically optimal value of α as an alternative to using the L-curve method.
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Introduction 

   History matching is an essential part of reservoir characterization process.  Reliable reservoir 
models must fit production history and feature expected geology. Therefore geological a priori 
information should be included in the estimation of reservoir parameters. Due to the high 
computational cost of forward simulations (reservoir simulator runs) use of Monte-Carlo techniques 
can be unfeasible.  
   A fast compromise solution would be to find an approximation of the maximum a posteriori 
solution (MAP). To succeed in this task the probability of the model to resolve geological features 
(prior probability) must be estimated. Recently Lange et al. (2012) suggested the Frequency Matching 
(FM) method for solving inverse problems by use of geologically realistic prior information.  In the 
FM approach the a priori information takes the form of multiple-point statistics learned from reservoir 
geological prototypes - training images (e.g. Guardiano and Srivastava 1993).  The attractiveness of 
the FM method lies in its ability to quantify the prior probability of the proposed model and hence 
iteratively guide the model towards the maximum a posteriori solution. The FM method solves a 
combinatorial optimization problem, perturbing the model in a discrete manner until it explains both 
production data and a priori information.  In practice, this requires a lot of forward simulations and 
can be impractical for solving history matching problems. 
   While following the philosophy of the Frequency Matching method, we suggest a differentiable 
expression for a complex prior, so that, as a result, the approximation of the MAP solution can be 
found by gradient-based techniques with much fewer forward simulations required. 

Methodology  

   We suggest a gradient-based method for obtaining geologically feasible solutions of history 
matching problem. The algorithm integrates production data and complex geological a priori 
information into a single objective function.  Importantly, we propose a differentiable formulation of a 
priori information. 
    As a priori information, we use multiple point statistics derived from training images, which 
characterizes the expected spatial distribution of the sought physical property, for instance, 
permeability. Similar to Lange et al. (2012) we define an optimization problem, i.e. to minimize: 
 

O(m) = 1
2

dobs − g(m)
Cd

2
+ f (m, TI)   

 

 
 (1)

Reservoir parameters m are then inferred by minimizing two misfits:  1) between observed 
production data dobsand reservoir response g(m)  and 2) between statistics of the model (test image)
m and statistics of the training image TI .  One way to collect the statistics is to apply a scanning 
template to an image and compute the frequency distribution of the event defined by the chosen 
template (Lange et al., 2012).  The result will be the histogram that describes the image uniquely. The 
distance (defined in some sense) between the histogram of the training image and one of the test 
image estimates their statistical similarity.   
   The challenge in the gradient-based approach is to define a differentiable similarity measure 
between the continuous image m and the discrete training image TI .  Keeping the idea of histogram 
in mind, we first define the similarity function  between a continuous pattern i  and a discrete 
pattern j , using the normalized Euclidian distance  between their pixels values:  
 

hij = 1
(1+ Adij

k )p  
 

(2)

 
 

hij

dij
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Here , ,  are adjustable parameters. Then the pseudo-histogram is constructed calculating the 
“contributions“  of patterns in the image to all possible discrete patterns. The number of the 

histogram bins is equal to the number of all possible discrete patterns, i.e. cNpat , where c is the 
number of categories in the training image and Npat is the number of pixels in the pattern.   

In (1) the function f (m, TI)  is the L2 norm of the difference between the pseudo-histograms of the 
training image TI  and the test image m.  
     For solving (1) we chose the unconstrained implementation of the LBFGS method (Zhu et al. 
1997), which is known to be efficient for history matching problems (Oliver et al. 2008). To use 
unconstrained optimization we applied the logarithmic scaling of reservoir parameters proposed in 
Gao and Reynolds (2006): 
 

xi = ln mi − mlow

mup − mi

�

�
�

�

�
� 

 
(3)

 
Here  i =1,...,n, where n  is the number of pixels in the test image m,  mlow  and mup are the lower 
and upper scaling boundaries respectively. Global criterion method (Marler and Arora 2004) was used 
to combine the data misfit and prior terms into one objective function.  This yielded to the final look 
of the objective function:  
 

O*(m) =

1
2

dobs − g(m)
Cd

2
− h*

h*

�

�

�
�
�

�

�

�
�
�

2

+ f (m, TI)− f *

f *

�

�
�

�

�
�

2

 

 

 
 (4)

Here h*and f *  are the target values for data and prior misfits respectively. For forward simulations 
E300 reservoir simulator was used (Schlumberger GeoQuest 2009). The gradient of the data misfit 
term in (4) was evaluated using the adjoint calculation implemented in E300. The gradient of the prior 
term in (4) was calculated analytically. 
   As in any gradient-based technique, solution and convergence properties of the suggested method 
are strongly dependent on the initial guess and quality of the production and statistical data. In case of 
a poor choice of the template size geological features cannot be reproduced. However, large amount 
of data may compensate for the lack of statistical information. In the numerical example below we 
will see how sufficient wells coverage yields the correct length of geological features, while a priori 
information resolves their width in agreement with training image. 
 
 
Numerical example 
   In the test study we aim at reconstructing permeability field of a 2D synthetic oil reservoir of 
49x49x1cells. The true permeability and wells (9 injectors, triangles and 9 producers, circles) are 
shown in Figure 1. Training image of 200x200 pixels (Figure 2) has two categories and features 
highly permeable channels of 10000 mD and  500 mD background.  Notice the scaling boundaries  of 
450 mD  for mlowand 10500 mD for mup. Production data were generated by running a forward 
simulation with the true permeability model and adding 5% of Gaussian noise. Specifically, the 
reservoir was in production for 210 days and the data were collected every 30 days. For history 
matching we used BHP values from the injectors and oil rates from the producers (126 measurements 
in total). 
   A priori information was collected applying a 1D-scanning template of 10 pixels in vertical 
direction. We let the template to take care about the width of the channels, while the production data 
assure the horizontal continuity. 

  A   k   p
hij
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While parameters , , , in (2) are empirical, such values as 100, 2 and -1 respectively provide the 
optimal quality of the reconstructed image and may serve as a general recommendation. 
 
 
 

 
 

 
 

Figure 1 True permeability model, 49x49 pixels. Figure 2 Training image, 200 x200 pixels . 
 
The initial model (see Figure 3) gives the data misfit of the order of 105 and the histograms misfit - of 
10-1. In the optimization framework given by (4), we set the target values as 20 and 0.005 for the data 
and the histograms misfits respectively.  
   Figure 4 shows the solution at the 97th iteration. Visual inspection tells us that geological features 
were successfully reproduced. Additionally, the expected order of 10-3 in the histograms misfit was 
achieved. The production data were resolved well, obtaining the data misfit equal to 52 (expected 
≈ N 2 = 63, where N is the number of measurements, see, e.g., Oliver et al. (2008)).  
 

 

Figure 3 Initial permeability model. Figure 4 Solution, 97th iteration. 
 
 
Figure 5 demonstrates history matching for injector 4 and producer 3 (wells are numbered starting 
from the top). 
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Conclusions 
 
The proposed approach allows us to solve history matching problem by gradient-based optimization 
techniques, conserving geological realism of the solution. The differentiable formulation scales down 
the amount of required forward simulations and can be a valuable approach in modern reservoir 
management techniques as, for instance, in closed-loop optimization. Besides, the ability to quantify 
prior probability of history-matched reservoir models allows us to control the quality of reservoir 
characterization choosing the most reliable solutions.  

 

References 

Gao, G. and Reynolds, A.C. [2006] An improved implementation of the LBFGS algorithm for 
automatic history matching. SPE Journal, 11(1), 5-17. 
 
Guardiano, F. and Srivastava, R. [1993] Multivariate geostatistics: Beyond bivariate moments. 
Geostatistics Troia, 92(1), 133-144. 
 
Lange, K., Frydendall, J., Cordua, K.S., Hansen, T.M, Melnikova, Y. and Mosegaard, K. [2012] A 
frequency matching method: solving inverse problems by use of geologically realistic prior 
information. Accepted to Mathematical Geosciences. 
 
Marler, R.T. and Arora, J.S. [2004] Survey of multi-objective optimization methods for engineering. 
Structural and Multidisciplinary Optimization, 26(6), 369-395. 
 
Oliver, D.S., Reynolds, A.C., Liu, N. [2008] Petroleum reservoir characterization and history 
matching. Cambridge University Press, New York. 
 
Schlumberger GeoQuest [2009] ECLIPSE reservoir simulator, Technical description. Houston, TX. 
 
Zhu, C., Byrd, R.H., Lu, P. and Nocedal, J. [1997] L-BFGS-B: Fortran subroutines for large-scale 
bound-constrained optimization. ACM Transactions on Mathematical Software (TOMS), 23(4), 550-
560. 

 
Figure 5 History matching: observed data (red circles) with error bars and solution response (blue 
line).  
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Accounting for imperfect forward models in geophysical
inverse problems - exemplified for cross hole tomography.

Thomas Mejer Hansen∗, Knud Skou Cordua∗, Bo Holm Jacobsen† and Klaus Mosegaard∗

ABSTRACT

Inversion of geophysical data rely on knowledge about how to solve the forward problem:
That is, computing data from a given set of model parameters. In many applications
of inverse problems the solution to the forward problem is assumed to be known per-
fectly, without uncertainty. In reality though, solving the forward model will almost
always be prone to errors, which we refer to as modelization errors. For a specific
forward problem, computation of cross hole first arrival travel times, we demonstrate
how the modelization error, given a number of different approximative forward models,
can be more than an order of a magnitude larger than the measurement uncertainty.
We also show that modelization error is strongly linked to the spatial variability of the
assumed velocity field, i.e. to the a priori velocity model. We propose a method for
generating a sample of the modelization error due to using a simple and approxima-
tive forward model, as opposed to a more complex and more correct forward model.
Then a probabilistic model of the modelization error is inferred in form of a correlated
Gaussian probability distribution. Key to the method is the ability to generate a num-
ber of realizations from the a priori model, from which the modelization error can be
quantified. The methodology is demonstrated for two synthetic cross hole tomographic
inverse problems. Ignoring the modelization error can lead to severe artifacts, which
erroneously appear to be well resolved, in the solution of the inverse problem. Account-
ing for the modelization error leads to a solution of the inverse problem consistent with
the actual true model.

INTRODUCTION

Computation or prediction of the measurements, d, given a set of model parameters m is
referred to as solving the forward problem. We will consider problems where the forward
problem is defined by a possibly non-linear operator g that relates model parameters, m,
to data observations, d, such that solving the forward problem can be given by

d = g(m) (1)

The associated inverse problem deals with the problem of inferring information about model
parameters, m, given a set of observed data, d, and the forward model, g. The accuracy of
the forward model directly influences the solution to the inverse problem.

In many important cases the forward mapping is available only as a costly numerical
simulation, i.e. only a more or less accurate approximation to g(m) is available. Thus, only
very rarely do wavefields, electromagnetic fields and heatflow fields in inhomogeneous media
have a closed analytical form. Moreover, when forward mappings are computer intensive
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it becomes interesting to search for a computational less expensive, but typically also less
accurate, forward mapping. This introduces an error in the forward model that will lead to
erroneous data calculations. We refer to this type of error as a modelization error, following
Tarantola (2005), which is sometimes also referred to as the theoretical error, Tarantola and
Valette (1982a).

A common type of modelization error stems from the fact that geophysical data are the
response of a 3D earth. A full 3D solution of the forward problem may be computationally
too expensive to apply for some problems. The inverse problem may then be solved based
on faster 1D, 2D, or 21

2D forward models. For example massive amounts of 3D airborne
electromagnetic data have been inverted based on a computationally very efficient 1D for-
ward model, see e.g. Viezzoli et al. (2008). Seismic data can in principle be inverted based
on accurate 3D full waveform modeling, Tarantola (1988). However, due to computational
demands, inversion of reflection seismic data often rely on faster 1D forward modeling codes,
see e.g. Buland and Omre (2003).

Other examples of modelization errors are caused by the choice of how one solves the
forward problem. Even when 3D modeling codes are used, one may not use a forward model
that describes the complete physical problem. Seismic waves, for example, propagates in a
3D viscoelastic anisotropic medium. While methods exist to simulate waveform propagation
in such a 3D viscoelastic anisotropic medium (Saenger and Bohlen, 2004), for some problems
it may be computationally too expensive to apply, or too complex to handle. Instead one
can resort to solve the elastic or acoustic wave-equation. The forward problem of first arrival
travel time computation, used in for example cross hole tomography, can be solved by a
wide range linear and non-linear types of forward models (wee e.g. Vidale, 1988; Cerveny
and Soares, 1992; Jensen et al., 2000; Spetzler and Snieder, 2004). In any case, one will
typically introduce a modelization error due to the choice of forward modeling code.

Yet another type of modelization error is linked to the parameterization of the inverse
problem, and description of the physical system in which data are recorded. Christiansen
et al. (2011) analyze errors due to imperfect system description related to 1D TEM forward
modeling, and find that such errors can lead to an error in the estimate of the subsurface
layer resistivities that is an order of a magnitude of the true layer resistivities. Cordua
et al., (2008; 2009) demonstrate how borehole cavities can lead to significant modelization
errors in cross hole georadar tomography if not accounted for.

As we shall discuss in more detail later, the modelization error may be linked to the
complexity of the medium that one is trying to infer information about. If the subsurface
consists of mainly horizontally stratified layers, then a specific choice of forward model
may lead to a small modelization error (see e.g. Fuchs and Müller (1971)), whereas if
the subsurface is very inhomogeneous then the same forward model may lead to a large
modelization error.

This study provides some general tools by which the modelization error can be quantified
and cast into a consistent formulation as an additive Gaussian observation error. The
theory and methodologies that follows apply to any inverse problem. In the remainder of
this manuscript we will though, as an example, consider the modelization error related to
cross-borehole GPR tomography.

First we demonstrate that the use of an approximate method for solving the forward
problem, of computing the travel time delay between a source and a receiver, can lead to
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modelization errors an order of a magnitude larger than typical measurement uncertainty.
It is also demonstrated that the magnitude of the modelization error is closely linked to the
type of subsurface heterogeneity.

Then we propose a method that allow generating a sample, in form of a number of
realizations, of the modelization error due to the difference between two considered forward
models. A probabilistic model of the modelization error is inferred in form of a correlated
Gaussian probability distribution with mean dT and covariance CT, N (dT,CT). This
allows accounting for the modelization error as an additive Gaussian observational error.

Finally we show examples of cross hole tomography, demonstrating the effect of disre-
garding and accounting for the modelization error respectively.

MODELIZATION ERRORS IN CROSS-BOREHOLE GPR
TOMOGRAPHY

Cross-borehole tomography is a method widely used in geophysical prospecting for charac-
terizing small-scale variations of near-surface environments. Often the tomographic images
are based on first arrival travel times of seismic or electromagnetic signals that are propa-
gated between the boreholes. In this study we consider an example from ground penetrating
radar (GPR) cross-borehole tomography. This method has become popular during the last
few decades and has various applications such as: Mapping of tunnels and voids (Moran
and Greenfield, 1993), mapping of bedrock fractures and fracture zones (Olsson et al., 1992;
Lane et al., 1998), estimation of hydrological parameters and delineation of flow paths in
the unsaturated zone (Hubbard et al., 1997; Looms et al., 2008a,b), and delineation of
geological structures and lithologies (Fullager et al., 2000; Bellefleur and Chouteau, 2001;
Tronicke et al., 2004).

A number of sources of modelization error associated with cross-hole georadar tomogra-
phy have been discussed. Peterson (2001) lists the errors introduced in ground penetrating
radar cross-borehole tomography caused by incorrect station geometry and zero time cal-
ibration, geometric spreading, transmitter radiation pattern, transmitter amplitude, and
high angle raypaths. Cordua et al. (2009) demonstrate that some of these errors (related
to e.g. cavities in the borehole walls) result in correlated data errors. They also demon-
strate how a model of Gaussian correlated data errors that accounts for these errors can
be empirically setup and used in a least squares based inversion approach. Another type
of modelization error is associated to the way the forward problem of computing the travel
time between a source and a receiver is solved. We will consider this type of modelization
error in more detail.

Forwards models for first arrival travel time computation

The forward problem related to travel time tomography consists of computing the time
between emitting a seismic or electromagnetic waveform at a source location, and the first
arrival time of the propagating waveform recorded at a receiver. By first arrival we specif-
ically mean the first break arrival time. A large number of methods exist to solve the
forward problem. We will here briefly discuss some of the most widely used methods to
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solve the forward problem related to travel time computation. We will subsequently refer
to a specific choice of forward model using a subscript to g as defined in the following.

We will discuss the forward models defined below, by considering three reference velocity
models of size 6x3m, with a source located at S=(0.5m, 1.5m), and a receiver located at
R=(5.5m, 1.5m), see Figure 1, top.

Model a) is a constant velocity model with a velocity of 0.14 m/ns, Figure 1a, top.
Model b) is a realization of a Gaussian random field with mean velocity 0.14 m/ns, variance
of 1.44e-4 (m/ns)2, and an exponential covariance model with a direction of maximum
continuity of 10 degrees below horizontal, a maximum correlation length of 20m and a
minimum correlation length of 2m, see Figure 1b, top. Model c) is a realization of a random
function inferred from a binary channel based training image, generated using single normal
equation simulation, Strebelle (2002). The velocity outside the channels is 0.1273 m/ns,
and 0.1673 m/ns inside the channel. The mean velocity is 0.14 m/ns, see Figure 1c, top.

The sensitivity kernel corresponding to each of the considered forward models for each
of the three considered reference models is visualized below each velocity model in Figure
1, where black indicates positive sensitivity (an increase in velocity will cause sa decrease in
the travel time), and red indicates negative sensitivity (a decrease in velocity increases the
travel time). The sensitivity kernel is simply the fist order Fréchet derivative of the forward
model with respect to a given velocity model.

The high frequency (ray) approximation (gSR,gBR)

The simplest forward model for computing first arrival travel times relies on a high-frequency
approximation of the wave equation, often referred to as the ’ray’-approximation. The
travel time is found as the delay caused by the signal traveling along the fastest ray path
connecting a source and a receiver. This travel time can be efficiently computed using
the eikonal solution to the wave equation (e.g. Vidale, 1988). We will refer to this as
the ’bending ray ’ forward model, gBR. gBR is non-linear as the ray path depends on the
velocity model. A further simplification is to assume that the ray path follows a straight line
between the source and receiver. This leads to the linear ’straight ray ’ forward model, gSR,
which has probably been the most widely used forward model in travel time tomography.
gSR is identical to gBR in case the velocity field is homogeneous. The second and third row
in Figure 1 shows the sensitivity kernels related to the gSR and gBR forward model for the
three reference models.

The finite frequency (fat ray) approximation (gFR,gBFR)

The ray-approximation has become popular because it is simple and computationally cheap.
However, the frequency of a propagating wave is always band limited, which results in
scattering effects that are not accounted for by the ray-approximation. Therefore so-called
fat rays have been considered. For fat rays the travel time is sensitive not only to the
travel time delay along the fastest ray path, but to an area around the ray path. (see
e.g. Bursink et al., 2008; Dahlen et al., 2000; Spetzler and Snieder, 2004; Jensen et al.,
2000; Marquering et al., 1998). For a single frequency source wavelet the sensitivity kernel
consists of alternating regions of positive and negative sensitivity, known as Fresnel zones
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(Woodward, 1992). Most of the sensitivity for a band-limited source lies within the first
Fresnel zone (Jensen et al., 2000), as higher order Fresnel zone sensitivity tend to cancel
out. A number of empirical models have been suggested that describe a sensitivity kernel
based on the first Fresnel zone (Cerveny and Soares, 1992; Jensen et al., 2000; Husen and
Kissling, 2001). Here we specifically make use of the description proposed by Jensen et al.
(2000) to compute a sensitivity kernel reflecting the first Fresnel zone. We will refer to this
non-linear kernel, where the sensitivity is dependent on the velocity model, as the bending
Fresnel forward model, gBFR. We will also consider a related linear kernel, obtained by
assuming a constant velocity field, and refer to this as the straight Fresnel forward model,
gFR. The fourth and fifth row in Figure 1 shows the sensitivity kernels related to the gFR

and gBFR forward models for the three reference models.

The Born approximation (gBorn)

Using the Born approximation (considering 1st order scattering) an exact analytical expres-
sion for the sensitivity kernel for a point source can be derived for both seismic (Dahlen et
al., 2000; Spetzler and Snieder, 2004; Jensen et al., 2000; Marquering et al., 1999; Liu et al.,
2009) and electromagnetic wave propagation (Bursink et al., 2008; Liu et al., 2009). Here
we will make explicit use of the formulation of the sensitivity kernels given by Buursink et
al. (2008), and refer to it as the ’Born’ forward model, gBorn.

