13 research outputs found

    Antimicrobials: A Global Alliance For Optimizing Their Rational Use In Intra-abdominal Infections (agora)

    Get PDF
    Intra-abdominal infections (IAI) are an important cause of morbidity and are frequently associated with poor prognosis, particularly in high-risk patients. The cornerstones in the management of complicated IAIs are timely effective source control with appropriate antimicrobial therapy. Empiric antimicrobial therapy is important in the management of intra-abdominal infections and must be broad enough to cover all likely organisms because inappropriate initial antimicrobial therapy is associated with poor patient outcomes and the development of bacterial resistance. The overuse of antimicrobials is widely accepted as a major driver of some emerging infections (such as C. difficile), the selection of resistant pathogens in individual patients, and for the continued development of antimicrobial resistance globally. The growing emergence of multi-drug resistant organisms and the limited development of new agents available to counteract them have caused an impending crisis with alarming implications, especially with regards to Gram-negative bacteria. An international task force from 79 different countries has joined this project by sharing a document on the rational use of antimicrobials for patients with IAIs. The project has been termed AGORA (Antimicrobials: A Global Alliance for Optimizing their Rational Use in Intra-Abdominal Infections). The authors hope that AGORA, involving many of the world's leading experts, can actively raise awareness in health workers and can improve prescribing behavior in treating IAIs.11NIAID NIH HHS [R01 AI117211

    Antimicrobials: a global alliance for optimizing their rational use in intra-abdominal infections (AGORA)

    Get PDF
    Intra-abdominal infections (IAI) are an important cause of morbidity and are frequently associated with poor prognosis, particularly in high-risk patients. The cornerstones in the management of complicated IAIs are timely effective source control with appropriate antimicrobial therapy. Empiric antimicrobial therapy is important in the management of intra-abdominal infections and must be broad enough to cover all likely organisms because inappropriate initial antimicrobial therapy is associated with poor patient outcomes and the development of bacterial resistance. The overuse of antimicrobials is widely accepted as a major driver of some emerging infections (such as C. difficile), the selection of resistant pathogens in individual patients, and for the continued development of antimicrobial resistance globally. The growing emergence of multi-drug resistant organisms and the limited development of new agents available to counteract them have caused an impending crisis with alarming implications, especially with regards to Gram-negative bacteria. An international task force from 79 different countries has joined this project by sharing a document on the rational use of antimicrobials for patients with IAIs. The project has been termed AGORA (Antimicrobials: A Global Alliance for Optimizing their Rational Use in Intra-Abdominal Infections). The authors hope that AGORA, involving many of the world's leading experts, can actively raise awareness in health workers and can improve prescribing behavior in treating IAIs

    The Global Alliance for Infections in Surgery : defining a model for antimicrobial stewardship-results from an international cross-sectional survey

    Get PDF
    Background: Antimicrobial Stewardship Programs (ASPs) have been promoted to optimize antimicrobial usage and patient outcomes, and to reduce the emergence of antimicrobial-resistant organisms. However, the best strategies for an ASP are not definitively established and are likely to vary based on local culture, policy, and routine clinical practice, and probably limited resources in middle-income countries. The aim of this study is to evaluate structures and resources of antimicrobial stewardship teams (ASTs) in surgical departments from different regions of the world. Methods: A cross-sectional web-based survey was conducted in 2016 on 173 physicians who participated in the AGORA (Antimicrobials: A Global Alliance for Optimizing their Rational Use in Intra-Abdominal Infections) project and on 658 international experts in the fields of ASPs, infection control, and infections in surgery. Results: The response rate was 19.4%. One hundred fifty-six (98.7%) participants stated their hospital had a multidisciplinary AST. The median number of physicians working inside the team was five [interquartile range 4-6]. An infectious disease specialist, a microbiologist and an infection control specialist were, respectively, present in 80.1, 76.3, and 67.9% of the ASTs. A surgeon was a component in 59.0% of cases and was significantly more likely to be present in university hospitals (89.5%, p <0.05) compared to community teaching (83.3%) and community hospitals (66.7%). Protocols for pre-operative prophylaxis and for antimicrobial treatment of surgical infections were respectively implemented in 96.2 and 82.3% of the hospitals. The majority of the surgical departments implemented both persuasive and restrictive interventions (72.8%). The most common types of interventions in surgical departments were dissemination of educational materials (62.5%), expert approval (61.0%), audit and feedback (55.1%), educational outreach (53.7%), and compulsory order forms (51.5%). Conclusion: The survey showed a heterogeneous organization of ASPs worldwide, demonstrating the necessity of a multidisciplinary and collaborative approach in the battle against antimicrobial resistance in surgical infections, and the importance of educational efforts towards this goal.Peer reviewe