The sixth row in Figure 1 shows the sensitivity kernels related to the gBorn forward
model for the three reference models. Note that, as opposed to the previously considered
sensitivity kernels, both regions of positive and negative sensitivity are visible. The Born
approach is only strictly valid for a homogeneous velocity model, and while sensitivity
kernels in principle can be computed for velocity models with small velocity contrasts,
the Born approach will fail for larger velocity contrasts. We therefore only consider the
sensitivity kernel associated to a homogeneous velocity model. This type of forward model
is then linear, independent of the actual velocity model. Note also that sensitivity kernels
associated to the Born approximation typically does not reflect the sensitivity of the first
break arrival (as we make use of to determine the travel time in this paper) but the time delay
associated with maximum cross-correlation between the observed and simulated wavefield.
We still consider the sensitivity kernels based on the Born approximation here, as they have
previously been used to invert travel time data recorded as first break arrival, see e.g. Liu
et al. (2009) and Buursink et al. (2008).

Waveform modeling and first arrival picking (gFW )

Perhaps the most precise, and time consuming, approach to solve the forward problem is
to use full waveform modeling, followed by picking the first arrival time. We refer to such
a forward model as the FW forward model, gFW . Specifically we use 2D finite difference
waveform modeling (Ernst et al., 2007) with a Ricker source wavelet with a peak frequency
of 100 Mhz. First arrival break times are automatically picked using the method proposed
by Molyneux and Schmitt (1999). The first order Fréchet derivative, i.e. the sensitivity
kernel, related to the gFW forward model is estimated using the perturbation approach
(McGillivray and Oldenburg 1990). Here, each model parameter is perturbed slightly and
the resulting residual travel time is compared to the travel time related to the reference
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model. From this the local gradient, i.e. the 1st order Fréchet derivative can be computed.
The resulting sensitivity kernel obtained using the perturbation approach for the three
considered reference models is shown in the bottom row in Figure 1.

Note that the sensitivity kernels associated to the gSR, gBR, gFR, gBFR, and gBorn

forward models completely defines the forward model with respect to the given reference
models, as the full Fréchet derivatives are completely given by the first order Fréchet deriva-
tive. This is not the case for the gFW forward model, which is sensitive to higher order
scattering. The sensitivity kernels shown in the bottom row in Figure 1 are only the first
order Fréchet derivatives, and hence only sensitive to first order scattering.

From Figure 1 it is evident that the sensitivity kernels differ, based on the underlying
assumptions. The fat ray (gFR, gBFR) and Born (gBorn) forward models only consider 1st
order scattering, while in reality, higher order scattering may occur. The high frequency
forward models (gSR, gBR) do not consider scattering effects at all. Using any of these
considered forward models, will result in a possible different travel time than obtained
through the finite-difference calculation. Our goal here is not to discuss the validity of each
type of forward model, but simply to describe that using any type of forward model will
lead to different modelization errors that will affect the computed travel times.

Modelization errors in first arrival travel time computation

We will now analyze the modelization error caused by using a specific choice of forward
model. The effect of different kinds of variability in the model space is investigated based
on 26 reference models that are grouped into three types of models and shown in Figures
2a-z:

type A: Increasing Gaussian variance Models 1-10 shown in Figures 2a-j are realiza-
tions of the same Gaussian random field defined by an exponential covariance model with
horizontal range rhor = 15m, a vertical range rver = 2m, a mean velocity of 0.14 m/ns,
but with an increasing standard deviation of, σ = [0, 0.0040, 0.0057, 0.0069, 0.0080, 0.0089,
0.0098, 0.0106, 0.0113, 0.0120] m/ns. Thus, the variability is increasing, while the spatial
correlation lengths are kept constant.

type B: Increasing Gaussian spatial correlation length Models 11-20 shown in
Figures 2k-t are realizations of the same Gaussian random field defined by an exponential
covariance model with a mean velocity of 0.14 m/ns, a constant standard deviation of σ =
0.0120 m/ns, but with an increasing horizontal range of rhor= [0.01, 1.12, 2.23, 3.34, 4.45,
5.56, 6.67, 7.78, 8.89, 10.0] m, assuming a constant anisotropy of factor of rhor/hver = 5.
Thus, the variance is the same, but the spatial correlation lengths are increasing.

type C: Increasing multiple point variability Models 21-26 in Figures 2u-z are re-
alizations of a multiple-point based statistical model inferred from a binary training image
(taken from Strebelle, 2001). The actual realization is generated using single normal equa-
tion simulation, Strebelle (2002). The location of the channel structure is the same for all 6
models, but the velocity within the channel is decreasing as vchannel = [0.13, 0.12, 0.11, 0.10,
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Figure 1: Top row: reference velocity models, a) homogeneous, b) realization of a Gaussian
model, c) realization based multiple point statistics inferred from a training image. Red
color reflect a high velocity and black a low velocity. Each column show the sensitivity
kernels associated to the forward models gSR, gBR, gFR, gBFR, gBorn, and gFW . For the
sensitivity kernels, black indicates positive sensitivity, and red indicated negative sensitivity.
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Figure 2: 26 Reference models. a)-j) Models 1-10 of type A (increasing variance). k)-t)
Models 11-20 of type B (increasing correlation length and constant variance). u)-z) Models
21-26 of type C (increasing velocity contrast for a binary velocity model). The location of
receivers (red dots) and sources (black dots) is denoted on a). See text for more details

0.09, 0.08] m/ns, while the velocity in the region outside the channel increases as voutside =
[0.15, 0.16, 0.17, 0.18, 0.19, 0.20] m/ns. Thus the relative velocity contrast at the channel
edges is increasing.

For all of these 26 models, a ’reference’ travel time data set, texact, is computed by
assuming that the ’exact’ forward model, gexact is given by the gFW forward model described
above. As a reference geometry we consider the 331 pairs of source and receiver locations
shown in Figure 2a. Thus each travel time dataset consists of 331 travel times. In addition,
the travel times obtained using the different approximative forward models related to the
gSR, gBR, gFR, gBFR, and gBorn, will be computed and referred to as tSR, tBR, tFR,
tBFR, and tBorn, respectively. This will allow quantification of the modelization error as
the difference in travel time due to using the approximative forward models and the exact
forward model.

Figure 4 shows corresponding modelization error in form of the mean and standard
deviation of the error introduced by a specific choice of kernel for the 331 travel times
estimates for each of the 26 considered models. The mean can be thought of as a bias, the
average mean difference in travel time, and the standard deviation reflect the magnitude of
the modelization error.

Figure 4 (top row) illustrates clearly that for a homogeneous model (model 1), all kernels
perform equally well. This is no surprise as the kernels are normalized such that the integral
of each kernel is the raylength between the source and the receiver. More importantly
it clearly shows that as the subsurface variability increases, both the absolute value of
the mean and the standard deviation of the modelization error increases using any of the
approximations. A similar pattern can be seen for models 21-26, where the velocity contrast

Accounting for imperfect forward models

237



Hansen et al. 9 Accounting for modelization errors

Figure 3: Bimodal training images, used to generate the realizations shown in Figure 2u-z.
From Strebelle (2000).
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in the binary velocity field is increasing. The absolute value of the mean and the standard
deviation is though significantly higher considering the discrete velocity models of models
21-26, than the models based on Gaussian statistics in models 1-10.

Figure 4 (middle row) shows the influence on the bias and variance of the modelization
error for increasing spatial correlation lengths. The high frequency approximations (ray
sensitivities) are relatively more influenced by the changing correlation length than the ones
based on Fresnel volumes. Notice that intermediate spatial wavelengths of the subsurface
structures provide larger modelization error than both very high and low correlation lengths.
The Fresnel volume sensitivities are less sensitive to the subsurface variability than the ray
sensitivities because these sensitivities integrates the velocities of a larger volume of the
subsurface.

Using the gBR forward model (high frequency approximation to the wave equation)
provides the fastest travel time estimates, since the travel time is computed along the ray
that provides the fastest travel time. This is seen as a negative bias in the modelization
error. The magnitude of the bias changes from zero (when the velocity model is constant) to
about more than -2 ns for the velocity model with channels and maximum velocity contrast,
model 26, Figure 4.

Modelization errors related to Gaussian variability of the velocity structures (models 1-
20) provides a mean error up to 0.6 ns, and a standard deviation of up to 0.6 m/ns. On the
other hand the modelization errors related to variability in the binary velocity structures
(models 21-26) provides a mean error up to 12 ns, and a standard deviation of up to 8
m/ns.

Measurement errors in a typical GPR cross-borehole data set is around 0.2 ns to 0.8 ns.
Thus for Gaussian type velocity models the modelization error can be up to the order of the
uncertainty of the noise model. For the binary velocity distribution the modelization error
have the potential to be more than an order of a magnitude larger than the noise model.

Figure 4 thus clearly demonstrates that the modelization error inherent in cross-borehole
tomography can be significant, as compared to the measurement error. Furthermore, Figure
4 shows that the magnitude of the modelization error is closely linked to subsurface vari-
ability. As the subsurface variability increases so does the magnitude of the modelization
error.

In the following we will propose a method to generate a sample of the modelization error,
and suggest how to account for such a modelization error when solving inverse problems.

MODELIZATION ERROR AND INVERSE PROBLEM THEORY

The solution to a probabilistically formulated inverse problem is a probability density ob-
tained by combining all available states of information. Prior information on the model and
data parameters, obtained independently from physical data, can in general be represented
by the a priori probability distribution, ρ(d,m). Information about the physical relation
between data and model parameters can in general be represented by the theoretical proba-
bility density, Θ(d,m). The combined information, i.e. the solution to the inverse problem,
is given by the joint posterior probability defined in the joint data and model space manifold
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Figure 4: Observed mean (left) and standard deviation (right) of difference in travel times
between the travel times obtained using the ’exact’ forward model, texact and approximate
travel time estimates tSR,tBR,tFR,tBFR, and tBorn, for velocity models of types A (models
1-10, top row), B (models 11-20, middle row) and C (models 21-26, bottom row).
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D x M:

σ(d,m) = k
ρ(d,m) Θ(d,m)

μ(d,m)
(2)

The presence of μ(d,m) in Eqn 2 represents the homogeneous state of information that
ensures the parameterization is invariant to changes in coordinate system. Eqn 2 is the
most general way to define the solution to an inverse problem in a probabilistic framework,
see e.g. Tarantola and Valette (1982) and Mosegaard and Tarantola (2002). One may
wish to infer information about the model parameters, m, through the posterior marginal
distribution of m as given by

σM(m) =

∫
D
dd σ(d,m) (3)

If it is assumed that ρD(d) is obtained independently of ρM(m) such that ρ(d,m) =
ρD(d)ρM(m), and one assumes the theoretical probability density can be given by

Θ(d,m) = θ(d|m) μM(m) (4)

where μM(m) is the marginal probability density μM(m) =
∫
dm μ(d,m), then the solution

to the inverse problem of inferring information about the model parameters through the
marginal a posteriori probability, σM(m) can be given by

σM(m) = k ρM(m) L(m) (5)

where the k is a normalization constant and the likelihood function given by

L(m) =

∫
D
dd

ρD(g(m)) θ(d|m)

μD(d)
(6)

ρD(d) describes measurement uncertainties, typically related to the instrument recording
the data. θ(d|m) reflects the modelization uncertainties, as for example caused by using an
imperfect forward model g, as discussed previously.

Figure 5a provides a graphical illustration of the modelization error θ(d|m) for a 1
dimensional inverse problem. The red line reflects an assumed error free theoretical relation
d = g(m), and the grayscale density plot reflects θ(d|m). Note that in this general case
the modelization error is described by a non-Gaussian distribution that is not centered
around the theoretical relation d = g(m). While Θ(d,m) allows for an arbitrarily complex
theoretical probability density, θ(d|m) corresponds to quantifying the modelization error by
putting vertical uncertainty bars (along with a possible bias) on the theoretical relationship,
the red curve (Tarantola, 2005). In this case it is suggested both the bias (the vertical
distance from the theoretical relation (red line) to the to the point of maximum likelihood
of θ(d|m)) and the uncertainty increases as m increases. This resembles, to some degree,
the behavior of the modelization error due to the use of imperfect forward models observed
in Figure 4.

For the remainder of the text we will consider inverse problems whose solution is given
by Eqn. 5, and we will assume that the homogeneous probability density can can be
approximated by a constant, such that μD(d) = k. For more details on the homogeneous
probability density function see e.g. Mosegaard and Tarantola (2002) .
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Figure 5: Schematic illustration of the modelization error. Red curve reflect d = g(m).
Grayscale density plot reflect modelization error. a) General description of modelization
error, θ(d|m). b) Approximate stationary modelization error, θρ(d|m), obtained in the
vicinity of ρM(m) (dotted line). c) Approximate stationary Gaussian modelization error,
θρ(d|m)=N (dT,CT), obtained in the vicinity of ρM(m) (dotted line). The yellow curve
reflect the maximum likelihood of θρ(d|m) for any given m. dT is the difference between
the red and yellow curve.

Accounting for the modelization error

In general it is not straightforward to evaluate the modelization error, θ(d|m), and perform
the integration of Eqn. 6.

At one extreme modelization error can be infinitely high, which means that any observed
data will lead to the same constant likelihood, L(m) = k. In such a case no information
can be inferred from observed data, and the a posteriori probability will simply be identical
to the a priori probability, σM(m) = ρM(m).

Another extreme is to completely ignore the modelization error. When the forward
mapping is assumed known precisely, the modelization error can be expressed as θ(d|m) =
δ(d− g(m)), which reduces Eqn. 6 to

L(m) = ρD(g(m)) (7)

Evaluation of Eqn. 7 requires the choice of a probability model that describes the mea-
surement uncertainty, i.e. a model that describes how well the forward response of a given
model matches the data. If such measurement uncertainty can be described by a Gaussian
model, through the covariance Cd, the likelihood can be expressed as

L(m) = ρD(m) = k exp(−1

2
(g(m)− dobs)

t Cd (g(m)− dobs)) (8)

Disregarding the modelization error amounts to assuming a perfectly known noise free
relation between m and d, as indicated by the red line in Figure 5a. If significant modeliza-
tion errors in reality exist, such as indicated by θ(d|m) in Figure 5a, then clearly ignoring
such errors may lead to significant artifacts in describing the forward model, and hence, the
solution to the inverse problem σM. This will be further investigated in a case study.

Accounting for imperfect forward models

242



Hansen et al. 14 Accounting for modelization errors

Accounting for Gaussian modelization errors

In the special case where the modelization error can be described by a multidimensional
Gaussian probability density, with mean dT and covariance CT, N (dT,CT), one can ac-
count for both the measurement and modelization error through addition of the covariance
models describing measurement error Cd and modelization error CT (generalized after
Tarantola (1986), page 58):

L(m) = k exp(−1

2
(g(m)− (dobs − dT))

t CD (g(m)− (dobs − dT))) (9)

where CD = Cd+CT. Eqn. 9 is thus identical to Eqn. 8 except that Cd is replaced by the
combined covariance model, CD, and a bias correction dT is introduced.

This means that one does thus not need to explicitly perform the integration of Eqn.
6. In addition Eqn. 9 is valid for both linear and non-linear inverse problems, as long
as the modelization error and the measurement uncertainty can be described by Gaussian
statistics, in form of N (dT,CT) and N (dd,Cd). If a Gaussian model of modelization error
can be established, and is valid, then it can easily be utilized by many types of existing
inversion algorithms that can account for Gaussian measurements errors.

In the following we will devise and test methods to approximate the modelization error
as an additive correlated Gaussian error. First we suggest methods for generating a sample
of the modelization error, that may or may not be Gaussian distributed. Then we suggest
how to infer a Gaussian model of modelization error from such a sample of the probability
distribution describing the modelization error.

Quantifying modelization error

Generating a sample of the modelization error

Let M = [m′
1,m

′
2, ...,m

′
N ] represent a sample, in form on N realizations from an a priori

probability distribution, ρM(m). Consider two (linear or non-linear) forward models in form
of an exact, gex, and an approximate, gapp forward model. Let M represent N realizations
of the prior model ρM(m). The corresponding data, Dex and Dapp, for each of the two
forward models, can be computed as

Dex = gex(M)

Dapp = gapp(M)

Each column in Dex and Dapp contains the data, e.g. dex,i or dapp,i, related to the i’th
realization of the a priori probability density, ρM(m). A sample, in form of N realizations,
of the (unknown) probabilistic model of the modelization error, θρ(d|m), is now available
as

Dθ = Dex −Dapp. (10)

We refer to the obtained sample of the modelization error as a sample from θρ(d|m) as
it is related to the subset of all models defined by the prior model, ρM(m). To generate
a sample of the full modelization error, θ(d|m), one would need to consider any model,
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independent of its a priori likelihood. This will in practice not be possible. We therefore
choose to assume stationarity of the modelization error, around a priori acceptable models,
such that the sample of the modelization error obtained is valid in the vicinity of a priori
acceptable models.

Figure 5b illustrates such a modelization error, θρ(d|m), that would be obtained from
the full modelization error θ(d|m) shown in Figure 5a, using the priori distribution ρM(m)
shown on the x-axis on Figure 5b. In the vicinity of the prior model, θρ(d|m) is a good
approximation of the full modelization error θ(d|m). For models with small a priori like-
lihood it is also seen that θρ(d|m) does not reflect θ(d|m) very well. Note how the the
shape of distribution of the modelization error is the same for all values of m, due to the
assumption of stationarity. It is only shifted by a constant vertically relative to d = g(m).
For well posed inverse problems, one should not need consider a priori models with very
low a priori likelihood, and hence θρ(d|m) should be a reasonable approximation θ(d|m).
If the modelization error is of the stationary nature depicted in Figure 5b, then θρ(d|m)
will be identical to θ(d|m) as θ(d|m) is the same for all m.

Approximative estimation of a Gaussian modelization error

In case the sample Dθ of modelization errors can be seen as a sample from a Gaussian
probability density, we can readily estimate the mean value dTapp (the bias) and covariance
matrix CTapp of this Gaussian distribution (θρ(d|m) = N (dTapp,CTapp)) by the following
equations

dTapp = [dT
1
app , dT

2
app , . . . , dT

N
app] (11)

where dT
j
app =

1

N

N∑
i=1

( Di,j
ex −Di,j

app ))

CTapp =
1

N
DdiffD

′
diff (12)

where Ddiff = [Dex −Dapp −DTapp ]

and DTapp = [dT
′
app,dT

′
app, . . . ,dT

′
app].

Figure 5c provides a graphical illustration of such a Gaussian model of modelization er-
ror. The gray scale density plot reflect a Gaussian modelization error, θρ(d|m)=N (dTapp,CTapp),
as inferred from inferred from Dex and Dapp using equations 11-12. Again due to the as-
sumption of stationarity, as for Figure 5b, the Gaussian distribution of the modelization
error is the same for all values of m, and defined by the variance CT and shifted by a
constant dT relative to d = g(m), as indicated by the difference between the red and yellow
line in Figure 5c.

Whether or not N (dTapp,CTapp), is a good description of the actual modelization error
θρ(d|m) naturally depends on whether the Gaussian assumption is valid or not.

Exact calculation of a Gaussian modelization error in the linear Gaussian case

For linear Gaussian inverse problems, the forward problem can be quantified by the forward
operator G, such that d = Gm. In addition the a priori information on the model param-
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eters is described by the Gaussian model N (m0,CM). Using G, m0 and CM one can map
the prior information about the model parameters into an a priori Gaussian distribution of
data N (dρ,Cρ), with

dρ = G m0 (13)

Cρ = G CM G′ (14)

Cρ should not be confused with data measurement uncertainties, but is simply a description
of the covariance between data given the choice of the a priori covariance model and the
forward kernel.

Consider an ideal case where an exact expression of the linear forward kernel is given as
Gex. Another approximate linear forward kernel is given by Gapp. The difference in data
computed using these two kernels is given by:

dex = Gex (m−m0) + Gex m0

dapp = Gapp (m−m0) + Gapp m0

⇓
dex − dapp − [Gex −Gapp] m0 = [Gex −Gapp] (m−m0) (15)

⇓
dex − dapp − dT = [Gex −Gapp] (m−m0) (16)

Following Eqn. 16 it is evident that the difference between the exact and approximate
estimates of data, dex − dapp is linearly related to m through the difference between the
linear kernels, Gex −Gapp. Following Eqns. 13-14, a complete description of the Gaussian
modelization error N (dT,CT) can now be given as:

dT = [Gex −Gapp] m0 (17)

CT = [Gex −Gapp] CM [Gex −Gapp]
′ (18)

N (dT,CT) provides an exact description of the modelization error, θρ(d|m), caused by
using the approximate (and linear) kernel, Gapp, given a known exact (and linear) kernel,
Gex and the a priori information given by N (m0,CM). This is an exact description of the
modelization error approximated in Eqns. 11-12.

Example of estimating a Gaussian model of modelization error.

The ”exact method” described above applies to linear problems with Gaussian prior and
Gaussian data error. The ”approximate method” is completely general and provides a
sample of the modelization error. The larger the sample, the better statistics about the
modelization error can be inferred. We will illustrate this for a linear case where the exact
method can serve as the benchmark. We consider two linear forward models defined previ-
ously where gFR shall serve as the ”true” forward model and gSR serve as the approximative
forward model.

Figure 6a-h show the approximate estimates of the covariance of a Gaussian modelization
error, CTapp , obtained using Eqn.12 and N=5, 10, 25, 50, 100, 200, 400, and 800 a priori
realizations. Figure 6i shows the exact estimate of CT computed using Eqn. 18. The
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estimated mean of the Gaussian modelization error, dTapp, obtained using Eqn. 11, is shown
in Figure 6j for N =10, 400, and 800 realizations, and compared to the exact estimate of
dTapp computed using Eqn. 18. Figure 6 illustrates how the approximate estimates of dTapp

and CTapp tend toward the exact estimates of dT and CT as the number of considered a
priori realizations increases.

So in this simple linear case the general nonlinear approach works well and requires
relatively few realizations of the modelization error. Below we approach two more realistic
problems with non-linear forward models and, for one case, a non-Gaussian prior where our
general sampling method can show its potential.

CASES

We have shown, see Figure 4, that the modelization error caused by the use of an imper-
fect forward model can more than an order of a magnitude larger than the measurement
uncertainty. We have also proposed a method to quantify a Gaussian modelization error.
Through two case studies we will consider the effect of disregarding and accounting for the
modelization error respectively.

In the first case study we will investigate the effect of disregarding the modelization error
when solving a non-linear Gaussian inverse problem as a linear inverse Gaussian problem,
using least squares type inversion.

In the second case study we explore the use of a fast (and approximate) non-linear
forward model to solve a non-linear inverse problem using a non-Gaussian a priori model.
In this case a sample of the a posteriori probability density is obtained using the extended
Metropolis algorithm.

CASE A : Accounting for modelization errors in linear cross-borehole to-
mography

Figure 7a shows a reference velocity model which is generated as a realization of Gaussian
random field with mean value of 0.14 m/ns, and covariance model with the distance decay
known as ”spherical” within geostatistics, with a horizontal range of 10 m and a vertical
range of 2 meter. From the reference velocity model a reference data set is computed
using the forward type model based on finite difference waveform modeling, gFW . The
peak frequency of the used Ricker wavelet is 100 Mhz. The same recording geometry is
used as in Figure 2a, resulting in 331 computed travel times. In addition three levels of
measurement uncertainties, Cd, have been added as uncorrelated Gaussian noise with a
standard deviation of 0 (noise free data), 0.1, and 0.4 ns respectively, see Figure 7b. For
the remainder of this case study we will consider uncorrelated measurement uncertainty
only, and we will refer to a model of uncorrelated measurement uncertainty with a standard
deviation of e.g. 0.1 ns as Cd = � 0.12. We thus consider three different data sets as
observed data, contaminated with different measurement noise.

The ’true’ forward’ problem is non-linear. We will invert these travel time data using
an approximative linear straight ray forward model, gSR, with a known a priori covariance
model, N (m,CM), as used to generate the reference model. As we make use of an approx-
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Figure 6: Comparison of the an approximate estimated of CTapp using Eqn 12 using 1,
135, 361, 475 and 500 realizations from the a priori pdf, to computing the exact CT using
Eqn 17.

Accounting for imperfect forward models

247



Hansen et al. 19 Accounting for modelization errors

Figure 7: a) Reference velocity model. b) Realizations of the Gaussian models for Cd, with
a standard deviation of 0, 0.1 and 0.4 ns.

imation to describe the forward problem a modelization error will be introduced. Treated
as a linear Gaussian inverse problem the solution to the inverse problem is described by
the Gaussian a posteriori probability density, that can be completely characterized by the
a posteriori mean m̃ and covariance model C̃M, N (m̃, C̃M) (see e.g.Tarantola and Valette
(1982a)):

m̃ = m0 +CMGt (G CM G′ + CD)
−1 (d0 −Gm0) (19)

C̃M = CM −CMGt (G CM G′ + CD)
−1GCM (20)

The a posteriori mean model m̃ is also the model with maximum a posteriori probability.

Inversion with no modelization error

Initially we will disregard the modelization error (dT = 0 and CT = 0) such that CD = Cd.
That is, we properly account for the three cases of measurement errors, but ignore the
modelization error. The linear inverse problem is solved given the three datasets using
Eqns. 19-20. Figures 8a,b,c show the corresponding maximum a posteriori model, m̃,
considering Cd=� 0, � 0.12, and � 0.42 respectively. Figures 8d,e,f show three realizations
from the corresponding a posteriori probability density.

Using noise free data the inversion result is severely affected by disregarding the mod-
elization error, Figure 8a,d. Within the area of high ray coverage (in the middle of the
model), both the maximum a posteriori model and realizations from the a posteriori prob-
ability density show abnormal velocity variation, both in terms of magnitude and spatial
variability. This is a result of fitting the modelization error, which act as noise, and is
not accounted for. In order to fit the data according to the assumption of noise free data
extreme velocity variations are introduced into the solution space. In addition, comparing
the realizations from the a posteriori probability density, many of the structures, which are
artifacts and a result of fitting modelization noise, seems to be well resolved. A feature is
well resolved if the same feature appears in many realizations of the a posteriori probability
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density. Thus ignoring modelization error in this case introduces artifacts, which appear
well resolved, into the inversion results.

It is off course quite extreme to invert data without assuming any data noise at all.
Considering more realistic measurement uncertainties of Cd = � 0.12, the problems referred
to above persist. The maximum a posteriori model on Figure 8b shows a low velocity zone
at x=3, y=5, surrounded by a high velocity zone. This low velocity zone seems to be well
resolved as it can be identified on the 3 realizations of the a posteriori probability density,
Figure 8e. However, compared to the reference model, Figure 7a, it is evident, that such
a feature does not exist, and is an effect of disregarding the modelization error. As the
measurement uncertainty is increased the effect of disregarding the modelization error is
reduced, see Figure 8c,f. However, using Cd = � 0.42, the low velocity zone still appears as
a rather well resolved feature.

Estimating Gaussian modelization error

To estimate the modelization error caused using the by the linear straight ray approxi-
mation, gSR, 600 realizations of the a priori Gaussian model, N (m,CM) are generated.
For each of the 600 models the forward response is computed using the ideal forward
method, gFW , providing Dex. Likewise the approximate linear forward model, gSR, is
used to calculate the travel times in Dapp. Then a Gaussian model of modelization error,
N (dTapp,CTapp), using Eqns. 17-18. Figure 9a-b shows the estimated covariance CTapp ,
and mean dTapp, describing the inferred model of Gaussian modelization error.

It has been assumed that the modelization error can be characterized by a Gaussian
model, as given by Eqns. 17-18. This may not always be a reasonable assumption. One
simple way of checking whether the Gaussian model is reasonable is to simply compare
actual realizations of the modelization error, as obtained in Eqn. 10, to realizations of the
inferred model of Gaussian modelization error. Figure 9c compares the actual modelization
error (black curve) to one realization of the inferred Gaussian modelization error (red)
for one realization of the prior model, N (m,CM). A visual comparison suggest that the
modeled modelization variability resembles the expected/computed variability, even though
the true modelization error seems to have a few outliers that may not be consistent with
the Gaussian model.

Inversion with modelization error

We now consider inversion of the travel time data considering both measurement uncer-
tainty,Cd, and at the same time the Gaussian model of modelization error,N (dTapp,CTapp),
using Eqns. 19 and 20. Inversion results, in form of the maximum a posteriori model, and
three realizations from the corresponding a posteriori probability density, can be seen on
Figure 10, which can be directly compared to the results of disregarding the modelization
error in Figure 8.

From the realizations of the a posteriori probability density, Figure 10d-f, it is evi-
dent that spatial variability is similar, using any of the three considered noise models, and
similar to the spatial variability of the reference model. The resolution decreases as the
measurement uncertainties increase, as should be expected.
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Figure 8: Inversion disregarding modelization error, CT = 0. a-c) Maximum likelihood
model (least squares mean estimate) for Cd= 0, 0.12, and 0.42. d)-f) 3 realizations from
the a posteriori probability density considering Cd= 0, 0.12, and 0.42.
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Figure 9: a) Estimated Gaussian model of modelization error, CTapp . b) Estimated mean of
modelization error, dTapp. c) Actual modelization error (black) compared to one realization
of the inferred modelization error (red) for one realization of N (m,CM).
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Figure 10: Inversion accounting for estimated modelization error CTapp . a-c) Maximum
likelihood model (least squares mean estimate) for Cd= 0, 0.12, and 0.42. d)-f) 3 re-
alizations from the a posteriori probability density considering Cd= 0, 0.12, and 0.42.
Compare to Figure 8 to evaluate the effect of considering modelization error.

.
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It has been shown that it may be possible to solve a nonlinear inverse problem, with
a Gaussian a priori model, using a fast approximative linear approach, in a probabilistic
sound manner, if the modelization error caused by using an approximative forward model
can be described by a Gaussian model. The resulting solution to the inverse problem, in
form of the a posteriori probability density, is an approximation to the full inverse problem
using the ’true’ forward model. This means that model parameters will appear less resolved
than if using the exact forward model. However, features that appear well resolved using
the approximate inversion approach, should also be well resolved using the full, perhaps
computational infeasible, forward model.

Disregarding modelization error can on the other hand produce erroneous inversion
results. It can lead to a solution to the inverse problem with extreme model parameter
estimates, that appear to be resolved, but which are in reality in conflict with the true
subsurface. If modelization uncertainty is ignored one cannot be sure if an apparently well
resolved feature is actually resolved, or simply an effect of fitting unknown modelization
error as data. It will not be possible to quantify which features are consistent with the
true subsurface, without quantifying the modelization error, or solving the inverse problem
using the ’exact’ forward model.

CASE B : Sampling the a posteriori probability density in case of mod-
elization error.

We will now consider a non-linear inverse problem with a non-Gaussian a priori model.
Figure 11 shows a clearly non-Gaussian distributed reference model. It has been generated
using the SNESIM algorithm using the image in Figure 3 as training image, Strebelle
(2000). The velocity within the thin channel structures is 0.18 m/ns and the velocity of the
background material is 0.10 m/ns.

As for case A, a reference data set is computed using the gFW type forward model.
A realization of uncorrelated Gaussian noise with a variance of 0.8 ns2 is added to the
reference data to resemble measurement uncertainty, Cd. We now wish to solve the inverse
problem of inferring information about the velocity distribution, given ’observed’ travel time
data, and an a priori model given by the training image in Figure 2d. As a ’non-perfect’
forward model we consider the eikonal solution to the wave equation, i.e. the gBR forward
model. In this case the forward problem is neither linear nor is the a priori model Gaussian.
Therefore we cannot make use of least squares based inversion as in case A. Instead we
resort to sampling techniques that, as opposed to providing an analytical description of
the a posteriori probability density, will generate a sample of the a posteriori probability
density, Mosegaard and Sambridge (2002). We specifically make use of a combination of the
extended Metropolis sampler, Mosegaard and Tarantola (1995), and the sequential Gibbs
sampler, Hansen et al. (2012), as made available in Hansen et al. (2013a,b).

Quantifying the modelization error

A Gaussian model of modelization error is estimated in a similar manner as was done for case
A. Initially 600 realizations is generated from the a priori model, based on the the training
image in Figure 3 by the SNESIM algorithm. For each of the 600 models the forward
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Figure 11: Reference model, case B

response is computed using the ideal forward method, i.e. the gFW type forward model,
providing Dex. Likewise the approximate forward model, based on the eikonal solution to
the wave equation, gBR, is used to calculate the travel times in Dapp. Then we estimate a
Gaussian model of modelization error, N (dTapp,CTapp), using Eqns. 11-12.

Figure 12a shows the estimated bias, dTapp, and figure 12b the estimated covariance,
CTapp . Note that the bias itself fluctuates around 1.6 ns, significantly higher than the
standard deviation of 0.8 describing the measurement uncertainty.

Sampling the a posteriori probability density

The extended Metropolis algorithm is run for 120000 iterations in two cases: initially
assuming no modelization error (dT=0,CT = 0), and subsequently we account for the
modelization error making use of the estimated Gaussian model of modelization error
(dT = dTapp,CT = CTapp). The a priori model is the same in both cases.

Figure 13a shows a sample of the a priori probability density in form of 5 different
realizations of the a priori distribution. It is apparent that the a priori assumption is that
some high velocity channel like structures traverse the model parameter space from left to
right, with layers are dipping both up and down from left to right. In addition, some of the
channel structures are connected. A corresponding sample from the posterior probability
density, in case of disregarding modelization error is shown in Figure 13b, and in case of
accounting for the modelization error in Figure 13c.

Disregarding modelization error, Figure 13b, reveals that most realizations within the
posterior sample show the same type of features at the same locations. There is relatively
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Figure 12: Estimated Gaussian model of modelization error. left) dTapp right) CTapp

little variability inbetween the realizations. The posterior sample shows considerably more
variability between posterior realizations when accounting for the modelization error, Figure
13c. At a first glance it appears as if the posterior sample obtained by disregarding the
modelization error provides better resolved features of the model parameter space, than
compared to accounting for the modelization error. This is further highlighted in Figure 14,
which shows the a posteriori probability of locating a channel for each model parameter.
It is apparent that the map of posterior probability of a channel, provides a sharper image
disregarding the modelization error, Figure 14a, than when accounting for the modelization
error, Figure 14b.

However, comparing Figures 13b and 14 to the reference model, Figure 11, it is clear
that when disregarding modelization error, one locates areas with high probability of a
channel (and high probability of no channel) that are inconsistent with the reference image.
For example, at location (x,y)=(3m,4m) in Figure 14a the probability of a channel is near
zero. Yet we know from the reference image that a channel is present at the same location.

On the other hand, when the modelization error is accounted for through the use of
the estimated Gaussian model, N (dTapp,CTapp), no apparent inconsistencies between the
posterior samples and the reference model can be identified. All the features on Figure 14b
that appear to well resolved corresponds to real features in the reference image.

Disregarding modelization error can thus introduce features in the a posteriori proba-
bility density that appear well resolved, but that are in reality just an effect of mapping
the modelization error into the posteriori probability density, as apparently well resolved
features. By accounting for the modelization error, the apparent resolution of the poste-
rior sample is reduced, compared to disregarding the modelization error, but features that
appear resolved are actually consistent with the subsurface structures.

Note that the MCMC calculations spent 200 times more forward calculations (120000
in all) than the 600 used for the calibration of the modelization error covariance and bias
model. One forward computation takes around 67s using gFW , and 0.05s using gBR. The
total actual computation time for the setup considered here, using the gBR forward model,
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Figure 13: 5 independent realization from the a) prior, b) posterior disregarding modeliza-
tion error, c) posterior accounting for modelization error.

is around 13 hours (around 11 hours for sampling of the modelization error, and 2 hours
for sampling the solution to the inverse problem). The same 120000 iterations would take
around 3 months to complete if gFW was used as the forward model, indicating a compu-
tational speedup of around 166 using gBR along with a modelization error, compared to
using gFW directly. Thus, the use of fast approximative forward models, while at the same
time quantifying the associated modelization error, has the potential to allow the use of
sampling algorithms with dramatically decreased computational demands.

This second case study illustrates that quantifying the modelization error using a Gaus-
sian model enable sampling of the a posteriori probability density for a non-linear non-
Gaussian inverse problem using an approximative, and fast, forward model in a manner
consistent with errors introduced by using the approximate forward model. It also demon-
strated that if the modelization error is not accounted for, it may introduce features into the
posterior probability density that appear well resolved, but are in fact a result of mapping
modelization errors into the posterior probability density.
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Figure 14: A posteriori probability of a channel disregarding modelization error (a) and
accounting for modelization error (b). Black color indicate a probability of 1, and white
color indicate a probability of 0.
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DISCUSSION

Data errors and modelization errors

Various sources of data errors exist in tomographic travel time data, due to incorrect sta-
tion geometry, zero time calibration, geometric spreading, transmitter radiation pattern,
transmitter amplitude, high angle raypaths, and cavities and small-scale irregularities near
the borehole walls (Peterson, 2001; Cordua et al., 2008; 2009). Peterson (2001) argue that
such errors in data should be accounted for by pre-processing data in order to remove the
data errors prior to inversion. The approach presented here is fundamentally different. We
suggest to use the data as they are recorded, and then account for the data errors in form
of a probabilistic model of modelization error.

Cordua et al. (2008; 2009) used a probabilistic approach to account for modelization
errors as Gaussian static like data errors, related unknown cavities and small-scale clay-
enriched zones close to the borehole. They estimate an empirical data covariance model, i.e.
a Gaussian statistical model, to quantify such data errors. They show that accounting for
such modelization errors remove artefacts from inversion results that stems from subsurface
anomalies close to the boreholes. Cordua et al. (2009) calculate the travel time effect of
cavities in the borehole walls and small-scale velocity anomalies near the antennae positions
as a result of an inadequate forward model that is unable to simulate/model these effects
(i.e. modelization errors). They show that these inadequateness lead to correlated data
errors that can be accounted for in the inversion through the data covariance matrix.

In this study we propose a general approach to estimate Gaussian modelization error. We
have applied the methodology to account for imperfect forward models, but the the method
can be generalized for any modelization error for which the cause of the modelization error
can be described by a probability distribution, from which realizations can be generated. For
example the method can be used to estimate modelization errors stemming from borehole
cavities such as investigated by Cordua et al. (2008; 2009). The requirements is simply
that one must be able to describe borehole cavities in a statistical model, and one needs
to be able to generate realizations from such a statistical model such that the associated
data errors can be simulated (by comparing the forward results of models with and without
borehole cavities).

In a similar manner uncertainties about the geometry of the sources and receivers can
also be considered and quantified as a modelization error, if a statistical model describing
such uncertainty can be formulated.

The Gaussian assumption of the modelization error

We specifically make use of a Gaussian probability density function to describe modelization
errors. This is convenient as it allows accounting for the modelization error through addition
of the covariance models describing measurement uncertainty and modelization error. If
another type of parametric probability distribution, as for example a Poisson distribution,
better describes the simulated modelization errors Dθ, such a model should be used instead.
The evaluation of the likelihood, equation 6, then becomes more complex.
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Applications

The main application of the method we have proposed is that it allows the solution of an
inverse problem, using an imperfect forward model, without introducing unwanted artifacts
in the solution to the inverse problem, as demonstrated in both case A and B.

If the prior model is Gaussian, and the noise model Gaussian, then one can in principle
solve such a non-linear Gaussian inversion problem, using simple linear least squares inver-
sion. One simply needs to use an approximative linear forward model, and compute the
corresponding Gaussian model of modelization error. This was shown in case A.

Monte Carlo sampling methods can be computational very expensive, see e.g. Cordua et
al. (2012). Therefore one may want to make use of approximative forward models. Without
accounting for the associate modelization errors, artifacts may be introduced into computed
posterior realizations, and the sampling problem may become hard. The method presented
here allow accounting for, at least to some some degree, the modelization error caused by
using an approximative forward model, as demonstrated in case B.

Another possible application, not demonstrated here, is to make use of an approximative
fast forward model to compute an approximation of the true likelihood function. It has been
known for many years that sampling of a probability distribution can be made more efficient
if we have an easy-to-sample approximation to the distribution we wish to sample. This was
exemplified by Mosegaard and Hansen (2007) who demonstrate the computational efficiency
obtained using approximations with a rejection sampler. By quantifying the modelization
error as proposed in this paper, any simple forward model may in this way act as an
approximation to the full forward problem, and allow for a potential much faster sampling
algorithm. It is important to note that using this approach no reduction in resolution of the
a posteriori probability density will appear. The a posteriori probability density (related to
the hard inverse problem) will be sampled, as well as if using only the ’true’ forward model,
but due to the use of approximations the computational efficiency will be increased.