    Antimicrobials: a global alliance for optimizing their rational use in intra-abdominal infections (AGORA)

    Full text link

    Stratified Dielectric Media

    No full text
    NASA under grants NAG5-12659 and NAG5-1298

    Run-time services for hybrid cpu/fpga systems on chip

    No full text
    Modern FPGA devices, which include (multiple) processor core(s) as diffused IP on the silicon die, provide an excellent platform for developing custom multiprocessor systems-on-programmable chip (MPSoPC) architectures. As researchers are investigating new methods for migrating portions of applications into custom hardware circuits, it is also critical to develop new run-time service frameworks to support these capabilities. Hthreads (HybridThreads) is a multithreaded RTOS kernel for hybrid FPGA/CPU systems designed to meet this new growing need. A key capability of hthreads is the migration of thread management, synchronization primitives, and run-time scheduling services for both hardware and software threads into hardware. This paper describes the hthreads scheduler, a key component for controlling both software-resident threads (SW threads) and threads implemented in programmable logic (HW threads). Run-time analysis shows that the hthreads scheduler module helps in reducing unwanted system overhead and jitter when compared to historical software schedulers, while fielding scheduling requests from both hardware and software threads in parallel with application execution. Run time analysis shows the scheduler achieves constant time scheduling for up to 256 active threads with a total of 128 different priority levels, while using uniform APIs for threads requesting OS services from either side of the hardware/software boundary

    The case for high level programming models for reconfigurable computing

    No full text
    In this paper we first outline and discuss the issues of currently accepted computational models for hybrid CPU/FPGA systems. Then, we discuss the need for researchers to develop new high-level programming models, and not just focus on extensions to programming languages, for enabling accessibility and portability of standard high level applications across the CPU/FPGA boundary. We then present hthreads, a unifying programming model for specifying application threads running within a hybrid CPU/FPGA system. Threads are specified from a single pthreads (POSIX threads) multithreaded application program and compiled to run on the CPU or synthesized to run on the FPGA. The hthreads system, in general, is unique within the reconfigurable computing community as it abstracts the CPU/FPGA components into a unified custom threaded multiprocessor architecture platform. A hardware thread interface (HWTI) component has been developed that provides an abstract, platform-independent compilation target. Thus, the HWTI enables the use of standard thread communication and synchronization operations across the software/hardware boundary.

    The Global Alliance for Infections in Surgery: defining a model for antimicrobial stewardship-results from an international cross-sectional survey

    No full text
    Background: Antimicrobial Stewardship Programs (ASPs) have been promoted to optimize antimicrobial usage and patient outcomes, and to reduce the emergence of antimicrobial-resistant organisms. However, the best strategies for an ASP are not definitively established and are likely to vary based on local culture, policy, and routine clinical practice, and probably limited resources in middle-income countries. The aim of this study is to evaluate structures and resources of antimicrobial stewardship teams (ASTs) in surgical departments from different regions of the world. Methods: A cross-sectional web-based survey was conducted in 2016 on 173 physicians who participated in the AGORA (Antimicrobials: A Global Alliance for Optimizing their Rational Use in Intra-Abdominal Infections) project and on 658 international experts in the fields of ASPs, infection control, and infections in surgery. Results: The response rate was 19.4%. One hundred fifty-six (98.7%) participants stated their hospital had a multidisciplinary AST. The median number of physicians working inside the team was five [interquartile range 4-6]. An infectious disease specialist, a microbiologist and an infection control specialist were, respectively, present in 80.1, 76.3, and 67.9% of the ASTs. A surgeon was a component in 59.0% of cases and was significantly more likely to be present in university hospitals (89.5%, p &lt; 0.05) compared to community teaching (83.3%) and community hospitals (66.7%). Protocols for pre-operative prophylaxis and for antimicrobial treatment of surgical infections were respectively implemented in 96.2 and 82.3% of the hospitals. The majority of the surgical departments implemented both persuasive and restrictive interventions (72.8%). The most common types of interventions in surgical departments were dissemination of educational materials (62.5%), expert approval (61.0%), audit and feedback (55.1%), educational outreach (53.7%), and compulsory order forms (51.5%). Conclusion: The survey showed a heterogeneous organization of ASPs worldwide, demonstrating the necessity of a multidisciplinary and collaborative approach in the battle against antimicrobial resistance in surgical infections, and the importance of educational efforts towards this goal
    corecore