CONCLUSIONS

We have proposed a general way to simulate a sample of the modelization error due to the use
of an imperfect forward model and/or model description. It can be applied in cases where
a statistical model that describes the cause of the modelization error can be quantified. If a
Gaussian model can describe the variability of the sample of the modelization error, such a
Gaussian model can be straight forwardly inferred from the sample of the modelization error.
This will allow accounting for the modelization error by simple addition of the covariance
model describing data uncertainty and modelization error.

We have applied the method to inversion of cross hole travel time data, using approxi-
mative forward models. First we demonstrated using an example form crosshole georadar,
that the modelization error due to the use of approximative forward models can be more
than an order of a magnitude larger than the measurement error. We demonstrated the use
of approximative forward models to solve a non-linear inverse problem, with a Gaussian a
priori model, using classical least squares inversion. We also demonstrated how a non-linear
inverse problem, with a non-Gausian a priori model, could be efficiently solved using the
extended Metropolis sampler, and an approximative, and fast, forward model. In both cases
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we found that disregarding the modelization error led to unwanted artifacts in the gener-
ated realizations from the a posteriori probability. If not accounted for, the modelization
error will simply be mapped into the a posteriori probability density as unwanted features,
that may appear well resolved, but are simply an effect of fitting noise. On the other hand,
when accounting for the modelization error, no apparent unwanted features were noticed
in the realizations of the a posteriori probability density. In fact, the features that ap-
peared resolved when accounting for the modelization error, was in fact consistent with the
features of the known reference model. We also demonstrated that simply increasing the
uncorrelated measurement uncertainty in an attempt to account for the modelization error,
leads to decreased resolution, while at the same time artifacts appear in realizations of the
posteriori probability density.
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Abstract 

We present a Monte Carlo based strategy for non-linear inversion of seismic amplitude 
versus offset data. The problem is formulated in a Bayesian framework such that the 
solution to inverse problem is an a posteriori probability density. A priori information about 
the problem is defined as a Gaussian probability density. The problem is conditioned by 
observations of reflected P-waveforms. A nonlinear relation between the model and data 
based on ray tracing and Zoeppritz equations is considered. As a consequence of these 
nonlinearities, no closed form expression of the a posteriori probability density can be 
formulated. Therefore, we apply the Metropolis algorithm in order to obtain an exhaustive 
characterisation of the a posteriori probability density. 

In geophysical inverse problems the model is often discretized into a huge number of 
model parameters, which results in a high dimensional a posteriori probability density to 
be sampled. Traditional applications of the Metropolis Algorithm involves that a single 
model parameter is perturbed according to the a priori information. Each perturbation 
requests an evaluation of the Metropolis rule, which includes an evaluation of the (often) 
computationally expensive forward relation. Geophysical model parameters, like 
subsurface elastic parameters, are often defined in Euclidean space. Therefore, we 
suggest using geostatistical algorithms, which are designed to handle spatial distributed 
data set, for defining a priori information about the inverse problems. We demonstrate 
how the geostatistical Fast Fourier Transform Moving Average algorithm provides a 
means of multi-parameter perturbations of the a priori information. In this way an efficient 
sampling using the Metropolis algorithm is obtained. The suggested strategy is tested on 
a synthetic amplitude versus offset data set. 

Keywords: Nonlinear inversion, Metropolis Algorithm, Geostatistics, A priori information, 
Amplitude Versus Offset 
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1. INTRODUCTION 
Inversion of seismic amplitude versus offset (AVO) data provides information about the 
subsurface elastic parameters. Reflection seismic prestack recordings contain information 
about the lithology, which is crucial for the inquiry of hydrocarbon reservoirs that are related to 
lithological heterogeneities rather than geological structures. Reliable estimates of the elastic 
parameters are important in order to obtain trustworthy information about the lithology.  
In this study we use a Bayesian formulation of the solution to the inverse problem. In this way 
not only a single estimate but multiple realizations are used to characterize the solution of the 
inverse problem. This, in turn, provides a means of resolution analysis of the solution 
(Mosegaard, 1998). 

Works of e.g. Buland and Omre (2003) and Kjønsberg et al. (2010) suggest using a Bayesian 
approach for AVO inversion in order to obtain samples of the a posteriori probability density. In 
their approaches a weak contract approximation of Zoeppritz equation is used as the forward 
relation of the problem, which may lead to approximations of the solution in case of high 
contrast lithological variations.  

In this study the forward relation (that relates the elastic parameters to the seismogram) is 
calculated using ray-tracing and Zoeppritz equation for the P- to P-wave reflectivity 
coefficients. Reflectivity models obtained in this way are subsequently convolved with the 
source wavelet in order to obtain the resulting seismogram. Using this forward relation, no 
approximate pre-inversion angle-dependent data sorting is needed and, instead, common 
midpoint data can be used directly. Moreover, this fully nonlinear formulation of the problem 
allows for inversion of the parameters at their actual depth coordinates rather than positions 
given as two way travel times.  

A Monte Carlo based inversion strategy for inversion of AVO data is suggested. This approach 
combines the Metropolis algorithm with the Fast Fourier Transform Moving Average (FFT-MA) 
algorithm (Le Ravalec, 2000) and the Gradual Deformation Method (GDM) (Hu, 2000). We 
suggest using geostatistical algorithms in order to describe and sample a priori information of 
geophysical inverse problems since these algorithms are designed to model spatial distributed 
data (Hansen et al., 2008). In this paper we chose to use the FFT-MA algorithm because this 
algorithm is very efficient at generating Gaussian random fields, even for very large scales. A 
combination of the FFT-MA algorithm with the GDM algorithm seems to provide a flexible tool 
for controlling the perturbation step sizes when applied as a priori sampler in conjunction with 
the Metropolis algorithm (Mosegaard and Tarantola, 1995).  

The suggested algorithm is used to sample the a posteriori probability of a 1D elastic model 
conditioned by synthetic AVO data.  

2. METHODOLOGY 
The subsurface is discretized into an N layer model. Each layer is represented by a P-
wave velocity ( pv ), an S-wave velocity ( sv ), and a mass density ( ). Thus, the 
subsurface can be represented by 3xN model parameters, m  (i.e. the model). Data are 
given by a CMP gather s  of recorded P-wave seismograms. The forward problem that 
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relates a model with the CMP gather can be represented by the following three equations 
(Sheriff and Geldart, 1982; Yilmaz, 1987): 

( , ) ( )raytracing pz t g zv ,         (1) 

( ) ( ( )), ( ), ( ), ( )pp zoeppritz p p sz g z z z zr v v v ,     (2) 

( ) ( )ppt ts Wr ,          (3) 

where eq. (1) is solved through a ray-tracing algorithm in the P-wave velocity-depth model 
in order to determine the two way travel times t and reflection angles  at the N-1 
interfaces in the N layered model. The associated P- to P-wave reflection coefficients ppr
at the individual interfaces are obtained through Zoeppritz equations (eq. (2)). The final 
CMP gather is calculated using the convolution model which relates the source wavelet, 
W , and the reflectivity model, ( )pp tr , with the seismogram, ( )ts . Notice that the 
reflectivity model can be transformed from a function of depth into a function of time since 
the ray-tracing provides the two way travel times to the individual layers. In practice this 
step involves an interpolation to an equidistant temporal sampling interval as the travel 
times and depths are nonlinearly related through eq. (1). Eq. (2) is also a nonlinear 
relation whereas eq. (3) is linear. Hence, the resulting problem of inferring the elastic 
parameters as a function of depth is a nonlinear inverse problem.

In a Bayesian formulation the solution to the inverse problem is given as an a posteriori 
probability density of the model which can be formulated as (e.g. Tarantola, 2005): 

( ) ( ) ( , )M Mk Lm m d m ,        (4) 

where k  is a normalization constant, ( )M m is the a priori probability density, and 
( , )L d m  is the likelihood function. ( )M m describes the probability that the model 

satisfies the a priori information. ( , )L d m describes how well the modelled data explains 
the observed data given a data uncertainty. In this study both the a priori probability 
density and the likelihood function are characterized as Gaussian probability densities: 

0( ) ~ ( , )M mN Cm m          (5) 
( , ) ~ ( , )obs dL N Cd m d          (6) 

The a posteriori probability density is a non-Gaussian distribution because the forward 
relation of the AVO responses is nonlinearly related to the elastic parameters of the 
subsurface. As a consequence no closed form expression can be obtained for the a 
posteriori probability density. Therefore, the solution to the inverse problem has to be 
characterized through sampling the a posteriori probability density. One way of obtaining 
samples from a high dimensional probability density is by using the Metropolis algorithm. 
The minimum requirement of the algorithm is; 1) a “black box” algorithm that is able to 
produce samples of the a priori probability density and, 2) a “black box” algorithm that is 
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able to evaluate the likelihood function for a given model. The flowchart of the Metropolis 
algorithm is a follows (Mosegaard and Tarantola, 1995):  
1) An a priori sampler proposes a sample, proposem , from the a priori probability density, 

which is a perturbation of a previously accepted model, acceptm .
2) The proposed sample is accepted with the probability (known as the Metropolis rule):  

( )
min 1,

( )
propose

accept
accept

L
P

L
m
m

       (7) 

3) If the proposed model is accepted, proposem becomes acceptm . Otherwise the proposem  is 

rejected and acceptm  remains.  
4) The procedure is continued until a desirable number of models have been accepted. All 
models accepted by the Metropolis algorithm (counted with possible repetitions) are 
samples of the a posteriori probability density.  

The Fast Fourier Moving Average (FFT-MA) generator is an efficient way to obtain 
samples from a Gaussian probability density (Le Ravalec, 2000). In this study the FFT-MA 
algorithm will serve as the “black box” algorithm that provides samples of a Gaussian a 
priori probability density. The Moving Average strategy uses, unlike a Cholesky 
decomposition approach, a covariance function instead of a covariance matrix. This 
approach is considerably superior since realizations of a very large field can be obtained 
in very short time. The covariance function can be written as a convolution product of a 
function g and its transpose (e.g. Journel and Huijbregts, 1978): 

*c g g            (8) 

If g can be obtained, a Gaussian random field with mean m and covariance c is obtained 
as (e.g. Journel and Huijbregts, 1978): 

*y m g z ,          (9) 

where z is a field of Gaussian white noise. The Gaussian random field is in practice 
obtained using a Fast Fourier Transform (FFT) algorithm to transform g into the Fourier 
domain.  

In order to obtain an efficient Metropolis algorithm it is necessary to be able to control the 
perturbation steps of the a priori probability density. The Gradual Deformation Method 
(Hu, 2000) is adequate for controlling the degree of perturbation from one Gaussian 
realization to another. Consider two independent Gaussian fields 1z  and 2z . The GDM 
algorithm can be used to obtain a new Gaussian field, z , that is a linear combination 
between two independent Gaussian fields (Hu, 2000):  

1 2cos( ) sin( )z z p z p ,        (10) 
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where the parameter p  takes on values between 0 and ½. Since the FFT-MA algorithm 
relies on Gaussian white noise it does not matter whether the entire field or only a 
subarea of z is perturbed. Eq. (10) can be rephrased as: 

cos( ) sin( )propose current newz z p z p ,       (11)

where newz is either a completely new realization of Gaussian white noise or a new 
realization of a subarea of the current field currentz .

Eq. (11) can then be used to generate perturbations of a Gaussian a priori probability 
density using the following steps (Le Ravalec, 2000): 
1) An initial unconditional sample of the a priori probability density is calculated using eq. 
(9) (i.e. FFT-MA algorithm) based on an initial distribution of normal derivatives, currentz .
2) A “subarea” of currentz  is randomly chosen and a new field of Gaussian white noise is 
substituted with the values within the subarea resulting in a new distribution of Gaussian 
white noise denoted newz .
3) A new field of Gaussian white noise, proposez , based on currentz   and newz   is calculated 
using eq. (10) (i.e. the GDM algorithm).  
4) A new Gaussian field proposey   with covariance c and mean m based on proposez is 
calculated using eq. (9).  
5) By setting currentz equal to proposez  and repeating step 2 to 4, a desirable number 
samples from a Gaussian a prior probability density can be obtained.  

The size of the subarea in step (2) and the value of the p-parameter govern the 
exploratory nature of the Metropolis algorithm. For relatively large subareas the 
perturbation step becomes relatively large. Likewise, relatively large p-values results in 
large perturbation steps. The size of the perturbation area and the p-value have to chosen 
subjectively. For a subarea extension larger than one model parameter we suggest using 
a p-parameter value of ½ and regulate the size of the subarea in order to control the 
perturbation step. In case the subarea constitutes only a single model parameter the 
adjustment of the p-value should be used as the regulating parameter.  

One strategy for choosing these parameters is to adoptively adjust the size of the subarea 
or the p-value during the sampling such that a certain acceptance probability of the 
Metropolis rule is maintained. Gelman et al. (1996) found that the acceptance rate should 
be around 23% for high-dimensional distributions. For large acceptance rates the 
algorithm is exploring the a posteriori probability density too slowly. On the other hand, for 
smaller acceptance rates too many computationally expensive trials are performed. A 
constant acceptance rate results in a larger perturbation step in the initial (burn-in) period 
of the sampling than in the subsequent sampling period. In this way the algorithm 
becomes efficient at detecting areas in the model space of significant probability in the 
burn-in phase and then adopts to smaller exploration steps. This approach, however, 
implicitly assumes a constant global smoothness of the a posteriori probability density, 
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which may result in unexplored areas of the distribution. On the other hand, however, this 
approach is expected to be appropriate for moderately nonlinear (i.e. nonGaussian) a 
posteriori probability densities.   

Finally, the likelihood function is defined as: 

2

1

1exp /
2

N
i i

obs
i

L s k s s ,      (12) 

Where is represents the amplitude of the simulated seismic waveforms obtained using 
eqs. (1) – (3). i

obss are the sample points of the observed AVO data.  is the standard 
deviation of the expected data uncertainty. 
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Fig. 1: The synthetic data are plotted as the blue curve. The red curve represents the sum of the synthetic 
data and the noise component. In the topmost figure a zero mean Gaussian noise component with a 
standard deviation of 0.1 has been added to the data. In the lower most figure a similar noise component 
with a standard deviation of 0.01 has been added to data. The resulting signal-to-noise (S/N) ratios of 
topmost and lowermost signals are 0.24 and 24, respectively. 

3. RESULTS AND DISCUSSION 
A synthetic reference model is calculated using eq. (9) (i.e. the FFT-MA algorithm). The 
reference model is a 1000 m deep 50 layer 1D model. The values of the elastic 
parameters of each layer are seen as the red curve in Figs. 2 and 4. The signals are 
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recorded with a receiver spacing of 100 m and a maximum offset of 2000 m. Ray-tracing 
and the associated reflection angels are calculated using the Matlab function traceray_pp
from the CREWES software package (Margrave, 2003). P- to P-wave reflection 
coefficients can be calculated using Zoeppritz equations. In a field example the observed 
data are recorded P-waveforms. Thus, a source pulse has to be convolved with the 
reflection coefficients in order to obtain the resulting seismogram. In the present synthetic 
example we will not perform the convolution and the synthetic observed data are given as 
reflection coefficients. Zero mean Gaussian white noise with a standard deviation of 0.1 
and 0.01, respectively, is added to the reflection coefficients (see Fig. 1). A correct 
assumption about the noise is accounted for in Likelihood function. The results of using 
the suggested sampling strategy are seen in Figs. 2 – 5. Blue curves show statistically 
independent realizations of the a posteriori probability density. Green curves are the mean 
of the (blue) realizations. The dotted black curves in Figs. 2 and 4 show the 0.95 
confidence interval of the a priori probability density. Hence, deviations from the a priori 
distribution can be ascribed to information provided by data. 
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Fig. 2: Results of the inversion using a zero mean normal distributed noise component with a standard 
deviation of 10-1 added to the reflectivity coefficients. The red curve is the “true” reference model, the blue 
curves are realizations of the a posteriori probability distribution, and the green curve is the mean of the 
(blue) realizations. The dotted black lines show the 0.95 interval of the a priori probability distribution.
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The results show that even though a strong noise component has been added to the data 
the a posteriori distribution still provides considerable more information about the model 
parameters than the prior information. In particular, information about the pv is resolved. 
Some information about the density distribution  is obtained, whereas least information 
of the sv  structure is obtained (see Fig. 2). Fig. 3 shows the result of combining the a 
posteriori realizations of pv , sv , and  into pv / sv  ratio, acoustic impedance, and shear 

impedance. This result reveals that the high spatial frequencies of the pv / sv  ratio are 
recovered and that the entire spatial frequency spectrum of the acoustic impedance has 
been resolved. However, a combination of the two least resolved parameters ( sv  and  )
into shear impedance only provides negligible information.  
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Fig. 3: Results of the inversion using a zero mean normal distributed noise component with a standard 
deviation of 10-1 added to the reflectivity coefficients. The red curve is the “true” reference model, the blue 
curves are realizations of the a posteriori probability distribution, and the green curve is the mean of the 
(blue) realizations. The dotted black lines show the 0.95 interval of the a priori probability distribution.
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The standard deviation of the noise component is reduced to 0.01. The results of the 
inversion are depicted in Figs. 4 and 5. The results demonstrate that data are now able to 
resolve information about both the P- and S-wave velocity as well as the density. 
However, data seems to provide more information about the high spatial frequencies than 
compared to the low frequencies. Again it is seen that realizations of the pv / sv  ratio, 
acoustic impedance, and shear impedance yields an improved resolution as compared to 
the elastic parameters themselves. 

Geostatistical algorithms are often designed for both 2D or 3D application, which is also the 
case for the FFT-MA algorithm. Hence, a 2D or 3D extension of the suggested inversion 
strategy can easily be obtained. The computational expensive part of such an extension would 
be related to a 3D ray tracing.    
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Fig. 4: Results of the inversion using a zero mean normal distributed noise component with a standard 
deviation of 10-2 added to the reflectivity coefficients. The red curve is the “true” reference model, the blue 
curves are realizations of the a posteriori probability distribution, and the green curve is the mean of the 
(blue) realizations. The dotted black lines show the 0.95 interval of the a priori probability distribution. 
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Fig. 5: Results of the inversion using a zero mean normal distributed noise component with a standard 
deviation of 10-2 added to the reflectivity coefficients. The red curve is the “true” reference model, the blue 
curves are realizations of the a posteriori probability distribution, and the green curve is the mean of the 
(blue) realizations. The dotted black lines show the 0.95 interval of the a priori probability distribution. 

4. CONCLUSION 
A nonlinear seismic AVO inverse problem has been formulated using a Bayesian 
framework. Hence, the solution to the inverse problems is an a posteriori probability 
density. A strategy combining the FFT-MA algorithm and the Metropolis algorithm has 
been suggested for sampling of the a posteriori probability density. The strategy has been 
tested on synthetic data. Even for a S/N ratio of as low as 0.24 the data provide 
reasonable information about elastic parameters. In particular, a good resolution of the 
acoustic impedance was obtained. Increasing the S/N ratio to 24 resulted in a 
considerable improvement in the resolution of all the elastic parameters. Regardless of 
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the S/N ratio it was observed that the AVO data provided more information about the 
combined elastic parameters than for the elastic parameters themselves. In particular the 
results provided a reliable resolution of the acoustic impedance.  
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Introduction 

Inversion of prestack seismic data in a probabilistic framework is a challenging inversion problem 
that has been targeted in the last decades with different approaches. Buland and Omre (1993) solve a 
prestack inversion problem in a Bayesian context making use of normal moveout corrected prestack 
seismic data, and a small contrast approximation to Zoeppritz equations, that allow a linear 
formulation of a convolution problem to describe the relation between elastic parameters and seismic 
data. Using least squares inversion a Gaussian a posteriori model is computed. This a posteriori model 
describes the spatial variability around the maximum a posteriori model. Gouveia and Scales (1998) 
suggest to solve the prestack inversion problem, also in a Bayesian context, using a non-linear 
optimization method to find the maximum a posteriori model. The uncertainty of the model is then 
approximated by a local Gaussian a posteriori probability distribution centered at the maximum a 
posteriori model. Full waveform inversion using the adjoint approach proposed by Tarantola 
(1982,1984), is one example of an inversion method that allow inference of elastic properties of the 
subsurface from prestack seismic data. This approach has proven very successful, especially in the 
case where transmitted waves are recorded. The outcome of this inversion is the maximum a 
posteriori model that minimized the data misfit. The method does not allow quantification of 
uncertainty of the solution, nor does the method easily take data uncertainty or existing prior 
information into account. 

The methods described above are local methods, in that one model is found that maximizes a 
posteriori probability. The uncertainty, if given, is then quantified by a Gaussian probability 
distribution around the maximum a posteriori model. Thus, if other models exist in the space of 
acceptable solutions, not on the vicinity of the model with maximum a posteriori probability, then 
such models will not be part of the posterior uncertainty analysis, and hence this should lead to 
underestimation of the a posteriori uncertainty.  

Here we propose a prestack inversion algorithm that will locate different models that are consistent 
with data, a noise model and prior information that does not depend on a smooth known background 
model of the elastic parameters. We will not describe the full posterior probability distribution, but try 
to locate models centred at point of local maximum a posteriori likelihood, consistent with data, noise 
and prior information. The development of the algorithm stems from practical observations dealing 
with manual matching of reservoir properties to seismic reflection data: In order to quantify the 
commercial viability of a possible reservoir identified from a reflection seismic data set, one wish to 
identify a number of models whose seismic response match the observed seismic data, within their 
uncertainties. The method we present is developed to alleviate this process. 

Multiple Scenario Sampling 

Tarantola and Valette (1982) formulated a probabilistic approach to solving inverse problems where 
all available states of information is described by probability density functions (pdfs). The solution to 
the inverse problem is the probability distribution obtained by combing all the known states of 
information. In a typical inverse problem the states of information can be described by the a priori and 
the likelihood pdfs. The ’a priori’ pdf, M(m), describes the data-independent prior knowledge of the 
model parameters. The likelihood pdf, L(m), is a probabilistic measure of how well the data 
associated to a given model, match a given model of data uncertainty. The solution to such an inverse 
problem is then the a posteriori pdf, M(m), which is proportional to the product of the prior and the 
likelihood:  

( ) ( ) ( )M Mk Lm m m

The Metropolis algorithm is a Markov Chain Monte Carlo based algorithm that can be used to sample 
the a posteriori pdf of non-linear inverse problem in presence of complex a priori information, 
Mosegaard and Tarantola (1995). This algorithm is at the core of our proposed inversion algorithm 
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To invert prestack seismic data we propose a sampling strategy where we initially infer the low 
frequency Vp variations from picked reflection travel times. Then complexity of the considered data 
is gradually increased, in a workflow as the following:  

1. Invert reflection travel time data to obtain smooth Vp velocity trend model. This is done by 
generating a sample of the a posteriori pdf using the Metropolis algorithm. This produces N 
independent realizations of the a posteriori pdf for the travel time inversion problem. 
2. Invert zero offset data to infer Vp and density. For each of the N low frequent Vp models, a 
separate Metropolis algorithm is run. This will sample solutions around a local maximum a posteriori 
model. 
3. Invert offset dependent prestack data to infer Vp, Vs and density. Each of the N Metropolis 
chains is continued allowing variability also of Vs 

Synthetic inversion of Pre stack seismic data from the Siri field in the North Sea 

Figure 1a show a well log from the North Sea, with a possible reservoir located between two way 
travel time depths of 1980 ms and 2000 ms (indicated by grey lines in Figure 1a). We will use this as 
a reference model, from which we compute a synthetic shotgather with offset from 0 m to 3000 m. To 
compute the prestack shotgather we use a non-linear convolution model, based on ray tracing and the 
full Zoeppritz equations. We use a Ricker wavelet with maximum peak frequency of 25Hz. For the 
inference of the low frequent Vp velocity field we have picked the arrival times of 10 coherent 
reflectors. From these we have estimated a number of RMS velocities associated to a certain time 
depth.  

Initially we consider only travel time data, and assume a priori a relatively long wavelength spatial 
correlation, in form of a Gaussian covariance model, with range 400 meter and standard deviation of 
31 m/s.   A Metropolis algorithm is run for 20000 iterations, producing an a posteriori sample of 100 
realizations, as shown in Figure 1b. These clearly capture the low frequency variation of the true Vp 
velocity. 

An independent Metropolis algorithm is started in each of 20 randomly selected smooth Vp velocity 
model. Initially only the zero offset waveform data is considered as data. 

A priori models for the spatial variation of Vp and density are inferred from a log located near the 
reference log, in form of Gaussian based statistics. The prior model for Vp is described by a Spherical 
covariance model with range 40m and a standard deviation of 200 m/s. The prior model for density is 
described by a Spherical covariance model with range 40m and a standard deviation of 63 kg/m3. 
Data noise is defined as uncorrelated Gaussian noise with a standard deviation of 0.03, reflecting a 
signal to noise ratio of about 30. 

In addition a correlation coefficient between Vp and density was found at 0.67. Initially Vp and 
density is allowed to vary. (Vs is kept constant). After 6000 iterations all 20 running chains found a 
model that leads to a datafit within the considered data uncertainty. Finally, the full offset dependent 
seismic shotgather data set is considered as data, and both Vp, Vs and density are inferred. The prior 
model for the Vs is chosen as a Spherical covariance model with a range of 40 m and a standard 
deviation of 63 m/s. A correlation coefficient of 0.9 is used to describe the correlation between Vp 
and Vs. Using the final state of the 20 models from the previous run of the Metropolis algorithm 
another 20 algorithms is started and run for 6000 realizations.  
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Figure 1 a,left), Reference Vp ,Vs and density log. b,right), Realizations of the a posteriori pdf, for 
reflection travel time inversion (black lines) on top of the reference Vp model (blue).

Figure 2 shows the final 20 realizations in a close up near the reservoir. It can be seen that all 20 
models correctly identify the decrease in Vp velocity and Density within the reservoir zone. The Vs 
velocity however is rather poorly resolved. Figure 3a compare the observed zero offset trace (red) to 
the zero offset traces computed from 20 accepted models. Figure 3b compare a shotgather computed 
from one of the accepted models to the reference data set. 

Conclusions 

The main disadvantage for using a sampling algorithm as proposed is that a large number of forward 
calculations must be evaluated. This can become computationally unfeasible. However, the 
computation power keeps increasing, and some of the forward calculations considered here show 
promise of being very efficient using GPU enabled algorithms. 
The are several benefits of using an algorithm such as the proposed. First, the method allows 
consideration of arbitrarily complex data noise, and very complex a priori information. Second, as the 
method seeks globally for local maximas it allows inference of a number of classes of models that fit 
the data and that honor the prior model. Third, as the the inversion relies on a raw (non-nmo corrected 
data set) it is sensitive to both low frequent and high frequent Vp velocity variations. Finally, the 
Bayesian formulation of the inversion problem allows linking between elastic properties and rock 
physics properties such as permeability, porosity and water saturation. In case statistical based rock 
physics model are available, the presented method should be able to infer for example porosity 
directly from seismic pre-stack data. Presently we are focusing on incorporating rock physics models 
to the sampling method, and extending the method to 2D problem. 
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Figure 2 20 models that result in a datafit that match observed data within its uncertainty. 

Figure 3 a, left) Zero offset seismic response from 21 accepted models. The first (red) trace is the 
zero offset reference trace. b,right) Comparison of the reference shotgather data (black lines) and an 
(typical) example of the data response from one of the 20 accepted models, of Figure 2
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a b s t r a c t

From a probabilistic point-of-view, the solution to an inverse problem can be seen as a combination of

independent states of information quantified by probability density functions. Typically, these states of

information are provided by a set of observed data and some a priori information on the solution.

The combined states of information (i.e. the solution to the inverse problem) is a probability density function

typically referred to as the a posteriori probability density function. We present a generic toolbox for Matlab

and Gnu Octave called SIPPI that implements a number of methods for solving such probabilistically

formulated inverse problems by sampling the a posteriori probability density function. In order to describe

the a priori probability density function, we consider both simple Gaussian models and more complex (and

realistic) a priori models based on higher order statistics. These a priori models can be used with both linear

and non-linear inverse problems. For linear inverse Gaussian problems we make use of least-squares and

kriging-based methods to describe the a posteriori probability density function directly. For general non-

linear (i.e. non-Gaussian) inverse problems, we make use of the extended Metropolis algorithm to sample the

a posteriori probability density function. Together with the extended Metropolis algorithm, we use sequential

Gibbs sampling that allow computationally efficient sampling of complex a priori models. The toolbox can be

applied to any inverse problem as long as a way of solving the forward problem is provided. Here we

demonstrate the methods and algorithms available in SIPPI. An application of SIPPI, to a tomographic cross

borehole inverse problems, is presented in a second part of this paper.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Inverse problems are abundant in almost any type of scientific
research field. An inverse problem occurs when a set of unknown
parameters, that describe a physical system, pixel values of an image
or some mathematical expression, have to be inferred based on
indirect observations of these parameters. Examples of inverse
problems are image deblurring, tomographic reconstruction, solu-
tions to certain differential equations, or reconstructing the earth’s
interior based on surface observations. There are several ways to
solve an inverse problem. In a probabilistic formulation the inverse
problem can be seen as a way of combining information: Given
knowledge about the system (differential equation, physical law, or
blurring mechanisms), and a set of observations (signal intensities,
pixel values, gravity field), and some prior expectations about the

parameters, the goal is to quantify how probable a number of
possible scenarios are of explaining the observations and the prior
information. A successful probabilistic inversion will, in principle,
locate all solutions to the problem and assign a probability to each
scenario given the information at hand.

In this paper we present a Matlab1 toolbox (SIPPI), compatible
with Gnu Octave,2 that can be used to solve inverse problems in a
probabilistic formulation. In this formulation the solution to the
inverse problem is a probability density function (pdf) referred to
as the a posteriori pdf that describe all information available
about a system. While the toolbox is generally applicable to
inverse problems, it has been designed specifically for geophysical
inverse problems, where the model parameters typically describe
a 1D–3D space, such as for example the subsurface of the earth.

Initially we lay out the theory of probabilistically formulated
inverse problems. Then we show how so-called a priori information
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about the model parameters, and uncertainty of data observations
can be specified. Finally we show how realizations of the a
posteriori pdf can be generated using least squares based methods,
and sampling techniques such as rejection sampling and Metro-
polis sampling.

In the second part of this paper we demonstrate the applica-
tion of SIPPI to a cross borehole traveltime tomographic inverse
problem (Hansen et al., this issue).

2. Probabilistic inverse problem theory

Consider some data, d, which are indirect measurements of
some model parameters, m, describing a system, such as for
example the subsurface of the Earth. Let d and m be related
through the function g:

d¼ gðmÞ: ð1Þ

The above equation, referred to as the forward problem, can be
solved with various degrees of accuracy for a number of physical
problems.

Inversion of geophysical data amounts to infer information
about the model parameters, m, given some data, d, the forward
relation between model parameters and data, g, and a priori
existing knowledge about the model parameters. Such an inverse
problem can be solved in a variety of ways. In this paper we will
deal with the general probabilistic formulation of inverse pro-
blems. Note that many types of deterministic inversion methods
can be formulated as special cases of the probabilistic inverse
theory as we consider here.

Tarantola and Valette (1982b) formulate a probabilistic approach
for solving inverse problems where all available states of informa-
tion are described by pdfs. The solution to the inverse problem is the
pdf that combines known states of information. In a typical inverse
problem the states of information can be described by the a priori

pdf and the likelihood function. The a priori pdf, rMðmÞ, describes
prior knowledge about the model parameters. The likelihood func-
tion, LðmÞ, is a probabilistic measure of how well a given model m
explains the observed data.

The general solution to such a probabilistically formulated
inverse problem is the a posteriori pdf, which is proportional to
the product of the a priori pdf and the likelihood function:

sMðmÞ ¼ k rMðmÞLðmÞ ð2Þ

where k is a normalization constant and the likelihood is given by

LðmÞ ¼
Z
D
dd

rDðgðmÞÞyðd9mÞ
mDðdÞ

ð3Þ

rDðdÞ describes measurement uncertainties, typically related to
uncertainties in the instrument that records the data. yðd9mÞ
describes the modelization error, i.e. the error caused by using an
imperfect forward model g or an imperfect parameterization.
mDðdÞ describes the homogeneous state of information that
ensures that the parameterization is invariant to changes in the
coordinate system. For the reminder of the text we shall assume
that mDðdÞ can be approximated by a constant. For more details on
the homogeneous pdf, see e.g. Mosegaard and Tarantola (2002).

The a posteriori pdf describes the distribution of models
consistent with the combined states of information given by the
a priori model and the data.

The probabilistic formulation of inverse problems allows
utilization of the movie strategy advocated by Tarantola (2005),
who suggest to visualize and compare a sample from the a priori
pdf and the a posteriori pdf, respectively, as movies. The ‘rior
movie’ will make it apparent what prior choices have been made.

The difference between the prior and the posterior movie will
emphasize the effect of using data.

2.1. The linear inverse Gaussian problem

Consider a linear forward problem, where the data d is linearly
related to the model parameters m using the linear operator G,
such that d¼Gm. Let N ða,AÞ refer to a Gaussian distribution with
mean a and covariance A. If in addition both the a priori model
N ðm0,CMÞ, the noise model N ð0,CdÞ and the modelization error
N ð0,CT Þ can be described by a Gaussian pdf, then the a posteriori
pdf (Eq. (2)) can be described analytically by a Gaussian pdf,
N ð ~m, ~CMÞ (Tarantola and Valette, 1982a):

~m ¼m0þCMG
tðGCMG0 þCDÞ�1ðd0�Gm0Þ ð4Þ

~CM ¼ CM�CMGtðGCMG0 þCDÞ�1GCM ð5Þ
Note that Gaussian measurement errors and modelization errors
combine through addition of the covariance operators, such that
the combined covariance model is given by CD ¼ CdþCT . This
allows accounting of Gaussian modelization errors directly as
given in Eqs. (4) and (5) (Tarantola, 2005).

If ~m and ~CM are available from Eqs. (4) and (5), then samples
from the a posteriori pdf can be generated using e.g. Cholesky
decomposition of the a posteriori covariance model, Eq. (5) in Le
Ravalec et al. (2000).

Sampling the a posteriori pdf of a linear inverse Gaussian
problem can also be performed using sequential Gaussian simula-
tion without the need for explicitly computing ~m and ~CM (Hansen
et al., 2006). Hansen and Mosegaard (2008) extend this approach
to work with direct sequential simulation. This allows a non-
Gaussian a priori distribution of model parameters.

An alternative approach is to use kriging through error
simulation (Journel and Huijbregts, 1978, p. 495), in a co-kriging
formulation as proposed by Gloaguen et al. (2005a, 2005b) This
approach may be faster than the methods based on sequential
simulation, but is only valid for strictly Gaussian a priori models.

The above-mentioned methods rely on the fact that in a linear
formulation, data can be seen as weighed averages of the model
parameters. While not specifically making the link to inverse
problems, such ideas has also been explored by Journel (1999)
and Gómez-Hernández et al. (2005).

2.2. The non-linear Inverse problem

The linear and Gaussian assumptions considered above are
convenient as they lead to computationally efficient algorithms.
However, in reality the inverse problem is typically non-linear
and the Gaussian assumption not valid. This may lead to severe
artifacts in the inversion if the least-squares based approaches, as
described above, are used. Instead one can use sampling techni-
ques to sample the a posteriori pdf.

Rejection sampling: Perhaps the simplest method to sample the
a posteriori pdf is the rejection sampler that can be implemented
as follows:

1. Propose a model candidate from the a priori pdf, mpro.
2. Compute LðmproÞ.
3. Accept the proposed model as a realization of the a posteriori

pdf with probability
Pacc ¼ LðmproÞ=Lmax ð6Þ

where Lmax is the maximum value the likelihood function can obtain.
Typically the value of Lmax is not known and must be set to 1.
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The only requirement for using the method is that one must be
able to generate independent realizations of the a priori pdf and
compute the corresponding likelihood. The collection of models
accepted by the rejection sampling algorithm will be a sample of
the a posteriori pdf. The main problem with the rejection sampler is
that it is computationally very inefficient for anything but very low
dimensional problems.

The extended Metropolis sampler: Mosegaard and Tarantola
(1995) propose an extended version of the Metropolis algorithm
(Metropolis et al., 1953; Hastings, 1970) that allows sampling the
a posteriori pdf of an inverse problem with, in principle, arbitrary
complex a priori information as given by Eq. (2). Using the
classical Metropolis algorithm one must be able to evaluate the
a posteriori probability sMðmÞ and, hence, typically also the a
priori probability, in order to evaluate Eq. (2).

The extended Metropolis algorithm differs from the classical
Metropolis algorithm in that one neither need to evaluate the a
posteriori probability sMðmÞ, nor the a priori probability rMðmÞ
of a given model m. If only an algorithm is present that can sample
the a priori pdf and a method exist for evaluating the likelihood,
rDðgðmÞÞ, then the extended Metropolis algorithm will sample the a
posteriori pdf.

The extended Metropolis algorithm is a Markov Chain Monte
Carlo method and can be implemented as a random walk in the
space of a priori acceptable models as follows. If initially a
realization of the a priori pdf is generated as mcur , and the
associated likelihood LðmcurÞ is evaluated using Eq. (3), then the
following algorithm will sample the a posteriori pdf:

1. In the vicinity of mcur , propose a new model candidate, mpro,
consistent with the a priori model.

2. Compute LðmproÞ.
3. Accept the proposed model with probability Pacc ¼

minð½1,LðmproÞ=LðmcurÞ�Þ.
4. If the proposed model is accepted, then the transition from

mcur to mpro is accepted, and the proposed model becomes the
current model, mcur ¼mpro. Otherwise, the random walker
stays a location mcur and mcur counts again.

There are only two requirements for running the extended
Metropolis algorithm: (1) One must be able to evaluate the
likelihood function, Eq. (3). This is most often trivial, even if it
may be computationally demanding, as it requires one to solve
the forward problem and evaluate the corresponding data fit
given the noise model. (2) One must be able to sample the a priori
pdf such that aperiodicity and irreducibility is ensured
(Mosegaard and Sambridge, 2002). In addition, it is preferable to
be able to control the exploratory nature (often referred to as the
step length) of the sampling algorithm, i.e. step 1 in the above
algorithm, which is closely linked to the computational efficiency.
See Mosegaard and Tarantola (1995) for details on the extended
Metropolis algorithm.

The sequential Gibbs sampling algorithm provides such a
general way to sample complex a priori models, with arbitrary
step length ensuring aperiodicity and irreducibility (Hansen et al.,
2012). Sequential Gibbs sampling can be used with any pdf that
can be sampled using sequential simulation, which is the case for
most of the statistical models developed in the geostatistical
community over the last decades. The resampling strategy inherent
in the sequential Gibbs sampler was initially proposed by Hansen
et al. (2008), and subsequently Irving and Singha (2010) and
Mariethoz et al. (2010) proposed similar methods. Hansen et al.
(2012) demonstrate how the method is similar to an application of
the Gibbs sampler and show that the method leads to a way of
sampling the a priori pdf where aperiodicity and irreducibility is
ensured.

3. SIPPI

SIPPI is a Matlab toolbox (SIPPI), compatible with Gnu Octave,
that can be used to solve inverse problems in the formulation
given by Eqs. (2) and (3) by allowing Sampling the solution to
Inverse Problems with complex A Priori Information.

In order to solve a probabilistic framed inverse problem as
presented previously, one needs (at least) three ingredients: (1) a
choice of an a priori model, (2) a choice of how to solve the
forward problem, and (3) a choice of a noise model that describes
the uncertainty of the observed data and the modelization error.
Once these choices have been made one can solve the inverse
problem using any of the applicable inversion methods.

SIPPI provides a generic approach to define the a priori model
and the noise model in the form of the two data structures prior
and data.

3.1. The a priori model

All information about the a priori model are defined in the
Matlab structure called prior, which can specify any number of a
priori type of models. For example an a priori choice of a 2D
Gaussian velocity field can be specified in prior{1} and a 1D
parameter describing a bias correction can be specified in
prior{2}. Once the prior has been defined, a realization of the
corresponding a priori pdf can be generated by calling

m¼ sippi_priorðpriorÞ;
m is a Matlab structure of the same size as prior. If three types of a
priori models have been defined in prior{1}, prior{2}, and

prior{3}, then the corresponding realizations will be stored in
m{1}, m{2}, and m{3}. Considering the example above, m{1} will hold
a realization of a 2D a priori model, while m{2} will hold a realization
of a 1D a priori model. For the remainder of the text the index imwill
point to a specific number of a priori model, prior{im}.

A number of different types of a priori models can be selected
using a type field to the prior data structure. The following four
types of a priori models are available as part of SIPPI:

im¼1;

prior{im}.type¼’GAUSSIAN’;

prior{im}.type¼’FFTMA’;

prior{im}.type¼’VISIM’;

prior{im}.type¼’SNESIM’;

Generalized Gaussian: prior{im}.type¼GAUSSIAN’ defines a
1D generalized Gaussian distribution

f ggðm0,s,pÞ ¼
p1�1=p

2sGð1=pÞ exp �1

p

9m�m09
p

sp

 !
ð7Þ

where p is the norm and s is the variance. f gg is symmetric around
m0, the a priori mean value. In the limit of p-1 f gg will define a
uniform distribution. The following code defines a 1D Gaussian
distribution with mean 10 and standard deviation 2:

im¼1;

prior{im}.type¼’GAUSSIAN’;

prior{im}.m0¼10;

prior{im}.std¼2;

If not set, the norm is by default set to 2. The following
code defines a 1D close to uniform distribution in the interval
[8,12]:

im¼1;

prior{im}.type¼’GAUSSIAN’;

prior{im}.m0¼10;
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prior{im}.std¼2;

prior{im}.norm¼60;

A histogram of a sample of size 100,000 of these two 1D prior
models is shown in Fig. 1.

The FFTMA, VISIM and SNESIM type priors all describe a 1D to
3D a priori model defined on a Cartesian grid, which is defined as
(for a 3D case)

im¼1;

prior{im}.prior.x¼[0:1:10]; % X array

prior{im}.prior.y¼[0:1:20]; % Y array

prior{im}.prior.z¼[0:1:30] ; % Z array

For a 1D prior only prior{im}.prior.x needs to be defined, and
for a 2D prior prior{im}.prior.x and prior{im}.prior.y
need to be defined.

Both the FFTMA and VISIM type a priori models describe a
multivariate Gaussian a priori pdf, which requires the specifica-
tion of an a priori mean and covariance model. The a priori mean
m0 can be either a scalar, indicating a constant a priori mean
model, or a matrix of the size of the a priori model, allowing
for a varying a priori mean model. The model of spatial variability
is defined by a, possibly anisotropic, covariance model (equivalent
to a semivariogram model) given by the Cm (or equivalent the Va)
field. The specification of the covariance model uses the same
notation as used in Pebesma and Wesseling (1998). For example a
multivariate Gaussian model defined by a 2D Spherical type
covariance model with sill (or variance) 1, a maximum correlation
length of 10 in the direction west to east (i.e. horizontal), and a
perpendicular range (i.e. vertical) of 2.5 (hence an anisotropy
factor of 0.25) and a mean of 10, is given by

prior{im}.m0¼10;

prior{im}.Cm¼’1 Sph(10,90,0.25)’;

FFT moving average: prior{im}.type¼’FFTMA’ defines a
spatially correlated multivariate Gaussian a priori model where
a priori realizations are generated using the FFT Moving Average
generator (FFTMA) (Le Ravalec et al., 2000). The FFTMA algorithm

is very efficient for generating unconditional realizations from a
multivariate Gaussian model. In addition it also allows separation
of the random component field and the structural parameters that
define spatial correlation. We will discuss the use of this feature
in more details later.

A 2D FFTMA type a priori model, on a 200�100 grid, can for
example be given by

im¼1;

prior{im}.type¼’FFTMA’;

prior{im}.prior.x¼[0:.1:10]; % X array

prior{im}.prior.y¼[0:.1:20]; % Y array

prior{im}.m0¼10;

prior{im}.Va¼’1 Sph(10,90,.25)’;

Fig. 2a shows a set of five realizations from this choice of a
priori model.

VISIM : prior{im}.type¼’VISIM’ defines a spatially corre-
lated multivariate Gaussian a priori model where a priori realiza-
tions are generated using the VISIM algorithm (Hansen and
Mosegaard, 2008). VISIM can run using sequential Gaussian
simulation, in which case the model parameters are assumed to
be normally distributed. It can also run using direct sequential
simulation, which allows a (non-Gaussian) target distribution to
be set that describes the a priori distribution of the model
parameters, while at the same time ensuring that the a priori
chosen mean and covariance will be honored.

An a priori model similar to the one described above for the
FFTMA type prior, but with an a priori assumption of a bimodal
distribution of model parameters can be given as

im¼1;

prior{im}.type¼’VISIM’;

prior{im}.prior.x¼[0:1:10]; % X array

prior{im}.prior.y¼[0:1:20]; % Y array

prior{im}.m0¼10;

prior{im}.Va¼’1 Sph(10,90,.25)’;

% target distribution

N¼10,000;

prob_chan¼0.5;

d1¼randn(1,ceil(N*(1-prob_chan)))*.5þ8.5;

d2¼randn(1,ceil(N*(prob_chan)))*.5þ11.5;

d_target¼[d1(:);d2(:)];

prior{im}.target¼d_target;

Fig. 3 shows a set of five realizations from this VISIM type
of a priori model (a) without a specification of a target distribu-
tion and (b) using a target distribution. Once [m,prior]¼
sippi_prior(prior) has been called once, a data structure
will be available as prior{im}.V, which allows access to all
options available for running the VISIM algorithm. See Hansen
and Mosegaard (2008) for more details on VISIM.

The FFTMA and VISIM type prior models only allow reproducing
the first two moments of the distribution describing the spatial
variability, the mean and the covariance (i.e. Gaussian variability
between sets of two data points). Maximum entropy is implicitly
assumed in higher order moments (Journel and Zhang, 2006). This is
the reason why geological structures such as for example meandering
channels cannot be reproduced by Gaussian statistics. To achieve this
one can make use of statistical models based on higher order
moments.

SNESIM : prior{im}.type¼’SNESIM’ defines an a priori
model based on a higher order statistical moments (a multiple
point statistical model) describing spatial variability as inferred
from a training image.

There are several methods that allow sampling from an a priori
model defined by multiple point statistics. Here, we use the

Fig. 1. Histogram of 100,000 unconditional realizations from a generalized

Gaussian, GAUSSIAN type prior model with norm 60 and 2.
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SNESIM algorithm, originally developed by Strebelle (2000, 2002),
and we make use of the implementation available in the SGeMS
software package (Remy et al., 2008). It works by initially
extracting a multiple point based statistical model from a training
image. Then sequential simulation is used to generate realizations
of this statistical model.

Optionally the scaling and rotation field can be specified.
prior{im}.scaling¼2 scales the axis of the training image such
that spatial structures appears twice as large. prior{im}.
rotation¼45 rotates the training image 451 clockwise.

A 2D SNESIM type prior with the training image ‘channels.ti’
(Fig. 4) rotated 301 and scaled by a factor of 0.75, with two
categories (‘0’ and ‘1’), and where the first category ‘0’ reflect a
model parameter value of 8, and the second category ‘1’ reflect a
value of 12, is given by

im¼1;

prior{im}.type¼’SNESIM’;

prior{im}.x¼[0:.1:10];

prior{im}.y¼[0:.1:20];

prior{im}.ti¼’channels.ti’;

prior{im}.index_values¼[0 1]; % optional

prior{im}.m_values¼[8 12]; % optional

prior{im}.scaling¼.75; % optional

prior{im}.rotation¼30; % optional

Fig. 5 shows a set of five realizations from this choice of a
priori model. Once [m,prior]¼sippi_prior(prior) has been
called, a data structure will be available as prior{im}.S which
allow access to all options available for running the SNESIM
algorithm as implemented in SGeMS. See Remy et al. (2008) for
more details on setting up the SNESIM algorithm.

Distribution transform: A normal score transform can be
defined for any of the Gaussian based a priori models, that allow
the transformation of the normally distributed model parameters
to any desired distribution, see e.g. Goovaerts (1997). It requires
only that the user defines the ‘target’ distribution, in the form of a
sample of the target distribution in the d_target field. For
example a bimodal distribution with increased probability of
values around 8.5 and 11.5, can be given by

N¼10,000;

prob_chan¼0.5;

d1¼randn(1,ceil(N*(1-prob_chan)))*.5þ8.5;

d2¼randn(1,ceil(N*(prob_chan)))*.5þ11.5;

d_target¼[d1(:);d2(:)];

prior{im}.d_target¼d_target;

Note that the number N here reflects the size of the sample
generated and used to describe the target distribution in the
d_target field, and can be chosen arbitrarily large. The larger
the sample, the better the accuracy of reflecting a specific

Fig. 2. Unconditional realizations from a FFTMA type priori model with (a) Gaussian distribution, (b) target distribution, and (c) random structural parameters (range and

rotation).
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distribution. An example of combining this distribution transform
with the FFTMA type prior used to generate Fig. 2a is shown in
Fig. 2b.

Note that when using the VISIM type prior one can use a
target distribution directly, while ensuring that the chosen a
priori covariance model is still honored. Using the distribution
transform with the FFTMA prior will not preserve the properties of
the a priori chosen covariance model.

Randomizing the model of spatial variability: As mentioned for
the ‘FFTMA’ prior type model, the structural parameters that describe
the a priori model covariance can be separated from the random
number series that defines the random component. Therefore, all
properties of the covariance model can be treated as model para-
meters, such as scaling and rotation. The properties of the model
covariance can be perturbed independently of the random number
series defining the random component (Le Ravalec et al., 2000).

In order to randomize a specific component of the covariance
model, a GAUSSIAN type prior model needs to be defined for this
component. The name of the specific prior model must be either
range_1, range_2, or range_3 to define the range, or one of
ang_1, ang_2, or ang_3 to define the rotation, and m0 to define
the a priori mean, and sill to define the sill. In addition, one
must set the prior_master field to point the prior model that
define the prior for the corresponding FFTMA a priori model.

As an example, consider the FFTMA example used to generate
Fig. 2a. To randomize the maximum correlation length to be close
to uniform between 6 and 14, and randomize the primary
rotation angle to be close to uniform between 40 and 130 degrees
(from north) use

im¼1;

prior{im}.type¼’gaussian’;

prior{im}.name¼’range_1’;
prior{im}.m0¼10;

prior{im}.std¼4;

prior{im}.norm¼80;

prior{im}.prior_master¼3;

im¼2;

prior{im}.type¼’gaussian’;

prior{im}.name¼’ang_1’;
prior{im}.m0¼90;

prior{im}.std¼50;

prior{im}.norm¼80;

prior{im}.prior_master¼3;

im¼3;

prior{im}.type¼’FFTMA’;

prior{im}.prior.x¼[0:1:10]; % X array

prior{im}.prior.y¼[0:1:20]; % Y array

prior{im}.m0¼10;

prior{im}.Va¼’1 Sph(10,90,.25)’;

Fig. 2c shows an example of five realizations from such an a
priori model.

Fig. 3. Unconditional realizations from a VISIM type a priori model with (a) Gaussian distribution and (b) target distribution.

Fig. 4. Example of a training image for use with the SNESIM type a priori model.
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3.1.1. A random walk in the a priori model space

To perform a random walk in the prior probability space, as
needed by the extended Metropolis sampler, we make use of
sequential Gibbs sampling (Hansen et al., 2012). An application of
the sequential Gibbs sampler essentially amounts to selecting a
subset, which can be any subset of model parameters, and simulate
these conditional to the rest of the model parameters. The number
of chosen model parameters in the subset controls the exploratory
nature (i.e. step-length) of the sequential Gibbs sampler (which
controls the degree of correlation between successive realizations),
and hence the efficiency of the extended Metropolis sampler. All
properties of the sequential Gibbs sampler are controlled by the
seq_gibbs structure, which is a field in the prior data structure.
Two different methods for selecting the subset of model parameters
for conditional re-simulation have been implemented.

Box type subset: If prior{im}.seq_gibbs.type¼1, then a
line/rectangle/cube of model parameters (for the 1D, 2D and 3D
case, respectively) is selected as the subset used for conditional
re-simulation. The width of the box is defined by prior{im}.-
seq_gibbs.step. For example a box with dimension 2�3�4
(in the units of the prior model considered - typically meters) is
given by prior{im}.seq_gibbs.step¼[2 3 4]. The center of
the ‘box’ is chosen randomly

Randomly selected subset: If prior{im}.seq_gibbs.type¼2,
then a randomly selected number of the total number of model
parameters is selected as the subset used for conditional

resimulation. The number of data used for conditional re-simulation
is given by prior{im}.seq_gibbs.step. If prior{im}.seq_
gibbs.step is smaller than 1, it is interpreted as a percentage of
the total number of model parameters.

As an example, five iterations of sequential Gibbs sampling can
in SIPPI be performed using iterative calls to sippi_prior as

[m_current,prior]¼sippi_prior(prior);
for i¼1:5

[m_proposed,prior]¼sippi_prior(prior,
m_current);
end

Figs. 6 and 7 show examples of using sequential Gibbs
sampling with a box type selection and random type selection
of model parameters for conditional re-simulation, respectively.
The a priori model is in both cases the same as the one used to
generate the unconditional realizations of Fig. 3. The options for
the box type re-simulation are

prior{im}.seq_gibbs.type¼1;

prior{im}.seq_gibbs.step¼[4 4];

while the options for the random type re-simulation, with only
0.5% of the total number of model parameter used as conditional
data for re-simulation, are

Fig. 6. (Top) Random walk using sequential Gibbs sampling with box type re-simulation, and the VISIM type a priori model. (Bottom) Black pixels indicate the model

parameters that are simulated conditional to the value of the model parameters indicated by pixels.

Fig. 5. Unconditional realizations from a SNESIM type a priori model.
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prior{im}.seq_gibbs.type¼2;

prior{im}.seq_gibbs.step¼0.995;

The sequential Gibbs sampler can be used with the FFTMA, VISIM,
and SNESIM types a priori models. For the 1D GAUSSIAN type a priori
model we use an alternate method. Given a current realization of the
a priori model, a step length between 0 and 1 will generate a new
realization of the prior, in the vicinity if the current realization. A step
length of ‘0’ indicates no change, while a step length of ‘1’ will
generate a new unconditional realization of the a priori model.

Fig. 8 shows the first 300 iterations when sampling the same a
priori model as sampled in Fig. 1 using a step length of 0.25,
prior{im}.seq_gibbs.step¼0.25. After 100,000 iterations
the histogram of the sampled model parameters resemble that
of Fig. 1, and is therefore not shown here.

3.2. Data, data uncertainties, modelization errors and the

likelihood function

Observed data must be given in the data data structure along
with a description of the noise model. As for the prior structure,
the data structure may consist of many types of data, where each
data type number id is defined in the data{id} structure.
Observed data are stored in the d_obs field. Uncorrelated uncer-
tainty can be given either in the form of standard deviation,
d_std, or variance, d_var. A simple data structure with such
uncorrelated uncertainties can be given by

id¼1;

data{id}.d_obs¼[0 3 4]’;

data{id}.d_std¼[2 2 2]’;

If the data uncertainties are uncorrelated, the noise model can be
described by a generalized Gaussian model as defined in Eq. (7), if the
norm of the generalized Gaussian is set by data{id}.norm. If not
specified a Gaussian noise model (using a norm of 2) is chosen by
default.

The noise model can also be given in the form of a correlated
Gaussian model, for both the data noise, Cd, and the modelization

error, CT . The following will for example specify a correlated
Gaussian noise model:

id¼1;

data{id}.d_obs¼[0 3 4]’;

data{id}.Cd¼[4 0 .1 ; 0 4 0 ; .1 0 4];

If a Gaussian model for the modelization error, N ðdT ,CT Þ, is
available it can be specified as

data{id}.dt¼[0 -1 0]’;

data{id}.Ct¼[4 .1 .1 ; .1 4 .1 ; .1 .1 4];

where dT is a bias correction.

Fig. 7. (Top) Random walk using sequential Gibbs simulation with random choice of model parameters for resimulation, and the VISIM type a priori model. (Bottom) Black

pixels indicate the model parameters that are simulated conditional to the value of the model parameters indicated by white pixels.

Fig. 8. The first 300 realizations from the GAUSSIAN type a priori model with a

mean of 10, and a norm 60 and 2, respectively, using a step length of 0.25.
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One can choose to consider only a subset of the available data
using the i_use field. To use for example only data number 1 and
3 use

id¼1;

data{id}.d_obs¼[0 3 4]’;

data{id}.i_use¼[1 3];

Once the data structure has been setup in data, the log-
likelihood and the likelihood of a given data response d can be
computed using

½log L;L;data� ¼ sippi_likelihoodðd;dataÞ;

3.3. The forward problem

The forward problem is naturally problem dependent, and to
use SIPPI, the user needs to supply the solution to the forward
problem, wrapped in the m-file sippi_forward.m.

The input to sippi_forward.m is the forward, data and
prior Matlab structures. The forward structure can contain
information on how to solve the forward problem. The output
must be the data obtained by solving the forward problem, in the
form of the data structure d which must be of the same length as
the data structure, and each entry of d{id} must have the same
size as data{id}.d_obs, or the size of data{id}.i_use if a data
subset is specified.

As an alternative for providing sippi_forward, one can
provide a generic name for the m-file solving the forward
problem by setting forward.forward_function. Part 2 of this
paper will provide an example of setting up sippi_forward.m
(Hansen et al., this issue).

When the forward model has been setup, the process of
generating an unconditional realization of the a priori model, m,
followed by solving the forward problem and computing the
likelihood of m can be done using

m¼sippi_prior(prior);
d¼sippi_forward(m,forward,prior,data);
log L¼sippi_likelihood(d,data);

In the specific case where the forward relation is linear, the
linear forward operator must be specified as the matrix G

forward:G

such that the forward problem can be solved using d{1}¼
forward.G * m{1}.

3.4. Sampling the a posteriori pdf

When the forward problem, sippi_forward, and the prior,
data, and forward data structures have been defined, the a
posteriori pdf can be sampled using the rejection sampler or the
extended Metropolis sampler in the general non-linear case. In the
linear Gaussian case, least-squares based inversion can be utilized.

3.5. Rejection sampling

Simple rejection sampling, using 30,000 iterations, of the a
posteriori pdf can be performed using

options.mcmc.nite¼30,000;

sippi_rejection(data,prior,forward,options);

By default the Lmax ¼ 1, see Eq. (6). This can be manually changed
by providing the options.mcmc.Lmax.

3.5.1. Metropolis sampling

All available a priori model types and noise models in SIPPI -
work seamlessly as part of the extended Metropolis algorithm.
The extended Metropolis sampling algorithm can be applied using

options¼ sippi_metropolisðdata;prior;forward;optionsÞ;

The options structure define some properties of how the
Metropolis algorithm will run.

options.mcmc.nite determines the number of iterations of
the extended Metropolis algorithm. options.mcmc.i_sample
sets how often the current model is saved to disc, measured in the
number of iterations. options.mcmc.i_plot sets the number of
iterations between updating figures showing the progress of the
algorithm. If any of these parameters are not set, then the
following values will be chosen by default:

options.mcmc.nite¼ 30,000;

options.mcmc.i_sample¼ 500;

options.mcmc.i_plot: 50

Perturbation strategy: The choice of the number of model
parameters to be perturbed in each iteration of the extended
Metropolis algorithm can have large impact on its computational
performance. By default a random type of model parameter is
perturbed in each iteration. Thus if three types of a priori models
have been specified in prior{1}, prior{2}, and prior{3}, the
probability of perturbing each individual type of prior model in
each iteration is 1/3. This default behavior can be changed by
choosing a perturbation strategy. options.mcmc.pert_stra-
tegy.i_pert selects the number of a prior model types to
perturb, and options.mcmc.pert_strategy.i_pert_freq
set the relative frequency of each selected type of prior model.
Thus, to perturb prior model 1 and 3 (but never model 2), such
that prior model 3 is perturbed nine times as often as prior type 1,
one could use

options.mcmc.pert_strategy.i_pert¼[1 3];

options.mcmc.pert_strategy.i_pert_freq¼[1 9];

Automatic adjustment of the exploration rate (step length):
The exploratory nature of the Metropolis sampling algorithm,
controlled by the ‘step length’, has large impact on its computa-
tional demands. A small step-length provides a dense local
sampling, but the algorithm will use many iterations to move
away from the initial point, i.e. a less exploratory algorithm.
A large step length will lead to a very exploratory sampling
algorithm that will not get trapped in local minima, but many
models that are proposed will be rejected. Gelman et al. (1996)
argue that a step-length leading to an acceptance rate in the
Metropolis sampler of about 20–40% will lead to a good compro-
mise between exploration and rejection rate. SIPPI allows auto-
matic detection of the step length leading to an acceptance
rate specified by prior{im}.seq_gibbs.P_target, using the
method given by Cordua et al. (2012). Note that the Metropolis
sampler will not sample the a posteriori pdf correct until the step-
length is fixed, and unchanged. Therefore, one can set the number
of initial iterations in which adjustment of the step length is
allowed using prior{im}.seq_gibbs.i_update_step_max.
After this, actual sampling of the a posteriori pdf will start, if
the algorithm has reached burn-in. prior{im}.seq_gibb-
s.i_update_step sets the number of iterations between updat-
ing the step length. prior{im}.seq_gibbs.step_min and
prior{im}.seq_gibbs.step_max determine the minimum and
maximum allowed step length.
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The default choice of the step length is to use infinitely long
step-length, resulting in a prior sampler generating statistically
independent realization of the prior in each iteration.

As an example, a preferred acceptance ratio of 0.3, adjusted
in the first 1000 iterations, allowing step lengths in the interval
1–100 (using type 1 data subset), can be specified using:

prior{im}.seq_gibbs.type¼1;

prior{im}.seq_gibbs.step_min¼1;

prior{im}.seq_gibbs.step_max¼100;

prior{im}.seq_gibbs.step¼100;

prior{im}.seq_gibbs.i_update_step_max¼1000;

prior{im}.seq_gibbs.P_target¼0.3;

3.5.2. Linear Gaussian inverse problems

In the specific case where the forward problem is linear, and
the a priori model Gaussian, as defined by the VISIM of FFTMA
type a priori model, the a posteriori pdf can be sampled directly
without the need for the Metropolis algorithm using

[m_reals,m_est,Cm_est]
¼sippi_least_squares(data,prior,forward,

n_reals,lsq_type);

n_reals sets how many a posteriori realizations, as output in
m_reals, that are generated. lsq_type determines the method
used to solve sample the a posteriori pdf. m_est and Cm_est are
the a posteriori mean and covariance as given by Eq. (5), and are
only available if least squares types of inversion is performed.

Three methods described previously are available to generate
samples of the a posteriori pdf, and can be selected by setting the
lsq_type argument when calling sippi_least_squares.

lsq_type¼’lsq’ uses classical least-squares inversion
where the complete Gaussian a posteriori pdf can be analytically
derived in the form of a posteriori mean and covariance of Eqs.
(4) and (5). Then Cholesky decomposition of the a posterior
covariance is used to generated realizations of the a posteriori pdf.

lsq_type¼’error_sim’ makes use of kriging simulation
through error simulation to generate a sample of the a posteriori
pdf (Journel and Huijbregts, 1978; Gloaguen et al., 2005a, 2005b;
Hansen and Mosegaard, 2008).

lsq_type¼’visim’ makes use of the VISIM algorithm for
sampling the a posteriori pdf (Hansen and Mosegaard, 2008).
The type of prior model must be chosen as a VISIM type prior
model. If the target distribution is set as prior{im}.target, then
VISIM runs as a direct sequential simulation algorithm. If it is not
set, VISIM will run as a sequential Gaussian simulation algorithm.

4. Conclusions

A generic Matlab and Gnu Octave toolbox for sampling the a
posteriori pdf of linear and non-linear inverse problems has been
presented. Prior information about the model parameters can be
described by any number of the following types of a priori
models: (1) 1D arbitrarily distributed pdf, (2) 1D–3D multivariate
Gaussian pdf as sampled using the FFTMA method, (3) 1D–3D
multivariate Gaussian model as sampled using the VISIM algo-
rithm (utilizing both sequential Gaussian simulation and direct
sequential simulation), or (4) 1D–3D multiple-point based statis-
tical models as sampled using the SNESIM algorithm.

For linear Gaussian inverse problems the a posteriori pdf can
be sampled using (1) traditional least squares inversion combined
with Cholesky decomposition of the a posteriori covariance,

(2) sequential Gaussian simulation, (3) direct sequential simula-
tion and (4) Gaussian simulation through error simulation.

For non-linear and non-Gaussian inverse problems the a
posteriori pdf can be sampled using the rejection sampler or the
extended Metropolis sampler. The computational efficiency of the
extended Metropolis sampler can be controlled by using a flexible
perturbation mechanism, based on sequential Gibbs sampling,
allowing arbitrary long or short step length. The choice of the step
length can optionally be automatized.

The combination of the FFTMA method with the extended
Metropolis algorithm allows treating the properties describing
the Gaussian a priori model, to be treated as model parameters,
and thus inferred as part of the inversion.
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a b s t r a c t

We present an application of the SIPPI Matlab toolbox, to obtain a sample from the a posteriori

probability density function for the classical tomographic inversion problem. We consider a number of

different forward models, linear and non-linear, such as ray based forward models that rely on the high

frequency approximation of the wave-equation and ‘fat’ ray based forward models relying on finite

frequency theory. In order to sample the a posteriori probability density function we make use of both

least squares based inversion, for linear Gaussian inverse problems, and the extended Metropolis

sampler, for non-linear non-Gaussian inverse problems. To illustrate the applicability of the SIPPI

toolbox to a tomographic field data set we use a cross-borehole traveltime data set from Arrenæs,

Denmark. Both the computer code and the data are released in the public domain using open source

and open data licenses. The code has been developed to facilitate inversion of 2D and 3D travel time

tomographic data using a wide range of possible a priori models and choices of forward models.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Tomographic inversion is used in many research fields such as
geophysics and medical imaging. With this technique, images of an
unknown 3D object can be obtained based on indirect observations
from outside of the object. One such example is travel time
inversion that can for example be used to map the internal velocity
structure of the earth, based on recordings of the arrival times of
certain seismic phases generated as part of e.g. an earthquake.
Another example of a tomographic data set, is that obtained by
measuring the travel time delay of a seismic or electromagnetic
wave traveling between a source and a receiver. Given such a set of
observed travel time data the tomographic inverse problem consists
of inferring information about the velocity around and in-between
the sources and receivers. It is this latter problem that we will
address here using the SIPPI toolbox, which is a Matlab toolbox for
sampling the solution to inverse problems with complex a priori
information (Hansen et al., this issue).

We will specifically address the problem of first arrival travel
time inversion using crosshole ground-penetrating radar (GPR)

data. Such travel time data are sensitive to the subsurface
variations in electromagnetic wave velocity, that is related to
the dielectric permittivity, which is strongly influences by water
moisture (Topp et al., 1980). Inversion of such travel time data
thus has the potential to map subsurface moisture content.

For linear or weakly non-linear inverse problems least squares
based methods are widely applied. Deterministic least squares
methods is presented by e.g. Menke (1989), while a probabilistic
approach is given by e.g. Tarantola and Valette (1982) and
Tarantola (2005).

A probabilistic approach to linear travel time tomography,
based on sequential simulation, was proposed by Hansen et al.
(2006) and Hansen and Mosegaard (2008) who utilized the
equivalence of classical least squares inversion (e.g. Tarantola
and Valette, 1982) and kriging (e.g. Journel and Huijbregts, 1978).
An application of this approach to crosshole georadar data is
given in Nielsen et al. (2010). A related method based on kriging
through error simulation (Journel and Huijbregts, 1978), equiva-
lent with the probabilistic least squares approach, was proposed
and applied to cross hole GPR tomographys by Gloaguen et al.
(2005a,b). Recently this approach was applied for inversion of an
anisotropic velocity field (Giroux and Gloaguen, 2012). These
methods are only strictly valid for linear inverse problems, and
rely on an inherent assumption of Gaussian statistics describing
both the noise model and the a priori model. Specifically the a
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priori model must be given in form of a Gaussian a priori model
defined by a mean and a covariance model. Choosing such a
Gaussian prior model may not be trivial. A number of methods
have been developed to estimate this model prior to inverting the
data (Asli et al., 2000; Hansen et al., 2008a; Irving et al., 2009;
Looms et al., 2010).

For examples of least squares based deterministic tomographic
inversion of GPR cross hole data see e.g. Irving et al. (2007) and
Dafflon et al. (2011). Examples of stochastic inversion is presented for
inversion of time lapse cross hole 1D travel time data by Scholer et al.
(2012) and 2D time lapse electrical resistivity data by Irving and
Singha (2010). Hansen et al. (2008b) demonstrate an application of
the extended Metropolis sampler (Mosegaard and Tarantola, 1995) to
a non-linear cross hole tomographic problem, where the a priori
model is non-Gaussian and defined by any geostatistical method.

Here we will demonstrate the use of the SIPPI Matlab toolbox
for solving the crosshole traveltime tomography inverse problem
in a probabilistic framework. Initially we will briefly describe the
theory describing different linear and non-linear solutions to the
forward problem of computing the travel time delay between a
propagating wave traveling between a source and a receiver. Then
we will demonstrate how these forward models can be utilized
with SIPPI. We will then make use of a reference data set obtained
at Arrenæs, North Sealand, Denmark, to demonstrate all the
inversion methods available in SIPPI, such as classical least
squares estimation and simulation, and sampling methods such
as the rejection sampler and the extended Metropolis sampler,
see Hansen et al. (this issue).

2. Theory, first arrival travel time computation

The travel time delay of a propagating wave between a source
and a receiver can be defined in a number of ways. We will
consider methods based on the eikonal equation, 1st order
sensitivity kernels and the Born approximation.

2.1. The eikonal equation

The eikonal equation describes the arrival time along a closed
curve, uðxÞ, traveling with the speed defined by the velocity field,
mðxÞ (Sethian and Popovici, 1999)

9ruðxÞ9mðxÞ ¼ 1 ð1Þ
Solving Eq. (1) allows locating the travel time, d, between a source
and a receiver along the closed curve. To solve the eikonal
equation we make use of an efficient implementation of the
multistencil fast marching method proposed by Hassouna and
Farag (2007), and made available by Dirk-Jan Kroon1 under an
open source license. This forward model is non-linear and, as the
eikonal equation corresponds to a high frequency approximation
to the wave equation. Therefore, it is often referred to as the high
frequency ray approximation.

2.2. Forward models based on 1st order sensitivity kernels

The travel time d between a source and a receiver can be given
by

d¼
Z

GðxÞ 1

mðxÞ dx ð2Þ

where mðxÞ is the velocity field in which the signal travels. GðxÞ is
the sensitivity kernel that describes the sensitivity of each model

parameter (within the Fresnell zone) to the travel time. GðxÞ can
be computed under a wide range of assumptions and thus defines
the forward problem of computing the travel time delays in
different ways.

2.2.1. Ray based forward model

Using the high frequency approximation to the wave equation
results in a sensitivity kernel GðxÞ that can be described by a ray
connecting the source and receiver. Hence, this kernel can be
obtained by solving the eikonal equation, which provides the
fastest possible forward model. We will refer to this type of
forward model as ray based.

2.2.2. Fat ray based forward model

Using a finite frequency (band limited) approximation to the
wave equation leads to a sensitivity kernel where the sensitivity
of the travel time delay also appears in a zone around the fastest
ray path. A number of works have defined sensitivity kernels
based on geometrical rules assigning sensitivity within the first
Fresnel zone. Forward models based on these types of kernels will
be referred to as fat ray based forwards (Husen and Kissling,
2001; Jensen et al., 2000).

2.2.3. Born based forward model

The Born approximation to the wave equation (considering
only 1st order scattering) is an exact analytical expression for the
sensitivity kernel for a point source, which can be derived for
both seismic (Dahlen et al., 2000; Spetzler and Snieder, 2004;
Marquering et al., 1999; Liu et al., 2009) and electromagnetic wave
propagation (Buursink et al., 2008). The Born approximation also
leads to a sensitivity kernel with sensitivity outside the ray
approximation (i.e. a fat ray). The Born approximation is only
strictly valid for a homogeneous velocity field, but have in practice
been used also when the velocity field has relatively small velocity
contrasts. For large velocity contrast this method becomes
unstable and cannot be used. Forward models based on the Born
approximation will be referred to as Born based forward models.

3. Cross hole GPR tomography at Arrenæs

As a case study we will demonstrate the capabilities of SIPPI
for solving tomographic inverse problems. The implementation is
generally applicable for travel time based tomographic problems,
but here we will apply the toolbox to a cross hole GPR tomo-
graphic problem.

Initially we will present a 3D data set. Then we will demon-
strate how the the different types of forward models have been
implemented in sippi_forward_traveltime for easy utiliza-
tion as part of SIPPI. Finally we demonstrate the use of SIPPI to
solve the GPR cross hole tomography inverse problem using both
linear and non-linear forward models, and simple and more
complex a priori models.

3.1. Data: 3D GPR crosshole traveltime data from Arrenæs

As a reference data set we consider a 3D tomographic data set
recorded as part of a ground penetrating radar (GPR) cross
borehole survey at Arrenæs, North Sealand, Denmark. The data
set we use here is identical to data presented by Looms et al.
(2010), and is here made available in the public domain.

The observed data are first arrival times of electromagnetic
waves propagating from a source location in one borehole to a
receiver location in another borehole. Thus, the forward problem
consists of estimating the travel time delay caused by the subsur-
face velocity field, given the recording geometry. The inverse

1 http://www.mathworks.com/matlabcentral/fileexchange/24531-accurate-fast-

marching.
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problem is then to infer information about the subsurface velocity
structure.

The subsurface at Arrenæs consists mostly of sand, with
various degree of coarseness. The velocity of the subsurface is
believed to represent natural moisture content. The lower the
velocity the higher the moisture content (Topp et al., 1980).

Fig. 1 shows the relative position of four boreholes, AM1, AM2,
AM3, and AM4. Tomographic travel time delay have been
recorded between boreholes AM1–AM3 and AM2–AM4, respec-
tively. The locations of the source and receiver positions down
through the boreholes are shown in Fig. 1 and is marked by red

dots in two of the boreholes. Note that the coloured ray like
structure in Fig. 1 reflect the high frequency ray kernel related to
a constant velocity model. The colors of each ray reflect the
average velocity along each of the rays, and can be used as a
rough indicator of the subsurface velocity structure.

Data are available as ASCII and binary Matlab formatted files
for both the two 2D data sets, AM13_data and AM24_data, and
the combined 3D data set, AM1234_data that combines the data
sets AM13_data and AM24_data.

The Matlab mat files contain the location of the sources and
receivers in the S and R variables. Observed data is in the d_obs

Fig. 1. Apparent ray coverage (using the linear high frequency approximation). The color of each ray reflects the apparent average velocity along the ray path. (For

interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

T.M. Hansen et al. / Computers & Geosciences 52 (2013) 481–492 483

297



variable and the associated uncertainty (in form of the standard
deviations) is in the d_std variable. A covariance model describ-
ing static like errors related to cross borehole GPR data, as given
by Cordua et al. (2009), is available in the Ct variable.

3.2. The forward model—traveltime computation

As described in Hansen et al. (this issue), the only problem
dependent part of using SIPPI is the implementation of a solution
to the forward problem. We have implemented the m-file
sippi_forward_traveltime that can be used to solve the
forward problem of computing the travel time delay between a
set of sources and receivers. All properties relating to solving the
forward problem is defined in the forward Matlab structure. The
output is the data structure d

½d� ¼ sippi_forward_traveltimeðm,forward,prior,dataÞ;
To make this solution of the forward problem available for the
various inversion algorithms available in SIPPI, one can either
implement an m-file sippi_forward that simply calls sippi_-
forward_traveltime, or one can specify the m-file to be used
for solving the forward problem directly using forward.for-
ward_function¼ ‘sippi_forward_traveltime’. Note that this
m-file and the specification of the forward structure is specific to
the tomographic travel time inverse problem, while all other parts
of the SIPPI toolbox are applicable to inverse problems in general.

Source and receiver geometry. The locations of the sources and
receivers must be provided in the forward.sources and for-

ward.receivers fields. Both the sources and receiversmust
point to a matrix with a number of rows equal to the number of
rows (i.e. number of data) of datafidg:d_obs, and a number of
columns reflecting the dimension of the prior model. For example,
two sets of sources and receivers defined in 3D could be given by

forward.sources¼[1 1 5; 1 1 10];
forward.receivers¼[5 5 5; 5 5 10];

Forward model. Four types of forward models are available
through sippi_forward_traveltime by specifying the for-

ward.type field to one of eikonal, ray, fat, or born.
forward.type¼ ‘eikonal’ defines a forward model based on

the solution to the eikonal equation, Eq. (1). This forward model is
non-linear.

The other three available forward model types, ray, fat, and
born, refer the the ray, fat and Born based sensitivity kernels
presented earlier. When sippi_forward_traveltime is called
using any of these types of forward models, a matrix operator,
reflecting the choice of forward model, is computed as
forward.G.

One can choose either a linear or non-linear formulation for
solving such forward problems by specifying the forward.-
linear field. By default a non-linear formulation is assumed,
such that forward.linear¼0. This cause forward.G to be
recalculated for each call to sippi_forward_traveltime.
Different velocity models will result in different sensitivity kernels,
and hence different forward operators, forward.G. Therefore, the
forward problem is non-linear.

One can also choose a linear formulation, using for-

ward.linear¼1. In this case forward.G is only computed once,
when sippi_forward_traveltime is called for the first time,
and hence any subsequent calls to solve the forward model
requires only a fast matrix multiplication. One can provide a
velocity model for which the sensitivity kernel will be computed
using forward.linear_m. If this is not specified the sensitivity
kernel will be computed for the a priori mean model, given in
prior{1}.m0.

forward.type¼ ‘ray’ selects the high frequency ray approx-
imation presented earlier. This type of forward model is based on
the same high frequency assumption as the eikonal type
forward model. The difference is that here the forward operator
forward.G is explicitly computed, which allows for a very fast
forward model using forward.linear¼0. If one would consider
using the ray type forward model in a non-linear formulation, we
suggest to use the eikonal type of forward model instead, which
provides similar results but is computationally much more
efficient. Used in the linear formulation this type forward model
resemble the ‘straight ray’ approximation, as the the travel delay
is due to the travel time delay along straight ray path that
connects the source and receivers. The ‘rays’ on Fig. 1 reflect such
a linear ‘ray’ type forward model.

forward.type¼ ‘fat’ selects a finite frequency (band limited)
approximation to the wave equation, where the travel time delay
i sensitive to a zone around the fastest ray path. Specifically the
fat type forward model uses the empirical description of the
travel time sensitivity kernel as proposed by Jensen et al. (2000),
which is based on 1st order Fresnel zone sensitivity. The fat type
forward model can be used both as linear and non-linear
forward model.

forward.type¼ ‘born’ selects a forward model based on the
Born approximation as presented earlier. Here we will make
explicit use of the formulation of the sensitivity kernels given
by Buursink et al. (2008). The born type forward model is only
strictly valid for a homogeneous velocity field, but have in
practice been used also when the velocity field has relatively
small velocity contrasts. For large velocity contrasts this method
becomes unstable and should not be used.

Using either forward.type¼ ‘fat’ or forward.type¼ ‘born’
the width of the sensitivity around the ray path, is related to the
frequency of the propagating wave. Therefore, this frequency
must be set as forward.freq. The frequency must be specified
in the inverse unit of the observed travel time data given in
datafidg:d_obs.

As an example of choosing the fat type forward model in a
non-linear formulation using a wavelet frequency of 0.1 GHz,
where traveltime data is measured in nanoseconds, is

forward.type¼ ‘fat’;
forward.freq¼0.1;
forward.linear¼0;

3.3. Solving the inverse problem

Having defined the forward problem, we will demonstrate the
methods available in SIPPI for solving the inverse tomographic
problem.

3.3.1. 2D non-linear inversion—AM13

Initially we will consider the 2D traveltime data set, AM13,
recorded between well AM1 and AM3, using a simple Gaussian
type a priori model. 702 travel time data and the position of
associated source and receiver locations is available in the Matlab
file AM13_data.mat. To use SIPPI, the forward, data, and prior

structures need to be defined.
Setting up the forward structure. We use the high fre-

quency ray approximation, in form of the eikonal type
forward model, such that the forward data structure can be
setup using

D¼load(‘AM13_data.mat’);
forward.sources¼D.S;
forward.receivers¼D.R;
forward.type¼ ‘eikonal’;
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Setting up the data structure. The high frequency approximation,
assumed using the eikonal solution, will always provide the fastest
travel time between a source and a receiver, and always faster than
the travel time of a wave with a finite finite frequency in a
inhomogeneous velocity field. Therefore, we allow for a small
modelization error, Ct, in form of a constant correlated Gaussian
error of 1 ns2 between all data. This will allow a small bias correction
(the same for all data observations) to account for the relative fast
travel times caused by the use of the high frequency forward model.
The data in form of 702 observed traveltimes, d_obs, and associated
uncorrelated uncertainties, d_std (of 0.7 ns), is available in the
Matlab file AM13_data.mat. The data structure can be setup as

D¼load(‘AM13_data.mat’);
id¼1;
datafidg:d_obs¼ D:d_obs ;
datafidg:d_std¼ D:d_std ;
datafidg:Ct¼ 1 ;% modelizationerror

SIPPI allows using only a subset of the available data, which
can be useful to test a certain setup relatively fast. The number of
data considered is given by data{id}.i_use. To use every 20th
data one could use datafidg:i_use¼ 20 : 20 : 702. If not set it is
automatically set to all data. In the current case this will be
datafidg:i_use¼ 1 : 1 : 702.

Setting up the prior structure. Looms et al. (2010) demonstrate
a method for inferring the structural parameters of a Gaussian
type a priori model. They tested their method on the data we use
here and find an optimal a priori model for profile AM13 and
AM24 independently. Initially we will make use of the same a
priori model for both profile AM13 and AM24 and, therefore,
based on the findings in Looms et al. (2010), we choose to use a
Gaussian type a priori model as defined by a Spherical type
covariance model with an isotropic covariance model with a
range of 6m, a variance of 0:0003 m2=ns2, and a mean of
0.145 m/ns. We make use of the FFTMA type a priori model. The
complete definition of the a priori model can then be given as

im¼1;
priorfimg:type¼ ‘FFTMA’;
priorfimg:name¼ ‘Velocityðm=nsÞ’;
priorfimg:m0¼ 0:145;
priorfimg:Va¼ ’:0003Sphð6Þ’;

priorfimg:x¼ ½�1 : :2 : 6�;
priorfimg:y¼ ½0 : :2 : 13�;

A sample of the corresponding a priori model can then be
generated and visualized using sippi_plot_prior(prior) as
shown in Fig. 2a.

Sampling the a posteriori pdf using the extended Metropolis

algorithm. Given the forward, prior, and data structures the
extended Metropolis algorithm can be setup and run using e.g.

options.mcmc.nite¼500000;
options.mcmc.i_plot¼200;
options.mcmc.i_sample¼250;
sippi_metropolis(data,prior,forward,options);

This will cause the extended Metropolis sampler to run for
500,000 iterations. The currently visited model will be saved to
disk for every 250 iterations as specified by options.mcmc.
i_sample

As the Metropolis algorithm is running, some properties are
visualized for every options.mcmc.i_plot iterations, such as the
currently accepted model, the step length for each prior type, and
the log-likelihood curve. Such figures are often useful in the phase
where the properties of the Metropolis algorithm are selected,
prior to performing a full sampling.

Fig. 3 shows the log-likelihood value as function of the
iteration number. The Metropolis algorithm has reached burn-in
after about 2000 iterations as it reaches the plateau of log-
likelihood values of approximately �90.

Recall that the way the sequential Gibbs sampler works, is
controlled by the priorf1g:seq_gibbs structure, Hansen et al.
(this issue). Here we make use of the default settings

priorf1g:seq_gibbs:i_update_step¼ 50

priorf1g:seq_gibbs:i_update_step_max¼ 1000

priorf1g:seq_gibbs:P_target¼ 0:3000

This means that the step length of the Metropolis sampler is
adjusted for every 50 iterations with the goal of achieving an
acceptance rate of 0.3. After 1000 iterations the step length will
be kept constant.

Fig. 2. Five realizations from the (a) a priori model and (b) a posteriori pdf considering data set AM13.
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Fig. 4 shows the step length of the sequential Gibbs sampler as
well as the acceptance rate in the first 3000 iterations. In the first
1000 iterations the step length is allowed to vary, and after 1000
iterations the step length stabilize around 10�3. Initially the
acceptance rate is about 0.2. Then it decreases rapidly until the
step length is gradually adjusted, such that the acceptance rate
ends up around 0.3, just as requested by priorf1g:seq_gibbs:
P_ target. Recall that while the step length is being changed,
and until the Metropolis algorithm has reached burn-in, the a
posteriori pdf is not sampled (Cordua et al., 2012).

Fig. 2b shows five independent realizations of the a posteriori
pdf, obtained after the Metropolis algorithm has reached burn-in.
Comparing the realizations of the a posteriori pdf to the realiza-
tion of the a priori pdf (Fig. 2a) reveals that the apparent scales
and spatial structures visible in the a priori realizations are also
present in the a posteriori realizations. The location of these
structures is not resolved in the a prior realizations. But in the a
posteriori realizations it is clear that relative high velocity
structures dominate in the lower right corner while areas of
lower velocity dominate the upper part of the model. Features
such as these, that appear on many realizations of the a posteriori
pdf are well resolved features (Mosegaard, 1998).

Once the extended Metropolis sampler has finished a number
of plots for quality control can be generated using sippi_
plot_posterior. First a figure visualize a sample of the a
posteriori pdf, as in Fig. 2a. Second, a figure shows the acceptance
ratio and step length as a function of iteration number, as in Fig. 4.
Third, a figure shows the distribution of data residuals, i.e. the
difference between observed and simulated travel time data,
corresponding to number a realizations of the a posteriori pdf,
as in Fig. 5. Note how the distribution is very close to Gaussian, as
defined in the noise model. Note also how the distribution is not
centered around 0 ns, but has a mean value (i.e. a bias) of about
�1.5 ns. This is due to allowing a constant modelization error of
1 ns2, that was applied in order to account for the use of the
eikonal type forward model, that will always provide the fastest
possible travel time between a source and a receiver. This is
correctly reflected in the negative bias correction.

Finally sippi_plot_posterior provides a figure that illus-
trates the correlation coefficient of the currently accepted model
in the last iteration to any of the other models sampled from the a
posteriori pdf. This is used to estimate the number of iterations
between independent realizations of the a posteriori pdf, e.g.
Cordua et al. (2012). An example generated for the present
example, is shown in Fig. 6. The correlation coefficient between
the current model at iteration 500,000 and the models close to
iteration number 500,000 is close to 1, and such models are not
statistically independent. However, in a number of iterations
away from the last considered model, the correlation coefficient
decreases, until it reached a level of around 0.7. We use this level
of the correlation coefficient to determine the approximate
number of iterations between independent realizations of the a
posteriori pdf obtained by the Metropolis algorithm. For the
present case this was estimated to be around 10000 iterations
between independent realizations.

Sampling the a posteriori pdf using the rejection sampler. Sam-
pling the a posteriori pdf for the tomographic inverse problem
using rejection sampling, can in principle be performed using

options.mcmc.nite¼500000;
sippi_rejection(data,prior,forward,options);

The maximum a posteriori likelihood Lmax is set to 1, if not, as
here, specifically set using options.mcmc.Lmax, see Hansen et al.
(this issue). Fig. 7 (green bars) shows a histogram of the likelihood
of all the a posteriori accepted models using the extended

Fig. 4. Step length and acceptance rate of the Metropolis algorithm during the first

3000 iterations.

Fig. 5. Distribution of the difference between observed traveltime data and the

traveltime data associated to 10 realizations of the a posteriori pdf.

Fig. 3. Likelihood as a function of iteration number.
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Metropolis algorithm as considered above. The log-likelihood
distribution of a posteriori accepted models is in the interval
�105 to �75. However, the blue line indicates the maximum log-
likelihood of �824 obtained after generating 500,000 independent
realizations of the a priori pdf and evaluating the corresponding
log-likelihood as part of running the rejection sampler. Thus, the
‘best’ model found after 500,000 realizations is very far from
leading to a data fit within data uncertainties. Even if Lmax could
somehow be chosen around �68 (as indicated by the log-
likelihood values of the accepted a posteriori models obtained
from Metropolis sampling) the probability of locating just one
realization from the a posteriori pdf using independent sampling
of the a priori pdf, will be extremely low. The main problem with
the rejection sampler is that it is computationally very inefficient
for anything but very low dimensional problems. In general we
suggest to make use of the extended Metropolis sampler to sample
the a posteriori pdf of non-linear non-Gaussian inverse problems.

Sampling the a posteriori pdf using least-squares. As discussed in
Hansen et al. (this issue), if the forward problem is linear, and a

linear forward mapping operator given as forward.G is provided,
then the a posteriori pdf can be sampled using least squares,
kriging through error simulation or direct sequential simulation.
Here we will consider using classical least squares type inversion,
using lsq_type¼ ‘lsq’. We will use exactly the same specifica-
tion of the a priori model and the data model as used above.

To solve the linear Gaussian inverse problem using least
squares type inversion, using the ray,fat, and born type forward
model approximation, we use

forward.linear¼1;
forward.type¼ ‘ray’;
forward.freq¼10;
lsq_type¼ ‘lsq’;
nr¼15;

% ‘ray’ type forward model

forward.type¼ ‘ray’;

[m_reals_ray,m_est_ray,Cm_est_ray] ¼
sippi_least_squares(data,prior,forward,nr,lsq_type);

% ‘fat’ type forward model

forward.type¼ ‘fat’;

forward.freq¼10;

[m_reals_fat,m_est_fat,Cm_est_fat] ¼
sippi_least_squares(data,prior,forward,nr,lsq_type);

% ‘born’ type forward model

forward.type¼ ‘born’;

[m_reals_born,m_est_born,Cm_est_born] ¼
sippi_least_squares(data,prior,forward,nr,lsq_type);

It is difficult to see any large difference between realizations
from the a posteriori pdf using the three different types of forward
models. Therefore, Fig. 8 shows the three a posteriori mean models,
considering the (a) ray, (b) fat, and (c) born type forward model,
which demonstrates that on average there is a difference between
the solutions obtain with these different forward choices.

3.3.2. 2D non-linear inversion - AM24

We now consider the 2D data recorded between borehole AM2
and AM4, perpendicular to the data set recorded between bore-
hole AM1 and AM3. We make the same assumptions about the a
priori and the forward model as considered in the application of
the extended Metropolis sampler above

D¼load(‘AM24_data.mat’);
forward.sources¼D.S;
forward.receivers¼D.R;
forward.type¼ ‘eikonal’;

As above we make use of the extended Metropolis algorithm to
sample the a posteriori pdf. Fig. 9 shows 20 realizations of the 1D
velocity from the a posteriori pdf considering the data sets AM13
and AM24, at location x¼2.5 m, where the two profiles cross each
other. Also shown is the mean of 200 a posterior realization for
both data sets.

Fig. 9 reveals that where the two profiles intersect, the inferred
velocity profile is quite similar even when the two data sets are
inverted independently. In the top part of the model, where the
consistency between realizations are weakest, the relative posi-
tion of the relatively high velocity layers at depths of 2.8 m and
5 m is in agreement, while the velocity estimates of the more

Fig. 7. Distribution of log-likelihood of the models considered in 500,000 itera-

tions of the Metropolis sampler (green), and the one model of 500,000 considered

model using rejection sampling with maximum-likelihood (blue dashed line). (For

interpretation of the references to color in this figure caption, the reader is

referred to the web version of this article.)

Fig. 6. Correlation coefficient between the last accepted model from the a

posteriori pdf, and all other realizations of the a posteriori pdf.
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shallow parts differ only slightly. The reason for the observed
inconsistencies can be related to the use of a 2D forward model
describing data collected in a 3D world.

3.3.3. 3D inversion using a Gaussian a priori model—AM1234

Setting up an inversion using 3D data and a 3D parametriza-
tion of the a priori model is very similar to the 2D example above.
Using the AM1234 data sets one can use

D¼load(‘AM1234_data.mat’);
forward.sources¼D.S;

forward.receivers¼D.R;
forward.type¼ ‘eikonal’;

The a priori model is identical to the one used above, except
that a 3D parametrization needs to be specified. We also make use
of a larger pixel size in order to keep the running time reasonable.

priorfimg:x¼ ½�1 : :5 : 6�;
priorfimg:y¼ ½�1 : :5 : 6�;
priorfimg:z¼ ½0 : :5 : 13�;

Sampling the a priori and a posteriori pdf, can be performed in
exactly the same manner as done for the 2D cases above. Fig. 10
shows five independent realizations of the a posteriori pdf,
obtained after the Metropolis algorithm has reached burn-in.
Fig. 11 compare the mean of an a posteriori sample obtained
from inverting the AM13, AM24, AM1234 data sets, at the
location where the two 2D profiles intersect. Also shown is
realizations from the a posteriori pdf corresponding to the
AM1234 data set. Above 8 m depth the a posteriori mean is very
similar for all cases. Below 8 m depth, the inferred velocity is
higher inverting the 3D data set compared to the 2D data set.

3.3.4. 2D inversion with unknown covariance model properties

Most all inversion methods relying on a Gaussian a priori
model, require that the properties of the covariance model, such
as the mean, range, anisotropy, and variance are known prior to
inversion. The choice of a priori covariance model highly affect
the inversion result and, therefore, some work has been done to
estimate a (prior) covariance model consistent with observed
data, Asli et al. (2000), Hansen et al. (2008a), and Looms et al.
(2010). As mentioned in Hansen et al. (this issue) and Le Ravalec
et al. (2000) the FFTMA method allows for separating such
structural properties of the covariance model from the random
component. SIPPI allows such properties to act as model para-
meters, that can be inferred as part of an inversion.

To demonstrate this we use the same data and setup as used
previously from the 2D travel time data set obtained between
borehole AM1 and AM3, i.e. data set AM13, but where the a priori
model is changed to allow for inference of the horizontal and
vertical range.

Fig. 8. Five realizations of the a posteriori pdf, using the (a) ray, (b) fat, and (c) Born type linear forward models.

Fig. 9. Twenty realizations at x¼2.5 considering data sets AM13 (green lines) and

AM24 (red lines). The solid black line and dashed line show the corresponding

average 1D velocity profile of 200 realizations of the a posteriori pdf. (For

interpretation of the references to color in this figure caption, the reader is

referred to the web version of this article.)
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im¼0;
% prior - HORIZONTAL RANGE

im¼imþ1;
priorfimg:type¼ ‘gaussian’;
priorfimg:m0¼ 8 ;
priorfimg:std¼ 6;
priorfimg:name¼ ‘range_1’ ;
priorfimg:prior_master¼ 3;
priorfimg:norm¼ 20;

% prior - VERTICAL RANGE

im¼imþ1;
priorfimg ¼ priorfim�1g;
priorfimg:name¼ ‘range_2’;

% prior - 2D VELOCITY FIELD
im¼imþ1;
priorfimg:type¼ ‘FFTMA’;

priorfimg:name¼ ‘Velocityðm=nsÞ’;
priorfimg:m0¼ 0:145;
priorfimg:Va¼ ‘:0003Sphð6Þ’;
priorfimg:x¼ ½�1 : :2 : 6�;
priorfimg:y¼ ½0 : :2 : 13�;

Note that the only difference to the first example of inverting
the AM31 data set with a known a priori covariance model, is the
definition of two a priori parameters, named range_1 and
range_2. Also, these two prior structures point to the third prior
structure (the FFTMA type prior) as their ‘master’, indicating
which prior structure it belongs to. This ensures that when the
value of such a prior model is updated, so is the value of
covariance model of the corresponding prior_master structure.

A sample of this a priori model is shown in Fig. 12a. It is
apparent that allowing variability in the ranges, determines an a
priori model with much more a priori variability as compared to
when the ranges is kept constant.

We now make use of the extended Metropolis sampler to
sample the a posteriori pdf, in three cases where we use only 35
(every 20th observed data), 140 (every 5th observed data) and all
702 observed data, respectively. The subset of the data is chosen
using the datafidg:i_use¼ 20 : 20 : 702 and datafidg:i_use¼
5 : 5 : 702, respectively. The corresponding samples from the a
posteriori pdf is shown in Fig. 12b–d.

Because the horizontal and vertical ranges of the a priori
covariance is also model parameters, the a posteriori distribution
of these model parameters can also be quantified. Fig. 13 shows
the 1D marginal posterior distribution of the horizontal and
vertical range, respectively, using every (a) 20th, (b) 5th , and
(c) all available observed data. When few observed data are used
only very little information can be inferred about the ranges (red
lines). But, as the number of data increases, so does the resolution
of the range parameters. When all 702 data are used the 1D
marginal a posteriori distributions of the ranges reveal that the
horizontal range is relative long, between 7 m and 15 m, while
the vertical range is better resolved with values between 4.8 m
and 7 m. These findings are consistent with the result reported by
Looms et al. (2010). Looms et al. (2010) find the range estimates
priori to inversion of the travel time data, while in the present
approach information about the ranges is inferred as part of the
inversion.

As the number of considered observed data increase so does
the resolution, which is seen as the differences between the a
posteriori realizations become smaller. Thus increasing the
amount of data leads to a better constrained posterior sample. It
is, however, important to notice that the posterior statistics
inferred from an a posteriori sample using only a subset of the
data is consistent with the full solution: features that appear well
resolved from a sample of the a posteriori pdf obtained using a
subset of the data, will be consistent with the full inverse

Fig. 10. Five realizations from the a posteriori pdf using the AM1234 3D data set.

Fig. 11. 20 realizations of the a posterior pdf considering the 3D AM1234 data set

of the center of the 3D grid where the two 2D profiles intersect (thin black) lines.

Also shown is the mean of all a posteriori realizations considering the AM13

(green), AM24 (red), and AM1234 data sets (yellow). (For interpretation of the

references to color in this figure caption, the reader is referred to the web version

of this article.)
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problem, unless some unaccounted for bias is present in data.
There might be cases where the resolution provided by subset of
the available data will be adequate. This will off course also result
in an easier, more computationally efficient, sampling problem.

Traditional applications in inverse problems with Gaussian a
priori models, rely on the existence of, or choice of, an a priori
covariance model to describe spatial variability. The combination
of the FFTMA prior model with the extended Metropolis sampler
as implemented in SIPPI opens up new possibilities for solving
non-linear inverse problems with unknown properties of the
structural covariance model describing spatial variability.

3.3.5. 2D inversion with training image based prior

The a priori knowledge about the subsurface at Arrenæs does
not readily call for a multiple point based a priori model, nor is
such a model readily available. To demonstrate the use of a
multiple point based a priori model, we generate a synthetic data
set based on an a priori model defined by the training image in

Fig. 12. Five realizations from the (a) a priori distribution and a posteriori distribution of the velocity field, using (b) 35, (c) 140, and (d) 702 observed data, respectively.

Fig. 13. 1D marginal a posteriori distribution of the horizontal (hx) and vertical

(hx) range, using 35, 140 and 702 data observations, respectively.
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Fig. 4 in Hansen et al. (this issue), and the SNESIM type a priori
model, Strebelle (2002), defined using

im¼1;

priorfimg:type¼ ‘SNESIM’;
priorfimg:ti¼ ‘snesim_std:ti’;
priorfimg:index_values¼ ½01� ;% optional

priorfimg:m_values¼ ½:10:18� ;% optional

priorfimg:scaling¼ :75 ;% optional

priorfimg:rotation¼ 30 ;% optional

Fig. 14a shows five realizations of this a priori model. The first
model is chosen as the reference velocity model, from which
synthetic data are computed by solving the forward problem.
Finally some random Gaussian noise, according to the observed
data uncertainties, are added to obtain an ‘observed’ data set.

id¼1;
m_ref¼sippi_prior(prior);
d_ref¼sippi_forward(m_ref,forward,prior,data);
datafidg:d_obs¼ d_reff1gþ

randnðsizeðd_reff1gÞÞ:ndatafidg:d_std;
datafidg:Ct¼ 0;

Then the Metropolis algorithm is run in the exact same
manner as in the previous examples. Fig. 14b shows five realiza-
tions from the a posteriori pdf obtained by running the extended
Metropolis algorithm.

This small example demonstrates that the difficulty of using a
more complex a priori model using SIPPI, lies mostly in the
difficulty to locate or choose such a model. Implementation wise
there is only very little difference in choosing a simple covariance
based prior model as opposed to a more complex prior model
based on multiple point statistics.

4. Conclusions

We have demonstrated the use of the SIPPI toolbox to sample
the solution to cross hole travel time tomographic inverse problems.

A number of different forward models ranging from simple ray
theory, based on high frequency wave-theory, to fat ray forward
models based on finite frequency theory are available. We have
demonstrated how such a tomographic inverse problem can be
solved by sampling the a posteriori pdf, for a non-linear formulation
of the inverse problem using the extended Metropolis algorithm for
both 2D and 3D cases. We have also shown how least squares based
techniques can be used to directly generate samples of the a poster-
iori pdf in the case of linear inverse Gaussian problems. Examples are
based on a cross hole georadar data set. We have demonstrated that
SIPPI facilitates a novel approach, based on a combination of the
FFTMA method and the extended Metropolis sampler, that allow
sampling the a posteriori pdf of linear and non-linear inverse problem
with a Gaussian a priori model, where the properties of the
covariance can be treated as parameters, and thus inferred as part
of the inversion. Thus, the structural parameters defining the Gaus-
sian a priori model, need not be known prior to inversion. All code
and data is available using open licenses.
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